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Chapter 1

Topological Spaces

Definition 1.1 (Topology, Topological Space). A topology on a set X is a collection 7 of subsets of X
having the following properties:

e gand X arein T
¢ The union of the elements of any subcollection of 7 is in 7
¢ The intersection of the elements of any finite subcollection of 7 is in 7

A set X for which a topology T has been specified is called a fopological space.

Definition 1.2 (Open Set). Let X be a topological space with associated topology 7. A subset U of X
is said to be open if it is an element of 7.

This immediately implies that both @ and X are open. In fact, we shall see that they are also closed. The
topology 7 of all subsets of X is called the discrete topology while the topology 7 = {&, X} is called the
indiscrete topology or the trivial topology.

Definition 1.3. Let X be a set and 7, 7' be two topologies defined on X. If 7/ O T, we say that 7' is
finer than 7. Further, if 7/ C T, then T is said to be strictly finer than T .

Definition 1.4 (Basis). If X is a set, a basis for a topology on X is a collection B of subsets of X (called
basis elements) such that

* For each x € X, there is at least one basis element B containing x

¢ If x belongs to the intersection of two basis elements B; and By, then there is a basis element B3
containing x such that B3 C By N B,.

Definition 1.5 (Generated Topology). Let B be a basis for a topology on X. The topology generated by
B is defined as follows: A subset U of X is said to be open in X if for each x € U, there is B € B such
thatx € B C U.
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Proposition 1.6. The collection T generated by a basis B is indeed a topology on X.

Proof. Obviously @, X € T. Suppose {U,} is a | indexed collection of sets in 7. Let U = Uycj Ua- Then,
for each x € U, there is an « € | such that x € U, and thus, thereis B € B suchthatx € B C U, C U
and thus U € 7. Let Uy, U, € T and x € U; N U,. Then, there exist By, B, € B such that x € B; C U;
and x € By C U, and thus, x € BN By C U; NU,. But, by definition, there exists B3 € B such that
x € B3 C B1 N By C Uy NUy and consequently Uy N U, € 7. This finishes the proof. [ |

Lemma 1.7. Let X be a set and B be a basis for a topology T on X. Then T equals the collection of all unions of
elements of B.

Proof. Trivially note that all elements of 5 must be in 7 and thus, their unions too. Conversely, let U € T,
then for all x € U, there is By € B such that x € By C U. Itis not hard to see that U = U, Bx and we
have the desired conclusion. |

Lemma 1.8. Let X be a topological space. Suppose C is a collection of open sets of X such that for each open set
U of X and each x € U, there is an element C of C such that x € C C U. Then C is a basis for the topology of X.

Proof. We first show that B is a basis. Since X is an open set, for each x € X, there is C € C such that x € C.
Let C1, Gy € C. Since both C; and C; are given to be open, so is their intersection. Thus, for each x € C; N Cy,
there is C € C such that x € C C Cy N C,. Therefore, B is a basis.

Let 77 be the topology generated by C and 7 be the topology associated with X. Let U € T, then for
each x € U, there is C € C such that x € C C U, and thus U € T’ by definition. Conversely, let W € T".
Since W can be written as a union of a collection of sets in C, all of which are open, W must be open too and
thus W € 7. This finishes the proof. [ ]

Lemma 1.9. Let B and B’ be bases for the topologies T and T, respectively, on X. Then, the following are
equivalent:

o T'is finer than T

e For each x € X and each basis element B € B containing x, there is a basis element B' € B’ such that
x € B CB

Proof. Suppose T is finer than 7. Then B € T and thus B € T'. As a result, there is, by definition B’ € T’
such that x € B’ C B.

Conversely, let U € T. Since B generates T, for each x € U, there is an element B € B such that
x € B C U. But due to the second condition, there is an element B’ € B’ such that x € B’ C U, implying
that U is in the topology generated by B’, that is 7”. This finishes the proof. [ |

Definition 1.10 (Subbasis). A subbasis S for a topology on X is a collection of subsets of X whose union
equals X. The topology generated by the subbasis S is defined to be the collection 7 of all unions of
finite intersections of elements of S.

Proposition 1.11. The topology generated by S is indeed a topology.
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Proof. For this, it suffices to show that the set B of all finite intersections of elements of S forms a basis.
Since the union of all elements of S equals X, for each x € X, there is S € S such that x € S and note that S
must be an element of B. Finally, since the intersection of any two elements of B can trivially be written as
a finite intersection of elements of S, it must be an element of B and we are done. [ |

A simple order is a relation C such that

1. (Comparability) For all x # y, either xCy or yCx

2. (Non-reflexivity) For all x, it is not true that xCx

3. (Transitivity) For all x, y, z such that xCy and yCz, we have xCz

Suppose X is a set with a simple order relation, <. Suppose a and b are elements such that a < b, then
there are four subsets of X that are called intervals determined by a and b:

(a,b) ={x|a<x<b}
(a,b] ={x|a<x<b}
[a,b) ={x|a <x<b}
[4,b] = {x|a < x<b}

Definition 1.12 (Order Topology). Let X be a set with a simple order relation an dassume X has more
than one element. Let B be the collection of all sets of the following types:

1. All open intervals (a,b) in X

2. Allintervals of the form [ag, b) where a9 is the smalest element (if any) of X

3. Allintervals of the form (a, by] where by is the largest element (if any) of X
The collection B is a basis for a topology on X which is called the order topology.

If X has no smallest element, there are no sets of type (2) and if X Has no largest element, then there are
not sets of type (3).

Definition 1.13 (Product Topology). Let X and Y be topological spaces. The product topology on X x Y
is the topology having as basis the collection B of all sets of the form U x V where U and V are open
sets in X and Y respectively.

Proposition 1.14. The collection B is indeed a basis.

Proof. The first condition is trivially satisfied since X x Y € B. Suppose x € (U; x V1) N (Uy x V,) =
(Uh NUp) x (V1 NV,) = U; x V3 for some open sets Uz and V3 in X and Y respectively. This finishes the
proof. ]

It is important to note here that every open set in X x Y need not be of the form U x V where U is open
in X and V is open in Y. For a counterexample, consider R? equipped with the standard topology. The unit
ball x? + y? < 1is open in R? but cannot be expressed in the form U x V.

Proposition 1.15. If 3 is a basis for the topology of X and C is a basis for the topology of Y, then the collection

D={BxC|BeB, Ce(}
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is a basis for the product topology on X x Y.

Proof. Let W be an open setin X x Y and (x,y) € W. Then, by definition, there is B € B and C € C such
that (x,y) € Bx C C W, further, since B and C are open in X and Y respectively, B x C is also open in
X x Y equipped with the product topology. Therefore, we are done due to a preceeding lemma. u

Definition 1.16. Let 711 : X X Y — X be defined by the equation 711 (x,y) = xand let 1y : X XY — Y
be defined by the equation 7> (x,y) = y. The maps 711 and 71, are called the projections of X x Y onto
its first and second factors, respectively.

Then, by definition if U is an open subset of X, then 7r; 1 (U) = U x Y and similarly, if V is an open
subset of Y, then 71, (V) = X x V.
Proposition 1.17. The collection
S ={n; ' (U) | Uisopenin X} U{ry '(V) | Visopenin Y}

is a subbasis for the product topology on X x Y.

Proof. Since X x Y € S, the union of all elements of S is X x Y and thus S is a subbasis. Let B be the basis
generated by all finite intersections of S. It suffices to show that B = {U x V | U is open in X and V is openin Y}.
For any U and V open in X and Y respectively, we may write U x V = (U x Y) N (X x V) and is therefore
a member of B. Conversely, the finite intersection of elements of S is of the form (U; N...NUy) x (V1N
...NVy), which is a product of two open sets and is an element of B, which finishes the proof. ]

Definition 1.18. Let X be a topological space with topology 7. If Y is a subset of X, the collection
Ty={Ynu|UeT}

is a topology on Y, called the subspace topology. With this topology, the topological space Y is called a
subspace of X. Its open sets consist of all intersections of open sets of X with Y.

Proposition 1.19. Ty is a topology on Y.

Proof. Since @ € T,2=YN@ € Tyandsince X € T,Y = YN X € Ty. Further,
Uny)=Yn|{JUs €Ty

xe] ac]

And finally, (YNU;) N (Y NU) =Y N (U3 NUy) € Ty. This finishes the proof. [ ]

Lemma 1.20. If B is a basis for the topology of X and Y C X. Then the collection
By ={BNY|B¢c B}
is a basis for the subspace topology on Y.

Proof. Let V be an open setin Y. Then, there is U in X such that V = UNY. Since each x € V is an element
of U, there is, by definition B € B such that x € B C U, consequently, x € BNY C V and we are done due
to a preceeding lemma. ]
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Proposition 1.21. Let Y be a subspace of X. If U is open in' Y and Y is open in X, then U is open in X.

Proof. Follows from the fact that U = V NY for some V that is open in X. |

1.1 Closed Sets and Limit Points

Definition 1.22 (Closed Set). A subset A of a topological space X is said to be closed if the set X\ A is
open.

Theorem 1.23. Let X be a topological space. Then the following conditions hold:
1. @ and X are closed
2. Arbitrary intersections of closed sets are closed

3. Finite unions of closed sets are closed

Proof. All follow from De Morgan’s laws. ]

Proposition 1.24. Let Y be a subspace of X. Then a set A is closed in Y if and only if it equals the intersection
of a closed set of X with'Y.

Proof. If A is closed in Y then Y\ A is open and thus, there is an open set B in X such that Y\A = YN B.
Then,
A=Y\(YNB)=YN(X\B)

which finishes the proof. |

Corollary 1.25. Let Y be a subspace of X. If A is closed in Y and Y is closed in X, then A is closed in X.

Proof. Trivial. ]

Definition 1.26 (Interior, Closure). Let X be a topological space and A C X. The interior of A is
defined as the union of all open sets contained in A and the closure of A is defined as the intersection
of all closed sets containing A. The interior of A is denoted by Int A and the closure of A is denoted by
A.

Then, by definition, we have that -
IntACACA

Corollary 1.27. Let X be a topological space. Then A C X is closed if and only if A = A.

Proof. Trivial. ]
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Theorem 1.28. Let Y be a subspace of X and A be a subset of Y. Let A denote the closure of A in X. Then, the
closure of A in'Y is given by ANY.

Proof. Let F be the collection of all closed sets in X containing A. Then, by a preceeding theorem, we know
that the set of all closed sets in Y containing A is given by Y N F. And thus,

U c=ynUc=vn4a
CeYNF CeF

This finishes the proof. u

Theorem 1.29. Let A be a subset of the topological space X.
* Then x € A if and only if every open set U containing x intersects A

* Supposing the topology of X is given by a basis, then x € A if and only if every basis element B containing
x intersects A

Proof.

* Suppose x € A and U be an open set containing x. Suppose for the sake of contradiction, there is an
open set U in X that contains x but does not intersect A, in which case X\U is a closed set containing
A and not containing x. By definition, since ACX \U, x may not be an element of A, a contradiction.
Conversely, suppose every open set U containing x intersects A and that x ¢ A. But then, the set X\ A
is open and contains x but does not intersect A, a contradiction.

* Suppose x € A, then every open set containing x intersects A. Since all elements of B are open, they
intersect A. Conversely, since every open set U containing x has a basis subset B that contains x and
therefore intersects A, U must intersect A. This finishes the proof.

We shall see that it is more natural to use the first statement of the above theorem as a substitute for the
definition of the closure.
The statement “U is an open set containing x” is often shortened to “U is a neighborhood of x”.

Definition 1.30. If A is a subset of the topological space X and if x € X, we say that x is a limit point
or cluster point or accumulation point of A if every neighborhood of x intersects A in some point other
than x itself.

For example every element of R is a limit point of Q.

Theorem 1.31. Let A be a subset of the topological space X and let A’ be the set of all limit points of A. Then

A=AUA

Proof. If x € A’, due to the preceeding theorem, x € A but since by definition, A C A, we have that
AUA C A

Conversely let x € A. If x € A, we are done. If not, then x is such that every open set containing x
intersects A. But since x ¢ A, the intersection must contain at least one point distinct from x, implying that
x € A’. This finishes the proof. u
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Corollary 1.32. A subset of a topological space is closed if and only if it contains all its limit points.

Proof. Follows from the fact that a subset A of a topological space is closed if and only if A = A. n

Theorem 1.33. Let X be a topological space and A C X. Then

IntA = X\(X\A)

Definition 1.34 (Hausdorff Spaces). A topological space X is called a Hausdorff space if for each pair x;
and x; of distinct points of X, there exist neighborhoods U; and U, of x; and x; respectively that are
disjoint.

Theorem 1.35. Every finite point set in a Hausdorff space X is closed.

Proof. Tt suffices to show this for a single point set, say {x}. For any x € X different from x, there are open
sets U and V such that xyp € Uand x € Vand UNV = @. And thus, x may not be in the closure of {x(}.
This finishes the proof. ]

The condition that finite point sets be closed has been given its own name, the T; axiom. Note that there
is a more standard version of Tj-spaces,

Definition 1.36 (T7-space). Let X be a topological space. Then, X is said to be a T;-space if for any two
distinct points x,y € X, there is a neighborhood containing x but not y.

Theorem 1.37. A space is T if and only if it satisfies the Ty axiom.

Proof. Let X be a T topological space, {xo} C X, and x € X\{xp}. Then, there is a neighborhood of x not
containing x, therefore, x ¢ {x0}, as a result, {xp} is closed in X, consequently, every finite point set is
closed in X. L

Conversely, suppose X satisfies the T; axiom and x,y € X be distinct. Then, x ¢ {y}, then, using
the above theorems, there is a neighborhood containing x that does not contain y, equivalently, X is a
T1-space. |

Corollary 1.38. Every Hausdorff space is Ty. Note that Hausdorff spaces are also known as T, spaces.

The converse is not true. That is, not every Fréchet space is Hausdorff. For example, let X be an infinite
set and 7 be the co-finite topology on X, that is,

T ={U | U is finite}

That the above is a topology is trivially verified. Let x,y € X, then X\{y} is an open set containing x
but not y, therefore (X, T) is Ty (Fréchet).

Suppose there were disjoint open sets U and V such that x € U C X\{y} andy € V C X\{x}. But
then, V C U¢, contradicting the finiteness of U°. As a result, (X, 7') is not T, (Hausdorff).
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Theorem 1.39. Let X be a space satisfying the Ty axiom and A C X. Then the point x is a limit point of A if
and only if every neighborhood of x contains infinitely many points of A.

Proof. If every neighborhood of x intersects A at infinitely many points, then it intersects it in at least one
point other than x and thus x € A’

Conversely, suppose x is a limit point of x but there is a neighborhood U of x that intersecs A in only
finitely many points. Let U N (A\{x}) = {x1,..., ¥ }. Then, the open set U N (X\{x1,...,xy}) contains x
but does not intersect A, which is contradictory to the fact that x is a limit point of A. n

Theorem 1.40. If X is a Hausdorff space, then a sequence of points of X convertes to at most one point of X.

Proof. Suppose the sequence {x,} converges to two distinct points x and y. Then, by definition, there exist
disjoint neighborhoods U and V of x and y respectively. Since x,, converges to x, U contains all but finitely
many elements of the sequence but that means V cannot, a contradiction. ]

1.2 Continuous Functions

Definition 1.41 (Continuity). Let X and Y be topological spaces. A function f : X — Y is said to be
continuous if for each open subset V of Y, the set f~!(V) is open in X.

We note here that it suffices to check the above condition for just elements of either a basis or a subbasis.

Conversely, note that it need not be the case that an open set in X is mapped to an open setin Y. Simply
consider any constant function from R — R.

Theorem 1.42. Let X and Y be topological spaces; let f : X — Y. Then the following are equivalent

1. f is continuous

2. for every subset A of X, one has f(A) C f(A)
3. for every closed set B of Y, the set f~1(B) is closed in X
4. for each x € X and each neighborhood V of f(x), there is a neighborhood U of x such that f(U) C V

Proof. (1) = (2). Let x € A and V be an open set containing f(x). We know by definition that f~1(V) is
open and therefore intersects A. As a consequence, V intersects f(A), implying that f(x) € f(A).
(2) = (3). Let A = f~1(B). Let x € A. Then,

f(x) € f(A) S f(A)CB=B

and thus x € f -1 (B) = A, implying that A C ACA, finishing the proof.

(3) = (1). Let V be an open set in Y and let U = f~1(V). Since Y\V is closed, so is f1(Y\V) =
F~1(Y)\U = X\U. Then, by definition, U must be open.

(1) < (4). The forward direction is trivial. Conversely, let V be an open setin Y and U = f~1(V).
For each x € U, there is an open set Uy such that U, C U. Then, U = ,cy Uy is open. This finishes the
proof. |
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The converse of (3) is not true, consider the function f : R — R given by f(x) = —;. The range of

1+x2°
said function is (0, 1], which is obviously not closed in RR.
Further, notice that (4) is just the topological analogue of the epsilon-delta definition of continuity.

Definition 1.43 (Homeomorphism). Let X and Y be topological spaces; let f : X — Y be a bijection. If
both the function f and the inverse function f~! : Y — X are continuous, then f is a homeomorphism.

As a result, any property of X that is entirely expressed in terms of the topology of X yields, via the
correspondence f, the corresponding property for the space Y. Such a property of X is called a topological
property.

If f : X — Y is an injective, continuous map, where X and Y are topological spaces. Let Z be the image
set f(X), considered as a subspace of Y; then the function f’ : X — Z obtained by restricting the range
of f is bijective. If f' happens to be a homeomorphism of X with Z, we say that the map f : X — Yisa
topological imbedding or simply an imbedding of X in Y.

It is important to note that a bijection f : X — Y that is continuous need not have a continuous inverse.
For example, consider f : [0,27r) — S, given by f(8) = ¢'. Since the unit circle is compact, but [0,277) is
not, the inverse may not be continuous.

Theorem 1.44. Let X, Y and Z be topological spaces
1. (Constant) If f : X — Y maps all of X to a single point of Y, then it is continuous
(Inclusion) If A is a subspace of X, the inclusion function j : A — X is continuous

(Composites) If f : X — Y and g : Y — Z are ocontinuous, then the map g o f : X — Z is continuous

L

(Domain Restriction) If f : X — Y is continuous, and if A is a subspace of X, then the restricted function
fla: A — Yis continuous.

5. (Range Restriction/Expansion) Let f : X — Y be continuous. If Z is a subspace of Y containing the
image set f(X), then the function g : X — Z obtained by restricting the range of f is continuous. If Z
is a space having Y as a subspace, then the function h : X — Z obtained by expanding the range of f is
continuous.

6. (Local formulation of continuity) The map f : X — Y is continuous if X can be written as the union of
open sets {Uy } such that f|y, is continuous for each «.
Proof.
1. Trivial
2. Trivial

3. Let V be an open set in Z. Then, ¢! (V) is openin Y and f~! o ¢~ 1(V) is open in X and thus g o f is
continuous

4. Notice that f|4 = foj

5. Let V be an open set in Z. Then, there is an open set W in Y such that V = Z N W. Since the range of
f is a subset of Z, we have

§HV)=g H(ZnW) =fHZnW)=fTI(W)

which is open in X and thus, g is continuous. A similar argument can be applied in the second case.

10
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6. Let V be an open set in Y, then we may write
fHV) = U Sflg (VN f(Un)
o

which is a union of a collection of open sets and is therefore open. This finishes the proof.

Lemma 1.45 (Pasting Lemma). Let X = A U B where A and B are closed in X. Let f : A — Y and
g : B — Y be continuous If f(x) = g(x) for every x € AN B then f and g combine to give a continuous

function h : X — Y defined as
) fx) xc€A
h(x) = {g(x) x€B

Proof. Let C be a closed subset of Y. We then have h~1(C) = f~1(C) U g~ !(C). Since f is continuous, we
know that f~!(C) is closed in A and therefore in X similarly, so is g~ (C), which finishes the proof. [ ]

Theorem 1.46. Let f : A — X x Y be given by the equation f(a) = (f1(a), f2(a)) then f is continuous if and
only if the functions f1 : A — Xand f, : A — Y are continuous. The maps f1 and f, are called the coordinate

maps of f.

Proof. We know that the projection maps 771, 7, are continuous. We note that f1(a) = 71(f(a)) and fo(a) =
2 (f2(a)). If f is continuous, then so are f1 and f5.

Conversely, suppose f1 and f, are continuous and U X V be a basis element for the product topology on
X x Y. We know due to a preceeding result that both U and V are open in X and Y respectively. Then

fHUxV) =1 nf1(V)

which is an intersection of two open sets and is therefore open. n
Example 1.47. Let X be a Hausdorff space and A C X such that there is a retraction 7 : X — A. Show
that A is closed in X.

Proof. Let x ¢ A and a = r(x). Let U and V be disjoint neighborhoods of a and x respectively. Let
W = r~1(U) N V. Then W contains x. Suppose W N A is nonempty, then there is s € W N A, therefore, s €
r1 u), consequently, s € U and s € V, a contradiction since U N V is empty. Hence W is a neighborhood
of x disjoint from A and A is closed. [ ]

Lemma 1.48. Let p : X — Y be a closed continuous surjection. Then for any y € Y and an open set U
containing p~(y), there is an open set W in Y containing y such that p~' (W) C U.

Proof. Let W = Y\ f(X\U). It is not hard to argue that W satisfies the required conditions. |

1.3 Product Topology

11
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Definition 1.49. Let | be an index set. Given a set X, we define a J-tuple of elements of X to be a
function x : | — X. If a is an element of ], we often denote the value of x at a by x, rather than x(«)
and call it the a-th coordinate of x. We often denote the function x itself by the symbol

(sz)ae]

Definition 1.50 (Cartesian Product). Let { Ay }4c; be an indexed family of sets and let X = ey As-
The cartesian product of this indexed family, denoted by

[T4

ae]

is defined to be the set of all J-tuples x of elements of X such that x, € A, for each & € J. That is, the
set of all functions

x:] = | Aa

we]

such that x(a) € A, foreacha € J.

Definition 1.51 (Box Topology). Let { X, },c; be an indexed family of topological spaces. Let us take
as a basis for a topology on the product space

I1x

ae]
the collection of all sets of the form

[T

we]

where U, is open in X, for each & € J. The topology generated by this basis is called the box topology.

Definition 1.52 (Product Topology). Let Sg denote the collection
Sp = {ngl(llﬁ) | Ug open in Xy}
and let S denote the union of these collections

S=1JSs
pel

The topology generated by the subbasis S is called the product topology. In this topology [Tyej X« is
called a product space.

It is not hard to see that S is indeed a subbasis and therefore defines a topology. Let 53 be the basis
induced by S. Then, any basis element is a finite intersection of elements of S and eventually would have
the form

n
B =) (Ug,)
i=1

It is then obvious that the box topology is finer than the product topology since it has more open sets. In the
case of finite products of topological spaces, obviously the two of them are equal, but this is not the case for

12
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infinite products of topological spaces, since the basis of the product topology are only finite intersections
of the subbasis, implying that for any basis element of the form B = [],¢; U, there exist infinitely many
« € | such that U, is the entire space X, and is therefore strictly coarser than the box topology.

As a rule of thumb:

Whenever we consider the product [],c; Xa, we shall assume it is given the product topol-
ogy unless we specifically state otherwise.

Theorem 1.53. Suppose the topology on each space X, is given by a basis By. The collection of all sets of the

form
[15

ae]

where By € By for each a will serve as a basis for the box topology on [1yec Xa. The collection of all sets of the
same form where By € By for finitely many indices « and By = X, for all the remaining indices will serve as a
basis for the product topology [1yc Xa-

Proof. Straightforward. |

Theorem 1.54. If each space X, is a Hausdorff space, then [] X, is a Hausdorff space in both the box and
product topologies.

Theorem 1.55. Let { X, } be an indexed family of spaces and A, C X, for each a. If T] X, is given by either the
product or box topology, then

[TA. =TTA«

Proof. Let x = (x,) be a point of [ A, and let U = [] U, be a basis element for either the box or product
topology that contains x. Since x, € A,, we know that there isy, € U, N Ay and thusy = (ya) € UNT] Aqs.

Conversely, suppose x = (x,) € [] Aq, and let V, be an arbitrary open set in X, containing x,. Since
7y 1 (V) is an open set containing x, it must intersect [T A,, thus, there is y = (yx) € 715 (Vi) N1 A,
consequently, y, € V, N A,, and it follows that x, € A,. This completes the proof. |

Theorem 1.56. Let f : A — []yc; Xo be given by the equation
f(a) = (fu(a))aes

where fy : A — X, for each «. Let ] X, have the product topology. Then the function f is continuous if and
only if each coordinate function f, is continuous.

Proof. First, suppose f is continuous. Let Up be open in Xj. The function ngl maps Up to an open set in
[T X« and is therefore continuous. As a result, fg = 715 o f is continuous.
Conversely, suppose each coordinate function f is continuous. We remarked earlier that n;l (Up) for

some open set Uy is a subbasis for the product topology and it suffices to show that the inverse image under
f of the same is open to imply continuity. Indeed,

fhomg (Up) = f; ' (Up)

which is obviously open, since fg is known to be continuous. This finishes the proof. n

13
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Caution. It is important to note that the above theorem does not hold for the box topology. As a
simple counter example, consider the box topology on R“ and the function f : R — R% given by
f(t) = (t,t,...). Suppose f were continuous, then the inverse image of each basis element must be
open in R%. Indeed, consider

11
)
the inverse image would have to contain some open interval (—J,4) in the standard topology of R,
thatis, (—6,6) C f~1(B), or equivalently, f((—4,5)) C B, which is absurd.

B=(—11) x (—3,5) %+

1.4 Metric Topology

Definition 1.57 (Metric). A metric on a set X is a function d : X X X — R such that
1. d(x,y) > O0forall x,y € X; equality holds if and only if x =y
2. d(x,y) =d(y,x) forallx,y € X
3. (Triangle Inequality) d(x,y) +d(y,z) > d(x,z) forall x,y,z € X

For € > 0, define the set
By(x,€) ={y[d(x,y) <e}

Definition 1.58 (Metric Topology). If d is a metric on the set X, then the collection of all e-balls B, (x, €)
for x € X and € > 0 is a basis for a topology on X, called the metric topology induced by d.

Proposition 1.59. The collection of all e-balls B;(x, €) for all x € X and € > 0 is a basis.

Proof. The first condition is trivially satisfied. Suppose z € B(x,€) N B(y,€). Let r = 3 min{e — d(x,z),€ —
d(y,z)}. Itis obvious, due to the triangle inequality, that B(z,r) C B(x,e) N B(y, €). ]

Definition 1.60 (Metrizable). If X is a topological space, X is said to be metrizable if there exists a metric
d on the set X that induces the topology of X.

A metric space is a metrizable space X together with a specific metric 4 that gives the topology of X.

Definition 1.61. Let X be a metric space with metric d. A subset A of X is said to be bounded if there
is some number M such that d(a;,a;) < M for every pair aj, a, of points of A. if A is bounded and
non-empty, the diameter of A is defined to be

diam(A) = sup{d(al,a2) | ai,ap € A}

Proposition 1.62. Every metric space is Hausdorff.

Proof. Trivial. |

14
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Theorem 1.63. Let X be a metric space with metric d. Define d : X x X — R by the equation

d(x,y) = min{d(x,y), 1}

Then d is a metric that induces the same topology as d.

Proof. We need only check the triangle inequality. This is euqgivalent to
d(x,y) +d(y,z) > d(x,z)
Obviously if either one of d(x,y) or d(y, z) is greater than or equal to 1, then we are done. If not, then
Ax,y) +(,2) = d(xy) + d(y,2) = d(x,2) > min{d(x,2),1)

Let 7 be the topology on X induced by d, having basis B. Let B be the set of all balls induced by d
having radius strictly less than 1. Let U be an open set in 7 and x € U, then, by definition, there is B;(x, €)
in B such that x € By(x,e) C U. The ball B;(x, I min{e, 1}) is contained in By(x,€) and also contains x.
Thus, B is a basis for 7. This finishes the proof. |

Definition 1.64 (Euclidean, square Metric). Given x = (x1,...,X,),y = (y1,...,¥n) € R", we define
the Euclidean metric on R" by the equation

d(x,y) =l —yll = (G =22+ oo+ G —y)?)

and the square metric p by the equation

p(x,y) = max{|x1 =yl -, [xn = yul}

Lemma 1.65. Let d and d’ be two metrics on the set X; let T and T be the topologies they induce, respectively.
Then T is finer than T if and only if for each x € X and each € > 0, there exists 6 > 0 such that

By (x,6) € By(x,€) (1.1)

Proof. Suppose the € — 4 condition holds. Let B € Bj; be a basis element for the topology induced by 4
and let x be an arbitrary element of B. Then, we can find € such that B;(x,e) C B and thus, there exists ¢
such that x € By(x,6) C B. Taking the union of all such é-balls for x, we have an open set in 7’ which
corresponds to a basis element for 7, and thus 7" is finer than 7.

Conversely, suppose 7" is finer than 7, then the condition is trivially satisfied. ]

Theorem 1.66. The topologies on R" induced by the Euclidean metric d and the square metric p are the same as
the product topology on IR™.

Proof. We shall first show that the topologies induced by 4 and p on R” are identical. Indeed, we have, for
any two points x and y that
plxy) <d(xy) < Vnp(x,y)

this immediately implies the conclusion due to the preceeding lemma.
Finally, we shall show that the topology induced by p is same as the product topology. Let B = (a1, b1) X
-+ X (an, by) be a basis element of the product topology and let x € B, then for each i, there is an €; such
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that (x —€;,x +¢€;) C (a;,b;). Choosing € = min{ey,...,€,}, we have that the topology induced by p is

finer than the product topology. But since every basis element of the p-topology is inherently an element of
the product topology, since it is a cartesian product of open intervals, it must be that the product topology
is finer than the p-topology. This completes the proof. ]

Definition 1.67 (Uniform Metric). Given an index set | and given points x = (X4 )acj and y = (Va)ae
of R/, let us define a metric p given by

p(x,y) = sup{d(xa, ya) | & € J}

where d is the standard bounded metric on R. This is called the uniform metric on R/ and the topology
it induces is called the uniform topology.

Theorem 1.68. R“ with the product topology is metrizable.

Proof. Letd : R x R — R be the standard bounded metric on R. Define the function D : R¥ x R¥ — Rxq

by
E(Xz"/ Yi) }

1

D(xy) = sup
ielN

We shall show that D is a metric and induces the product topology on R“.
That D is positive semi-definite and symmetric is evident. To verify the triangle inequality, note that

H(xl-,zi) < H(xi,yi) + E(

1 1

¥u5) < pixy) + D(,2)

Consequently, we have
D(x,z) = sup {d(x,l,Z',)} < D(x,y) + D(y,z)

All that remains to show is that D induces the product topology on R“. Let x € R¥ and B C R“ be a
basis element in the product topology. Then, B is of the form

B=U; X+ xU; X RXRX---

Where each U; is an open set in R under the standard topology. Since d induces the standard topology
on R, there is r; for each 1 < i < n such that B(x;,7;) C U;. Now, let

. v
r = min -
1<i<n 1

It is not hard to see that Bp(x,r) C U, consequently, the topology induced by D is finer than the product
topology.

Conversely, let U be an open set in the topology induced by D with x € U. Then, there is a basis element
Bp(x,r) that is contained in U. Let N be the smallest positive integer such that % < r. We shall show that
the open set

V= —-rx+r)x---x(xy—r,xy+7) X RxRXx---

is contained in B(x, 7). Indeed, for any y € V, we have that d(x;,y;) < min{r, 1} and therefore, D(x,y) < r,
giving us the desired conclusion. n
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Theorem 1.69 (¢ — 6 Theorem). Let f : X — Y; let X and Y be metrizable with metrics dx and dy respec-
tively. Then continuity of f is equivalent to the requirement that tiven x € X and given € > 0, there exists
0 > 0 such that

dx(x,y) <6 = dy(f(x), f(y)) <e

Proof. Suppose f is continuous and let € > 0 be given. Consider the set f ~!(By(f(x), €)), which is open in
X and contains the point x. Therefore, there exists a d-ball centered at x. If y is in this d-ball, then f(y) is in
the e-ball centered at f(x) as desired.

Conversely, suppose the € — & condition holds and let V be open in Y and x € f~!(V). But since
f(x) € V, there exists € such that By(f(x),€) is contained in V, consequently, there exists J such that
Bx(x,9) is contained in f (V) and thus f~!(V) is open. This finishes the proof. [ ]

Lemma 1.70 (Sequence Lemma). Let X be a topological space; let A C X. If there is a sequence of points of A
converging to x, then x € A; the converse holds if X is metrizable.

Proof. Suppose there is a sequence of points of A converging to x, then each neighborhood of x contains a
points of A and thus, by definition, x € A.

Conversely, suppose X is metrizable and x € A. For each n € IN, consider Bx(x, %) which must contain
at least one point of A, call it x,,. It is not hard to see that this sequence converges to x. This finishes the
proof. [ ]

Note that the above lemma holds even after replacing metrizable by Hausdorff.

Theorem 1.71. Let f : X — Y. If the function f is continuous, then for every x € X and every convergent
sequence x, — x, the sequence f(x,) converges to f(x). The converse holds if X is metrizable.

Proof. Suppose f is continuous. Let V be an open set in Y containing f(x). Then, U = f~1(V) is an open set
in X containing x. By definition, there is N € IN such that foralln > N, x,, € U and as a result, f(x,) € V.
This finishes the proof.

Conversely, suppose X is metrizable, with metric d and for each convergent sequence x, — x, the

sequence f(x,) converges to f(x). Let A be a subset of X. We shall show that f(A) C f(A), which would
immediately imply continuity due to a preceeding theorem. Let x € A, and let x,, be a point of A within
the ball B(x, 1). The sequence x, converges to x and so does f(x,) to f(x), as a result, for each open set
containing f(x), there is a point of f(A) in it. This finishes the proof. |

Definition 1.72 (Uniform Convergence). Let f,, : X — Y be a sequence of functions from the set X to
the metric space Y. Let d be the metric for Y. We say that the sequence f,, converges uniformly to the
function f : X — Y if given € > 0, there exists N € IN such that d(f,(x), f(x)) < e forall n > N and
all x € X.

Theorem 1.73 (Uniform Limit Theorem). Let f,, : X — Y be a sequence of continuous functions from the
topological space X to the metric space Y. If (fy) converges uniformly to f : X — Y, then f is continuous.

Proof. Let V be an open setin Y and U = f~1(V). Let xy € U. We shall show that there is a neighborhood
containing x, that is contained in U. Let yy = f(xp) and € > 0 be such that B(yp,€) C V. We know there
exists N € IN such that for all x € X, d(fu(x), f(x)) < €/3 for all n > N. Further, there is an open set W in
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X that contains x¢ such that d(fx(xo), fn(y)) < €/3 for all y € W, due to continuity of each f,,. Then, we
have, forally ¢ W

d(f(x), f(y)) < d(f(x0), fn(x0)) +d(fn(x0), fn(y)) +d(fn(y), f(y) <e
and thus, f(y) € V. This finishes the proof. [ ]

It is not sufficient to replace uniform convergence with pointwise convergence. Take for example the se-

quence of functions {cos” x}°° ; from [— Z g} to [0,1]. The limiting function is given by

f(x)z{1 -

0 otherwise

which is obviously not continuous.

1.5 Quotient Topology

Definition 1.74 (Quotient Map). Let X and Y be topological spaces and p : X — Y be a surjection. The
map p is said to be a quotient map provided a subset U of Y is open in Y if and only if p~!(U) is open
in X.

Obviously, p must be continuous. One notes that this condition is stronger than continuity, and is often
called strong continuity.

Lemma 1.75. Let X and Y be topological spaces. Then p : X — Y is a quotient map if and only if it is surjective
and for each A C'Y, p~1(A) is closed in X if and only if A is closed in Y.

Proof. Suppose p is a quotient map. Then,

pTIN\A) = X\p~H(A)

If A were closed in Y, then p~!(A) is closed in X since p is continuous. On the other hand, if p~!(A) were

closed in X, then p~!(Y\\ A) would be open in X, and therefore, so would Y\ A, equivalently A is closed.
The converse is trivially evident, since it is equivalent to saying A is open in Y if and only if p~1(A) is

open in X. |

Definition 1.76 (Open, Closed Map). Let X and Y be topological spaces and f : X — Y. Then f is said
to be an open map if it maps open sets in X to open sets in Y and is said to be a closed map if it maps
closed sets in X to closed setsin Y.

It immediately follows that p : X — Y is a quotient map if p is surjective, continuous and either open or
closed.

We say a subset C of X is saturated with respect to the surjective map p : X — Y if it equals the complete
inverse image of a subset of Y. Formally, there exists A C Y such that C = p~1(A).

Definition 1.77 (Quotient Topology). Let X be a topological space, A asetand p : X — A bea
surjective map. Then there exists exactly one topology 7 on A relative to which p is a quotient map; it
is called the quotient topology induced by p.
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Proposition 1.78. The above defined topology T is indeed a topology and is unique.

Proof. Let
T={pU)[UeTx}

That 7 is indeed a topology follows from

U v= U pru)eT=p U uleT

VeBCT Uep~1(B) Uep—1(B)

Let {V;}; be a collection of open sets in 7, then, there is a collection {U;}? ; of open sets in Tx such that
U; = p~1(V;). We then have
n n

ﬂvi—ﬂp(ui)—p((n]u,) eT
i=1

i=1 i=1

We shall now show that 7 is unique. Suppose 7" is another topology induced by p on A. It is obvious
that 7 C 7. Further, forany V € 7', U = p~1(V) € Ty, therefore, V = p(U) € T, consequently 7' C T
and we have the desired conclusion. |

On the topological space X, consider an equivalence relation ~ and let X/ ~ denote the collection of
equivalence classes under the aforementioned relation. Then, the map p : X — X/ ~ taking a point to the
equivalence class containing it is a surjection. Due to the preceeding lemma, we may topologize X/ ~ such
that p is a quotient map. In this case, we say that X/ ~ is a quotient space of X.

Theorem 1.79. Let p : X — Y be a quotient map and A C X be a saturated subset of X with respect to p. Let
g : A — p(A) denote the restriction of the map p. Then

1. If A is either open or closed in X, then q is a quotient map

2. If p is either an open or a closed map then q is a quotient map.

Proof. 1. Suppose A is open in X. Let U C A be an open set that is saturated with respect to 4. Then,
thereis V C p(A) such that U = g1 (V) = p~ (V). Where the last equality follows from the fact that
A is saturated with respect to p. Now, since p is a quotient map, by definition, V must be open in Y
and in the subspace topology, it must be open in p(A), consequently g maps saturated open sets to
saturated open sets whence it is quotient.

2. Now suppose p is an open map and similarly, let U C A be saturated with respect to g, thus, there is
V C p(A) with U = g7 (V) = p~}(V). Now, there is some W open in X such that U = W N A. We
have that V = p(U) = p(WN A) = p(W) N p(A) where the last equality follows from the fact that A
is saturated with respect to p. But since p is an open map, p(W) is open in Y, consequently, V is open
in p(A). This completes the proof.

|

Lemma 1.80. The composition of two quotient maps is a quotient map.

Proof. Letp : X — Y and q : Y — Z be quotient maps. Then, the composition » = g o p is a continuous
surjection. Next, let U C X be a saturated open set, that is, there is some W C Z such that V = r"1(W) =
p~tog 1 (W). As aresult, V is saturated with respect to p, implying that g~ (W) is open and since 4 is an
open map, W is openin Z. |
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Theorem 1.81. Let p : X — Y be a quotient map. Let Z be a topological space and g : X — Z which is constant
on each fibre of Y induced by p. Then g induces a map f : Y — Z such that f o p = g. The induced map f is
continuous if and only if g is continuous. Further, f is a quotient map if and only if g is a quotient map.

X

| N

Y > Z
f

Proof. That f exists and is well defined is trivial. Further, if f is continuous then g is continuous and if f is
quotient then g is quotient, since both properties are preserved under composition.

Conversely, suppose g is continuous. Let U be an open set in Z. We would like to show that V = f~1(U)
is open in Y, which is equivalent to showing that p~1(V) is open in X. But due to the commutativity of the
above diagram, p~!(V) = ¢! (U) which is open since g is continuous.

Suppose now that g is quotient. Then f is surjective and due to the commutativity of the diagram.
Further, U C Z is open if and only if ¢~!(U) is open in X, that is, p~'(f~!(U)) is open in X, which is
equivalent to f~!(U) open in Y. This shows that f must be a quotient map. ]

Corollary 1.82. Let g : X — Z be a continuous surjection. Define

X*={s7'({z}) |z€ 2}

and give X* the quotient topology with respect to the map that takes every point to its respective
equivalence class.

(a) The map g induces a bijective continuous map f : X* — Z, which is a homeomorphism if and
only if g is a quotient map.

(b) If Z is Hausdorff, then so is X*

Proof.

(a) That f is bijective is evident. Furthermore, since g is continuous, so is f. If f is a homeomorphism,
then it is trivially a quotient map and thus g is a quotient map. On the other hand, if g is a quotient
map, then so is f. A quotient map which is a bijection must be a homeomorphism (this is not hard to
see).

(b) Letu,v € X*and a = f(u),b = f(v). Then, there are disjoint open sets U and V in Z separating a and
b. Then f~1(U) and f~!(V) are disjoint open sets separating u and v.
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Chapter 2

Connectedness and Compactness

2.1 Connected Spaces

Definition 2.1 (Connected Space). Let X be a topological space. A separation of X is a pair U and V
of disjoint nonempty open subsets of X whose union is X. The space X is said to be connected if there
does not exist a separation of X.

The above definition can be restated as follows

A space X is connected if and only if the only subsets of X that are both open and closed in X
are the empty set and X itself.

It isn’t hard to show the equivalence of the two statements.

Lemma 2.2. If Y is a subspace of X, a separation of Y is a pair of disjoint nonempty sets A and B whose union is
Y, neither of which contains a limit point of the other. The space Y is connected if there exists no separation of Y.

Proof. Suppose A and B form a separation of Y, then A is both open and closed in Y, as a result, A =
ANY = ANY, which immediately implies AN B = @ and vice versa.

Conversely, suppose A and B are disjoint nonempty sets whose unionis Y, suchthat ANB = ANB = @.
We may then conclude that ANY = @ and BNY = B. And thus, both A and B are closed in Y and since
A =Y\Band B = Y\A, they are open in Y as well and are therefore a separation of Y. This finishes the
proof. ]

Lemma 2.3. If the sets C and D form a separation of X and Y is a connected subspace of X, then'Y lies entirely
within C or entirely within D.

Proof. Since C and D form a separation of X, both C and D are open in X and thus, CNY and DNY are
both open in Y. If both are non-empty, then we have a separation for Y, contradicting the fact that it is
connected. [

Theorem 2.4. The union of a collection of connected subspaces of X that have a point in common is connected.

Proof. Let {Ay} be a collection of connected subspaces of X and p € U, Aa. Let Y = [, As. Suppose
Y = CUD is a separation. Then, due to the preceeding lemma, each of the A, must lie in either C or D, but
since they have a point p in common, they must all lie in C or all in D, and as a result, either C or D must
be empty, a contradiction. ]
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Theorem 2.5. Let A be a connected subspace of X. If A C B C A, then B is also connected.

Proof. Suppose B = CU D is a separation of B. Then, without loss of generality, A lies completely in C.
Then, A C C. But due to a preceeding lemma, C and D are disjoint. This implies, B is contained entirely in
C and may not intersect D, a contradiction. |

Theorem 2.6. The image of a connected space under a continuous map is connected.

Proof. Let f : X — Y be a continuous map and Z = f(X). Suppose Z = A U B is a separation of Z. Then,
the sets f~1(A) and f~!(B) are open in X and are non-empty, since A and B are both within the range of f,
which is Z. This contradicts the fact that X is connected. |

Theorem 2.7. A finite cartesian product of connected spaces is connected.

Proof. Tt suffices to show the statement for the Cartesian Product of two connected spaces since the result
in its generality follows due to induction. Let X and Y be connected topological spaces. Leta x b € X x Y
be a “base point”. Note that the sets X x b and x x Y are connected for all x € X. Then, we have

X=J (Xxb)U(xxY)

xeX

Tx

Further, note that all the sets Ty have the point a2 X b in common, as a result, their union is also connected.
[ |

Definition 2.8 (Linear Continuum). A simply ordered set L having more than one element is called a
linear continuum if the following hold:

1. L has the least upper bound property

2. If x < y, there exists z such that x < z < y.

Proposition 2.9. Let X be a well-ordered set. Then X x [0,1) in the dictionary order is a linear continuum.

Proof. TODO: Add in later [ ]

Theorem 2.10. If L is a linear continuum in the order topology, then L is connected and so are intervals and
rays in L.

Proof. We shall show that every convex subspace of L is connected. Let Y be a convex subspace of L that is
not connected and therefore has a separation Y = AU B. Choosea € Aand b € B and let Ay = AN [a,b]
and By = BN [a,b], each of which is open and nonempty in [a,b] due to the subspace topology, which is
the same as the order topology. Let ¢ = sup Ag, we know this exists because of the least upper bound
property. u
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Theorem 2.11. If X is an ordered set that is connected in the order topology, then X is a linear continuum.

Proof. Let x,y € X with x < y. Suppose there is no z such that x < z < y, then the sets (—oo,y) and (x, o)
form a separation of X, contradicting the connectedness.

Now, we shall show that X has the least upper bound property. Let A be a bounded subset of X.
Suppose A does not have a least upper bound. Let B be the set of all upper bounds of A. We shall show
that B is clopen. Let b € B since A does not have a least upper bound, there is ¢ € X such that ¢ < b and
¢ € B. Thus (c, o) is an open set contained in B that contains b. Next, let x ¢ B, then there is some a € A
such that x < g, for if not, then x would be an upper bound for A. Then, (—oo, x) is an open set disjoint
from B that contains x. As a result, B is clopen, a contradiction. [ |

Theorem 2.12 (Intermediate Value Theorem). Let f : X — Y be a continuous map, where X is a connected
space and Y is an ordered set in the order topology. If a and b are two points of X and if r is a point of Y lying
between f(a) and f(b), then there exists a point ¢ of X such that f(c) =r.

Proof. Consider the sets A = f(X) N (—oco,r) and B = f(X) N (r,00), both of which are open in f(X).
Suppose there is no ¢ such that f(c) = r, then f(X) = AU B, both of which are non-empty because
f(a) € Aand f(b) € B and is therefore a separation, a contradiction to the fact that a continuous function
maps connected spaces to connected spaces. [ |

Theorem 2.13. Let { Xy }ac] be a collection of connected spaces. Then the product space [T, X is connected.

Proof. Fixapointa = (a,) in X. For each finite subset K of ], define the space Xg := {(xa) | Xa = 44, & & K}.
Then Xk is homeomorphic to [],cx X« and therefore, connected. Let Y be the union of all such Xk for
K finite. We shall show that Y = X, which would imply the connectedness of X. Let x = (x,) € X.
And U = T[], Uy be a basic open set containing x. Then, there are finitely many indices a4, ..., a, such
Uy, # Xy, Lety € Y be given by

Y = {a,x o {ay,..., a0}

x, otherwise

It follows that y € U NY, consequently, x € Y. This completes the proof. ]

Definition 2.14 (Path, Path Connected). Given points x and y of the space X, a path in X from x to y is
a continuous map f : [a,b] — X of some closed interval in the real line into X, such that f(a) = x and
f(b) =y. A space X is said to be path connected if every pair of points of X can be joined by a path in
X.

Proposition 2.15. A path connected space is connected.

Proof. Trivial. |

Example 2.16. Let S denote the topologist’s sine curve, which is the closure of
. (1
xxsin | — |0<x<1
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Then S is connected but not path connected.

Proof. NotethatS = SU{0} x [—1,1]. Since S is the continuous image of (0, 1], it is connected and therefore,
so is S. Suppose S were path connected. Then there is a continuous function f : [0,1] — S such that
f(0) =0x0and f(1) =1 x sin1. Since f (0 x [—1,1]) is closed in [0, 1], it has a supremum, say 4, which
it contains, owing to it being closed. Then, the restriction f : [2,1] — S is such that f(x) € {0} x [—1,1] if
and only if x = a. We may apply a suitable linear transformation to obtain a function g : [0,1] — S such
that ¢(x) € {0} x [—1,1] if and only if x = 0.

We may now construct continuous functions x,y : [0,1] — R such that ¢ = x x y. Now, for any n € IN,
x(1/n) > 0 and hence, there is 0 < u < x(1/n) such that sin(1/u) = (—1)". Due to the intermediate value
theorem, there is 0 < t, < 1/n such that x(t,) = u. By construction, y(t,) = (—1)". But notice thatt, — 0
and since y is continuous, we must have y(t,) — y(0), a contradiction since the sequence {(—1)"} does not
converge. n

Example 2.17. Rk is connected but not path connected.

Proof. Rg is connected: To do this, we show that the subspaces (—o0,0) and (0, o) are connected, from
which we can infer that R = (—o0,0) U (0, o0) is connected.

We contend that (—co,0) and (0, o) inherit the standard topology as a subspace of Rk. This is obvious
for (—o0,0). The topology inherited by (0, c0) is finer than the standard topology since R is finer than
the standard topology. Let x € (a,b)\K where 0 < a < b. If x > 1, then it is trivial to see that there is
a basis element (c,d) of the standard topology such that x € (c,d) C (a,b)\K. On the other hand, if
x < 1, then there is some N such that 1/(N + 1) < x < 1/N and hence, we may choose ¢, d such that

7<c<x<d<l
N+1 N

Thus, we would have x € (¢,d) C (a,b)\K. Thus, the topologies are equivalent on (0, o).

Rk is not path connected: Suppose not, then there is a continuous function f : [0,1] — R such that
f(0) =0and f(1) = 1. Since [0, 1] is connected and compact, so is f([0,1]). Since R is strictly finer
than the standard topology, a connected subspace of Rg must be an interval, since the latter are the
only connected sets in the standard topology. Hence, f([0,1]) is a compact connected interval in Rg
which contains [0,1]. Since [0,1] is closed in Rk and is contained in a compact interval, it must be
compact. This is untrue, since [0, 1] is compact Hausdorff as a subspace of the standard topology and
the topology it inherits as a subspace of R is strictly finer than the former, and therefore not compact.
This completes the proof.

|

2.2 Compact Spaces

Definition 2.18 (Cover). A collection .7 of subsets of a space x is said to cover X or be a covering of X if
the union of the elements of .7 is equal to X. It is called an open covering of X if its elements are open
subsets of X.

Definition 2.19 (Compact). A space X is said to be compact if every open covering < of X contains a
finite subcollection that also covers X.

This definition is extended to subspaces through the following lemma:
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Lemma 2.20. Let Y be a subspace of X. Then Y is compact if and only if every covering of Y by sets open in X
contains a finite subcollection covering Y.

Proof. Suppose Y is compact and { A, } is a covering of Y by sets open in X. Then, the collection {A, N Y} is
a covering of Y by sets open in Y and therefore has a finite subcollection { Ay, NY, ..., Ay, N Y} that covers
Y. As aresult, {Ay,, ..., Ag,} is a finite subcollection of open sets in X that cover Y. The converse follows
similarly. ]

Theorem 2.21 (Alexander Subbase Theorem). Let S be a subbasis for the topology on X. Then, X is compact
if and only if every open cover of X by elements in S has a finite subcover.

Proof. We shall show the reverse direction since the forward one is immediate. Suppose X were not com-
pact. Then, there is an open cover &/ of X with no finite subcover. Let X be the collection of all open
covers of X containing </ with no finite subcovers. It is not hard to show that X forms a poset under inclu-
sion where every chain has an upper bound. Consequently, due to Zorn’s Lemma, ¥ contains a maximal
element, say % .

We contend that S N % is an open cover for X. Suppose not, then there is x € X not covered by S N % .
Since 7% is an open cover, there is U € % containing x. Using the fact that S is a subbasis, there is a finite
collection {Sy,...,S,} of elements in S such thatx € SN ---NS, C U.

Suppose none of the S;’s belong to %, then, due to maximality, % U {S;} would admit a finite subcover,
{Viq, ..., Vin, } U{S;}. It is not hard to see that

n
U{‘/i,ll" -er‘,ni} U {u}
i=1

is an open cover of X, contradicting the construction of % .
Hence, there is an index 1 < j < 7 such that Sj € % and thus, X is covered by S N % . But since
SN C §,ithas a finite subcover, contradicting the construction of % . Thus, X is compact. [ |

Alternate Proof Using Ultrafilters. Suppose X is not compact. Then there is an ultrafilter .7 on X that does
not converge. We contend that S\.# is an open cover for X. Let x € X. Then, there is a neighborhood U of x
notin .%. Since S forms a subbasis, there is a finite collection Sy, ...,S,in Ssuchthatx € S;N---NS, C U
whence, S1N---NS, ¢ F. Obviously, there is S; such that S; ¢ %, lest SN ---NS; € #. Thus,
x € S; € S\.Z, implying that the latter is a cover.

According to our hypothesis, there is a finite subcollection {Sy,...,S,} C S\.Z that covers X, conse-
quently,

n

N(X\S;) =@

i=1

which is absurd since X\S; € .%, and .# has the finite intersection property. ]

Theorem 2.22. Every closed subspace of a compact space is compact.

Proof. Let Y be closed in a compact space X and < be an open cover for Y. The collection &7 U {X\Y} is an
open cover for X and therefore has a finite subcover, say %. In which case, Z\{X\Y} is a finite subcover
for Y, implying that it is compact. |
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Theorem 2.23. Every compact subspace of a Hausdorff space is closed.

Proof. LetY be a compact subspace of a Hausdorff space X. Let xg € X\Y. Then, for each y € Y, there exist
disjoint open sets Uy and V;, such that xg € Uy and y € V;,. The collection &7 = {V; | y € Y} forms an open
cover for Y and thus, has a finite subcover, {Vj,,..., V;, }. The corresponding open set (_; Uy, is open in
X and disjoint from each V}; and thus, disjoint from Y. This implies that for each xo € X\Y, there is an open
set containing it, that is contained in X\Y. This implies that X\Y is open and thus Y is closed. |

Theorem 2.24. Every compact subspace of a metric space is closed and bounded.

Proof. Let (X,d) be a metric space and A C X be compact. That A is closed, follows from the previous
theorem. If A = &, then it is trivially bounded. Let a € A be any point. Notice that &/ = {B(a,n) | n € N}
forms an open cover of A, and therefore has a finite subcover, implying boundedness. u

The converse of the above theorem is not true. Consider R equipped with the discrete metric. That is,

(x,y) = {é Y

Note that R is now bounded since it is contained in B(0,2) and is trivially closed. Furthermore, &/ =
{B,(r,0.5) | r € R} forms an open cover for R with no finite subcover since each open ball B;(r,0.5) is
singleton.

Theorem 2.25. The image of a compact space under a continuous map is compact.

Proof. Let f : X — Y be continuous and </ be an open cover for f(X). Then Z = {f1(A) | A € &} is
an open cover for X and therefore has a finite subcover {f~1(Ay),..., f '(A,)}. This immediately implies
that the collection {A1,..., A} is a finite subcover for f(X) and thus f(X) is compact. [ ]

Theorem 2.26. Let f : X — Y be bijective and continuous. If X is compact and Y is Hausdorff, then f is a
homeomorphism.

Proof. Due to a preceeding theorem, Y must be compact. Let U be an open set in X. It suffices to show that
f(U) is openin Y. Since X\U is closed in X, due to a preceeding theorem, it must be compact, as a result,
Y\f(U) = f(X\U) must be compact and thus closed (since Y is Hausdorff). Thus, f(U) is open and f is a
homeomorphism. [ ]

Lemma 2.27 (Tube Lemma). Let Y be a compact topologial space and X be any topological space. Let N be an
open set in the product topology X x Y that contains the “slice” x X Y for some x € X. Then, there is an open
set W C X such that N contains W x Y.

Proof. For each element y € Y, there is a basis element U, x V;, C N containing x x y. Therefore, {U, x
n
Vy}yey forms an open cover for x X Y and has a finite subcover, say Uy x Vp,..., U, x V. Let W = ‘01 u;.

i=

Then N contains W x Y, which is obviously open in the product topology. n
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Theorem 2.28. The product of finitely many compact spaces is compact.

Proof. It suffices to show the theorem for a product of two compact spaces since the general result follows
from induction.
Let X and Y be compact spaces and &/ be an open cover for X x Y. For each x 6 X, we note that x x Y

is compact and therefore, has a finite subcover, {A1,...,A,} € X x Y. Let Ny = U A;. Due to the Tube

Lemma, there is an open set W, C X such that Wy x Y is contained in Ny. Fmally, note that {Wy }yex is
an open cover for X and therefore has a finite subcover, say {Wy,, ..., Wy, }, consequently, {Ny,,..., Ny, }
is a finite open cover for X x Y. Since each Ny, is a union of a ﬁnite subset of &/, we have that X x Y is
compact. ]

Definition 2.29 (Finite Intersection). A collection & of subsets of X is said to have the finite intersec-
tion property if for every finite subcollection {Cj, ..., C,}, the intersection . C; is nonempty.

Theorem 2.30. Let X be a topological space. Then X is compact if and only if for every collection € of closed
sets in X having the finite intersection property, the intersection (\cc C of all the elements of € is nonempty.

Proof. Suppose X is compact and ¢ is a collection of closed sets in X having the finite intersection property.
Then, the collection & = {X\C | C € €} consists of open sets such that no finite subcollection may cover
X, due to the finite intersection property. And thus, Jac,s C X, and equivalently, Nceyy C # @.
Conversely, let &7 be an open cover for X and ¢ = {X\A | A € &/}. Itis then obvious that Nccy C is
empty and thus, ¥ may not have the finite intersection property. As a result, there is a finite subcollection
of &/ that covers X. This finishes the proof. u

Lemma 2.31. Let f : X — Y where Y is compact Hausdorff. Then f is continuous if and only if the graph of f,
Gr={xx f(x) | x € X} isclosed in X X Y.

Proof. (=) Suppose f is continuous. Let x X y ¢ Gy. Then, there are disjoint neighborhoods U and V of

y and f(x). Now, let O = f~1(V), which is open in X since f is continuous. Let x’ x ' € O x U. Since
f(x') € Vand y’ € U, we see that Gy N O x U is empty, thus Gy is closed. This direction of the proof only
required Y to be Hausdorff.

(¢<=) Suppose Gy is closed in X x Y. Let A C Y be closed. Then, X x A is closed in the product
topology, as a result, Gy N (X x A) is closed in X x Y. Using the compact Hausdorff-ness of Y, we know
that the projection 77 : X x Y — X is closed and therefore, 71(G¢ N (X x A)) is closed in X. But note that

n(Gfﬁ(XxA)) = {xeX|flx)e A} = f1(A)

and hence, f is continuous. |

Theorem 2.32. Let X be a simply ordered set having the least upper bound property. In the order topology, each
closed interval in X is compact.

Proof. Let [a,b] C X and & be an open cover for the same. We shall show that </ admits a finite subcover.
Claim 1. Let x € [a,]). Then, there is y > x such that [x, y] can be covered by at most 2 elements of .«7.
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Proof. If x has an immediate successor, y in X, that is, an element y such that (x,y) is empty, then the
closed interval [x,y] can be covered by at most 2 elements of /. Suppose not, then x is contained in some
openset A € /. Since A is open, it is open in the subspace topology on [x, b], consequently, it contains a
basis element of the form [x,c). Choose some y in [, c), the existence of which is guaranteed by the fact
that x has no immediate successor. Then, [x, y] is covered by the single element A € 7.

Let ¢ be the set of all x > a such that the interval [a, x] can be covered by finitely many elements of 7.
Since ¢ is non-empty, we may let c = sup €.

Claim2.cc ¥

Proof. Suppose not. First, note that ¢ < b. Therefore, there is an open set A € &/ containing c.
Consequently, it contains an interval of the form (d,c]. Notice that (d,c) is non-empty, for if not, then
sup% <d < c.Lete € (d,c). Obviously, e € C, therefore, the interval [a, ¢] can be covered by finitely many
elements of </ and since the interval [e, ] is contained in A, we conclude that [a,¢c] = [a,¢] U [e, c] can be
covered by finitely many elements of <7, hence, c € €, a contradiction.

Finally, we shall show that ¢ = b. Suppose ¢ < b, then there is y satisfying ¢ < y < b and the interval

[c, y] can be covered by finitely many elements of <7, consequently, [a,y] = [a,c] U [¢,y] can be covered by
finitely many elements of <7, a contradiction to the definition of c. This shows that ¢ = b and completes the
proof. |

Corollary 2.33. Let I2 be the ordered square, that is, I> = [0,1] x [0, 1] in the order topology. Then, I2
is compact.

Theorem 2.34. A subspace A of R" is compact if and only if it is closed and is bounded in the Euclidean metric
d or the square metric p.

Proof. It suffices to use only the p-metric since

p(x,y) < d(x,y) < Vnp(x,y)

Now, suppose A is compact. The collection {B,(0,m) | m € IN} is an open cover for A and must contain
a finite subcover. Let BP(O, M) be the largest ball in the subcover. Since all other balls are subsets of it, the
set A must be too. This implies boundedness.

Conversely, suppose A is closed and bounded. Then there exists N € IN such that p(x,y) < N for all
x,y € A. Equivalently, p(x,0) < N for all x € A. Thus, A is a closed subset of the compact set [-N, N|"
and thus is compact due to a preceeding theorem. |

Theorem 2.35 (Extreme Value Theorem). Let f : X — Y be continuous, where Y is an ordered set in the
order topology. If X is compact, then there exist points ¢ and d in X such that f(c) < f(x) < f(d) for every
xe X

Proof. Since f is continuous, A = f(X) is compact. Suppose A does not have a maximum element. Then,

the collection
o ={(—o0,a)|ac A}

is an open cover for A and must have a finite subcover, say
{(=e0,a1), .., (—c0,,)}

Without loss of generality, let a,, be the maximum out of all the a;’s. Then, we note that a, is never covered
by the subcollection, a contradiction. A similar argument may be applied for the minimum element. u
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Definition 2.36. Let (X, d) be a metric space and A be a nonempty subset of X. For each x € X, define
the distance from x to A by
d(x,A) =inf{d(x,a) |a € A}

Proposition 2.37. The function d(-, A) : X — R is a continuous function.

Proof. Let x,y € X. Then, for any a € A, we have
d(x,a) < d(x,y) +d(y,a)
Taking infimum, we see
d(x, A) < d(x,y) +d(y, A) = d(x, A) — d(y, A) < d(x,y)

From symmetry, we see that |d(x, A) —d(y, A)| < d(x,y) whence the continuity follows. ]

Lemma 2.38 (Lebesgue Number Lemma). Let <7 be an open covering of the metric space (X,d). If X is
compact, there is a & > 0 such that for each subset of X having diameter less than 6, there exists an element of <
containing it. The number § is called a Lebesgue number for the covering < .

Proof. Let </ be an open covering of X. If X itself is an element of A then any value of § works. Suppose
now that X ¢ o and {A;,..., A} be a finite subcollection of elements in & that cover X and C; = X\ A;
for all 1 <i < n. Define the function

S|
.Mx

Il
_

flx) =

For any x € X, not all of d(x, C;) may be 0, since they cannot all share a point. Thus, f(x) > 0. Since X is
compact and f is continuous, due to the extreme value theorem, we know that f has a minimum value, say
0. We shall show that ¢ is a Lebesgue number for <.

Let B be a subset of X having diameter less than é. Let xy € B; then B C By(xo, ), further, since f(xp) >
J, we must have an index m such that d(xp,Cy) > J. Then, obviously, BN C, = @ and consequently,
B C Ap. u

d(x,C;)

Definition 2.39. Let f : (X,dx) — (Y, dy) be a function. f is said to be uniformly continuous if given
€ > 0, thereis a 6 > 0 such that for every pair of points xp, x; € X,

dx(xo,%1) < 6 = dy(f(x0),f(x1)) <e

Theorem 2.40 (Uniform Continuity Theorem). Let f : (X,dx) — (Y, dy) be a continuous map such that
the metric space X is compact. Then f is uniformly continuous.

Proof. Let € > 0 be given. Consider the collection # = {By(y,€/2) | y € Y} which is an open cover of Y
then o7 = {f~1(A) | A € &/} is an open cover of X and thus has a finite subcover, {Ay,..., A, }. Let é be
the Lebesgue Number of <. Then for any two points xg, x; € X with dx(xp, x1) < J, the two point subset
{x0,x1} has diameter ¢ and is therefore contained in some A;. As a result, f(xp), f(x1) € By(y,e/2) for
some y € Y. This immediately implies that dy (f(xo), f(x1)) < €.

2.3 Limit Point Compactness
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Definition 2.41 (Limit Point Compact). A space X is said to be limit point compact if every infinite
subset of X has a limit point.

Theorem 2.42. Compactness implies limit point compactness.

Proof. Let A be a set with no limit points. We shall show that A is finite. We see that A must be closed, since
it trivially contains all its limit points. Since each 2 € A is not a limit point, we may choose an open set
U, such that U, N A = {a}. Then, the collection % = {U, | a € A} is an open cover for A, consequently,
% J{X\A} is an open cover for X and has a finite subcover. Since the finite subcover can have only finitely
many elements of %, A must be finite. ]

Definition 2.43 (Sequentially Compact). Let X be a topological space. If (x,) is a sequence of points
of X, and if
ny <ty <---

is an increasing sequece of positive integers, then the sequence (xy,) is called a subsequence of (x;). The
space X is said to be sequentially compact if every sequence of points of X has a convergent subsequence.

Theorem 2.44. Let X be a metrizable space. Then the following are equivalent
1. X is compact
2. X is limit point compact

3. X is sequentially compact

Proof. We have already shown that (1) = (2). Let us first show that (2) = (3). Consider the set
A = {x, | n € N}. If A is finite, then there is some x € A such that x; = x for infinitely many indices i.
This immediately gives us a convergent subsequence. If A is infinite, then there exists x € X that is a limit
point of A. Then, for each n € IN, choose x,, € B(x,1/n) N A. This sequence obviously converges to x and
we are done.

Finally, we show that (3) == (1). We first show that if X is sequentially compact, then the Lebesgue
number lemma holds. Suppose not. Let </ be an open covering of X. Then for every positive integer n,
there is a set C,; of diameter less than 1/n that is not contained in any element of /. Choose a point x,, € C,
for all positive integers n. Since X is sequentially compact, there must exist a convergent subsequence (xy;)
that converges to some point a € A. Since &7 covers X, there is some A € ./ such thata € A. Choose € > 0
such that B(a,€) C A. For sulfficiently large i, we have 1/n; < €/2 and d(x,,,a) < €/2, then the set Cy,, lies
in the € /2 neighborhood of x;,, but since x;, lies in the € /2 neighborhood of a, C,, lies in the € neighborhood
of a, and thus C,, C B(a,e) C A.

Next, we show that if X is sequentially compact, then for every € > 0, there exists a finite covering of X
by open e-balls. Suppose not. Let x; € X, then B(x1,€) may not cover X and thus, there is x; € X\B(x1,€).
Keep choosing points in X this way, that is:

n
X1 € X\ U B(x;,€)
i=1

The sequence (x,) is infinite and d(x;, x;) > € whenever i # j. This obviously cannot have a convergent
subsequence. A contradiction.

Coming back to the original proof. Let ./ be an open covering for X with Lebesgue number §. Let
€ = 0/3. Consider the finite covering of X with e-balls. Each ball has a diameter of at most 26/3 and thus
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is contained in some element of <7. The collection of all such elements of <7 is a finite cover of X. Thus X is
compact. This finishes the proof. n

Theorem 2.45. Let X be a compact metric space and f : X — X be a continuous map such that d(f(x), f(y)) <
d(x,y) forall x,y € X. Then f has a unique fixed point.

Proof. Define A, = f(")(X). Then,
Aper = F(F(X)) C F(X) = Ay

Let A = () Aj,. Obviously, f(A) € A. We shall show the reverse inclusion. Choose some x € A. Then,

n=1

x € Ay for all n € N. Hence, there is some x, € X such that x = f("+1)(x,). Consider now the
sequence i, = f")(x,). Since every compact metric space is sequentially compact, the sequence {y, } has a
convergent subsequence {yy, }, converging to some a € X. Then, the sequence {x,, = f(y5,)} converges to
f(a), since f is continuous. Finally, since y, € A, by definition, we see that eventually the sequence {y, }
lies completely in A, for all # € IN. Then, using the fact that each A, is closed, we must have thata € A,
foralln € IN, whencea € A.

This shows that A = f(A). Suppose A had more than one point. Now, since A is closed in a compact
space, it is compact and hence, there are points x, y € A such that diam(A) = d(x, y). From our hypothesis,
there are xq,y; € X such that f(x1) = x and f(y;) = y. Therefore,

d(x,y) = d(f(x1), f(y1)) < d(x1,31) < d(x,y)
a contradiction. Hence, A is a singleton and contains the fixed point. |

Note that the above result does not hold for complete metric spaces. Consider the function f : R — R
given by

1
f(x) = E(x—k x24+1)
To see that this is shrinking map, invoke the mean value theorem along with the following inequality:

1 X
—[1+ <1

f ()] =

That f does not have a fixed point is obvious.

24 Local Compactness

Definition 2.46 (Local Compactness). A space X is said to be locally compact at x if there is some com-
pact subspace C of X that contains a neighborhood of x. If X is locally compact at each of its points, X
itself is said to be locally compact.

One notes that a compact space is automatically locally compact. Conversely, it is not necessary that
a locally compact space is compact. For example, the real line R with the standard topology is locally
compact but not compact.

The space R is not locally compact; none of its basis elements are contained in compact subspaces,
since all basis elements are of the form

(a1,b1) X -+ X (ap,by) X RXR X -+

whose closure is obviously not compact.

31



Swayam Chube Topology

Theorem 2.47. Let X be a space. Then X is locally compact Hausdorff if and only if there exists a space Y
satisfying the following conditions:

1. X is a subspace of Y
2. The set Y\X consists of a single point
3. Y is a compact Hausdorff space

If Y and Y' are two spaces satisfying these conditions, then there is a homeomorphism of Y with Y’ that equals
the identity map on X.

Proof. We first show uniqueness. Let Y and Y’ be two spaces satisfying these conditions. Define the function
h:Y — Y’ by letting h map the single point p of Y\ X to the single point g of Y'\ X and letting / equal the
identity on X. Obviously, & is a bijection. It suffices to show that I maps open sets in Y to open sets in Y’.
Let U be open in Y. If U does not contain p, it is contained in X and is open in X. Thus, h(U) = U and is
open in X. But since X is open in Y/, h(U) is open in Y’. Now, suppose p € U. Then, C = Y\U is closed
in Y and is thus compact in Y. Since C is contained in X, it is compact in X and thus h(C) = C is compact
in Y'. Since Y’ is Hausdorff, C is also closed in Y’ and thus h(U) = Y’\C is open in Y’. This establishes
uniqueness.

Suppose now that X is locally compact and Hausdorff. Let Y = X U {co}. The topology on Y consists of
the following sets:

1. all sets U that are open in X
2. all sets of the form Y\ C where C is a compact subspace of X

We shall first show that this forms a topology on Y. The intersection of any two sets must be in the topology.
If both sets are of the form (1), then we are trivially done. If both are of the form (2), then we have Y\C; N
Y\Cz = Y\ (C; U Cy) which is obviously of the form (2). Consider an intersection of the form U N (Y\C) =
U N (X\C). Since X is Hausdorff and C is compact in X, C must also be closed in X and thus X\C is open
in X. Now, by induction it follows that finite intersections are also elements of the topology.

We now verify arbitrary unions. Obviously arbitrary unions of sets of type (1) form sets of type (1).
Arbitrary unions of sets of type (2) are of the form

U (N\Ca) = Y\ Ca = Y\C

where C is some open set in X and is therefore of type (2). Finally, we need to verify the following;:

(U ua) U (U (Y\cﬁ)> = UU(Y\C) = Y\(C\U)

one notes that if C is compact in X and U is open in X, then obviously C\U is compact in X (the proof is
Straightforward). Thus this is also of type (2). And the collection is indeed a topology.

We now show that Y is compact Hausdorff. Let x,y € Y. If both lie in X, then there exist disjoint open
sets U, V in X that contain x and y respectively. Now suppose x € X and y = co. Consider a compact set
C in X containing a neighborhood of x. Then Y\C contains Y and is disjoint from said neighborhood of X
and thus Y is Hausdorff. Next, suppose </ is an open cover of Y. Then, it must contain an element of the
form Y\ C where C is compact in X, since all the open sets in Y of type (1) do not contain co. Since <7 covers
Y, @/\{Y\C} covers C and therefore has a finite subcollection that covers C. This along with Y\C is a finite
subcover for Y and thus Y is compact.

Finally, we show that if X is a subspace of Y satisfying all the conditions, then X is locally compact
Hausdorff. The fact that X is Hausdorff follows from the fact that Y is Hausdorff. Let x € X. We shall show
that X is locally compact at x. Since Y is Hausdorff, there exist disjoint open sets in Y containing x and oo
respectively. The set Y\V is closed in Y, but since Y is compact, Y\ V is also compact in Y and is a subset of
X that contains U. This implies local compactness and finishes the proof. |
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Definition 2.48 (Compactification). A compactification of a space X is a compact Hausdorff space Y
containing X as a subspace such that X = Y. If Y\X is a singleton set, then Y is called the one-
point compactification of X. Two compactifications Y7 and Y, of X are said to be equivalent if there is a
homeomorphism & : Y1 — Y, inducing the identity on X.

Proposition 2.49. [0, 1]% in the uniform topology is not locally compact.

Proof. 1f [0,1]“ were locally compact, then there would be ¢ > 0 such that B(0, ¢) is compact. Consider the
set of points a, in [0, 1] where
£ m=n
an(m) = {O otherwise

Obviously, the set {aj, ap, ...} does not have a limit point, consequently, E(O, g) is not limit point compact,
a contradiction. [ |
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Chapter 3

Countability and Separation Axioms

3.1 Countability Axioms

Definition 3.1 (First Countable). A topological space X is said to have a countable basis at x if there is
a countable collection B of neighborhoods of x such that each neighborhood of x contains at least one
of the elements of B. A space that has a countable basis at each of its points is said to satisfy the first
countability axiom or to be first-countable.

Obviously, every metrizable space satisfies this axiom, since we may take
1
Bx - B X, E | ne N

Theorem 3.2. Let X be a first countable topological space.
1. Let A bea subset of X. If x € A, then there is a sequence of points of A converging to x.

2. Let f : X — Y. If for every convergent sequence {x, }, to x, the sequence { f(x) }n converges to f(x),
then f is continuous.

Note that the converses for both do not require the first-countable hypothesis.

Proof.

1. Let B = {By,By,...} be a countable basis at x. Define the sequence {a,};>; by picking any point
a, € AN(ByN---NBy). Itis not hard to see that this sequence converges to x.

2. Let A C X. Then, for any x € A, there is a sequence {a,}5_; of points in A converging to x, conse-
quently, {f(a,)}:°, is a sequence of points in f(A) converging to f(x). Therefore, f(x) € f(A), and
hence, f(A) C f(A) and f is continuous.

Definition 3.3 (Second Countable). If a space X has a countable basis for its topology, then X is said
to satisfy the second countability axiom or to be second-countable

From the definition of the topology generated by a basis, second countability implies first countability.
Further, not every metric space is second-countable. To see this, consider the following lemma:
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Lemma 3.4. Let X be a topological space with a countable basis BB, then any discrete subspace A of X must be
countable.

Proof. The proof follows quite naturally. Since A is discrete, for each 2 € A, there is B, € B such that
B, N A = {a}. Then, the function f : A — B given by f(a) = B, is an injection and thus A is countable. H

Now, consider R¥ with the uniform topology. The set A = {0,1}% is uncountable and under the
uniform topology, is discrete, since p(a,b) = 1foralla,b € A witha # b. This immediately implies that R
under the uniform topology may not have a countable basis and cannot be second-countable.

We now show that the same isn’t true for R“ equipped with the product topology. It is well known that
the countable collection of all open intervals (a,b) with both a,b € Q forms a basis for R. Then, R“ has
a countable basis of all open sets of the form [],,cz+ U, where U, is an open interval with rational end
points for finitely many values of n and U, = IR for all others.

Theorem 3.5. A subspace of a first-countable space is first-countable, and a countable product of first-countable
spaces is first-countable. A subspace of a second-countable space is second-countable, and a countable product of
a second-countable spaces is second-countable.

Proof. The assertion about subspaces is trivially true in both cases. As for the second part note that a cross
product of countable sets is countable. ]

Definition 3.6 (Lindeldf Space). A topological space X is said to be Lindelof if every open cover has a
countable subcover.
Obviously all compact spaces are Lindelof

Definition 3.7 (Dense). A subset A of a space X is said to be dense in X if A = X. X is said to be
separable if it has a countable dense subset.

Theorem 3.8. The following are true:
(a) The continuous image of a separable space is separable
(b) An open subspace of a separable space is separable

(c) Let {Xu}aej be a collection of Hausdorff spaces with at least two points each. Then [T,y X is separable
if and only if each X, is separable and | has cardinality at most that of the continuum.

Proof. (a) Trivial.
(b) Trivial.

(c) Suppose X = ],y X4 is separable. Since projection is a continuous map, each X, is continuous. We
shall now show that the cardinality of | is atmost that of the continuum. Since each X, is Hausdorff,
with at least two points, there are disjoint open sets Uy, V, in X,. Let D be a countable dense subset of
X. Define D, = DNy '(Uy). We claim that the map ¢ : | — 2P givenby & ~— D, is injective. Indeed,
for a # B, consider the open sets U = 71, 1 (U,) N ngl(Vl;) and V = nlgl(uﬁ). Note that U and V are
disjoint, further, the points in U N D belong to D, and due to the disjointness of U and V, they are
notin Dg = V N D. Finally, since D is countable, the cardinality of 2P is at most the cardinality of the
continuum and thus | has cardinality at most that of the continuum.
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Conversely suppose | has cardinality atmost that of the continuum. Then, we may treat | as a subset
of [0,1]. Let Dy = {da1,dy2, ...} be a countable dense subset of X,. Let .# be the countable collection
of open intervals with rational endpoints in the order topology on [0,1]. Consider the collection of
all even length tuples of the form (I3, ..., I; ny, ..., n;) where the Ij’s are disjoint intervals in .# and
ny,...,ny are positive integers. Define the point p(Ly, ..., Iy;n1, ..., ng) by

) dan;, & € J; for somei
P dy1  otherwise

Obviously, the collection of such points, D, is countable. We shall show that this collection is dense.
Consider a basic open set in X, which is of the form

B =, (Uy) NNy (U,

Note that each U,, contains a point dy;,, of D, for some n; € IN. Since the a;’s are finitely many, there

are disjoint intervals I, .. ., I, in .# containing a1, . . ., &, respectively. Then, the point p(Jy, ..., Jm; 11, - - -

belongs to B and the set D is dense as desired.
]

Theorem 3.9. Suppose that X is second countable. Then
1. X is Lindelof

2. X is separable

Proof.

1. Let B = {By, By, ...} be a countable basis for X and < be an open cover. For each x € X, let Ay be an
element in &/ containing x. By definition, there must exist a basis element By such that x € By C Ay.
Let # = {By | x € X}. Obviously # C B and is therefore countable. Further, for each B € %, there is
A(B) € & containing B. Therefore, { A(B) | B € %} forms a countable subcover.

2. Using the Axiom of Choice, choose a set D = {x, | x; € B;}. For each x € X\D, and an open set U
containing x, then there is a basis element B; containing x that is contained in U. Therefore, x; € U.

This implies x € D.
]

Theorem 3.10. Let (X, d) be a metric space. Then, the following are equivalent
1. X is second countable
2. X is Lindelof

3. X is separable

Proof.
* (1) = (2) A (1) = (3) Proved above.

* (3) = (1)LetD = {x1,x2,...} and Q = {q1, 92, . . . }. We shall show that the collection { B(x;, ;) }; jeNxN

is a basis for the metric topology on X.
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(2) => (1) Let 7, denote the open cover {B(x, 1)},cx. Since X is Lindeldf, it has a countable sub-

cover, say %y. Define B = |J %, which is countable. We shall show that B is a basis for the metric

nelN
topology on X. Let U be a neighborhood of x € X. Then, there is r € R" such that B(x,r) C U.

Choose N € N such that % < r/2. Let B be the element of %y that contains x. Then, for any y € By,
d(x,y) < %4 <randy € U. Consequently, B C U and we are done.

|
Proposition 3.11. IR is Lindelof.
Proof. TODO: Add in later [ |
3.2 Separation Axioms

Definition 3.12 (Regular Spaces). Suppose one-point sets are closed in X. Then X is said to be reqular
or a T3-space if for each pair consisting of a point x and a closed set B disjoint from X, there exist disjoint
open sets containing x and B, respectively.

Definition 3.13 (Normal Spaces). Suppose one-point sets are closed in X. Then X is said to be noraml
or a Ty-space if for each pair A, B of disjoint closed sets in X, there exist disjoint open sets containing A

and B.

It is not hard to see that

Normal = Regular = Hausdorff

Theorem 3.14. Let X be a topological space such that one point sets in X are closed.

Proof.
1.

1. X is regular if and only if given a point x € X and a neighborhood U of x, there is a neighborhood V of x

such that V.C U

2. X is normal if and only if given a closed set A and an open set U containing A, there is an open set V

containing A such that V. C U.

Suppose X is regular and x € U € Tx. Since X\U is closed, there are disjoint open sets V and W such
that x € V and X\U C W. It is not hard to see that V N W = &, therefore V C U.

Conversely, let x € U and A C X be a closed set. Then, X\ A is open and x € X\ A. Therefore, there
is an open set V containing x such that V' C X\ A. Then, A C X\V and we are done.

Suppose X is normal. Then, B = X\U is a closed set disjoint from A. Therefore, there are open
sets V, W containing A and B respectively such that A C V and B C W. It is not hard to see that
VNW = &, therefore, V C U.

Conversely, let A be closed in X. Then, B = X\U is closed, and the sets V and X\V contain A and B
respectively, and are disjoint, therefore the space is normal.
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Theorem 3.15.
1. A subspace of a Hausdorff space is Hausdorff; a product of Hausdorff spaces is Hausdorff

2. A subspace of a regular space is regular; a product of regular spaces is regular.

Proof.

1. The subspace part is trivial. Let (X,), be a collection of Hausdorff spaces. Let x,y € [], X,. Since
x #y, there is an index f such that x5 # yg. Therefore, there disjoint are open sets U, V in Xz such

that xg € Uand yg € V. As aresult, ngl(U) and nﬁ_l(V) are disjoint and open in [, Xa.

2. The subspace part is trivial. Let x € [], X, where each X, is regular and U C [], X, be an open set
containing x. Let [ ], U, be a basis element of [ ], X, containing x that is also contained in U.. For each
Xa, let V; be an open set in X,, containing it such that V. C U,. Note that if U, = X,, choose V, = X,
instead. As aresult, [], V4 is in the product topology and its closure is contained in U. This completes
the proof.

|
3.3 Normal Spaces

Theorem 3.16. Every regular space with a countable basis is normal.

Proof. Let X be a regular space with countable basis B and A, B be closed sets in X. For each x € X, using
regularity, there is an open set U, containing x and disjoint from B. Further, using regularity, there is a
neighborhood of x, Vy such that Ve C U,. Finally, choose a basis element By from B containing x that is
contained in V.

We now have a countable cover {U,} for A, such that U; "B = @. Similarly, choose a countable open
cover {V,,} for B, such that V; N A = @. Let us now define

n n
u,=u\Jvi Vvi=v.\Uu
i=1 i=1
We shall show that U’ and Vj’ are disjoint for any 7, j. Without loss of generality, suppose i < j. Suppose
x e Un Vj’ , therefore, x € U; and x € Vj, but using the definition of V].’ , we must have that x ¢ Vj’ ,a
contradiction.

Finally, define
u=u v=_ V]-’
i=1 j=1
These are disjoint open sets contain A and B respectively. This concludes the proof. |
Corollary 3.17. Every regular Lindelof space is normal.
Proof. In the same spirit as the above proof. |
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Theorem 3.18. Every compact Hausdorff space is normal.

Proof. Let X be a compact Hausdorff space. We shall first show that X is regular. Indeed, let x € X and
A C X be a closed set. Since X is compact so is A. For all 2 € A, there are disjoint open sets U, and V,
such that x € U, and a € V. Note that & = {A, | a € A} is an open cover for A and therefore has a finte
subcover {Vg,,...,V,,}. Let

n n
U=U, V=V
i=1 i=1

which are disjoint open sets containing x and A respectively.

Suppose A and B are disjoint closed sets in X. For each a € A, there are disjoint open sets U, and V,
such thata € U, and B C V,. Note that & = {Uu ] ae A} is an open cover for A, and therefore, has a finite
subcover {A,,, ..., As, }. Choose

n n
u=yu, v=V,
i=1 i=1

which are disjoint open sets containing A and B respectively. |

Theorem 3.19. Every metrizable space is normal.

Proof. Let (X,d) be a metric space and A, B be two disjoint closed subsets of X. For each a € A, there is ¢,
such that B(a, €)NB=g, similarly, for each b € B, there is ¢, > 0 such that B(b,sb) NA=a.Let

U= |JB(a,e/2) V=1_JB(be/2)

acA beB

We contend that U NV = &. Suppose not, then thereisa € A and b € B such that B(a,¢,/2) N B(b,€,/2) #
. Then, d(a,b) < (5 + €,) /2. But by definition, we must have d(a,b) > max{e,, €, }, a contradiction. This
completes the proof. [ |

Theorem 3.20. Let p : X — Y be a continuous closed surjection. If X is normal, then so is Y.

Proof. Let A, B be disjoint open sets in Y. Then p~!(A) and p~!(B) are disjoint closed sets in X, conse-
quently, there are disjoint open sets U and V containing p~!(A) and p~!(B) respectively.
Now, for each a € A, there is a neighborhood W, of a such that p’l(a) C W, C U. Similarly, there is a

Wy, foreach b € B. Define Wy = U Wyand Wg = U W,.
acA beB

Then, p~1(A) C p~1(W,4) C Uand p~'(B) C p~1(Wp) C V, whence W4 N Wy = & and the conclusion
follows. u

3.4 Urysohn’s Lemma

Lemma 3.21 (Urysohn). Let X be a normal space and A, B C X be two closed sets. Then there is a continuous
function f : X — [0,1] such that f(A) = {0} and f(B) = {1}.

Proof. Let P be the countable set of all rational numbers in [0, 1]. First, define U; = X\ B, which is an open
set containing A. Due to the normality of X, there is an open set Uj containing A such that Uy C Uj.
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We shall now define an open set U), for all p € P such that
p<q=—UpCl

Let P, be the set containing the first n rational numbers in some enumeration of P such that the first two
enumerated rationals are 0 and 1. Let r be the n + 1-st rational in the enumeration. Obviously, since Py is
finite and 0,1 € Py, there are rationals p,q € P such that

p=max{x € P, |x <r}
g=min{x € P, | x >r}

Now, due to the induction hypothesis, Up C Uy and therefore, using the normality of X, there is an
open set U, such that U, C U, and U, C U,.

Lets € Pyy1. If s < p,Us CU, C U, C Urandifg <s, U, C Uy C Uy C Us. Therefore, the induction
hypothesis holds.

Now that we have defined U, for all p € P, we shall define

U, — @ p<0
P X p>1

Now, for all x € X, define the function f : X — [0,1] as

F(x) = inf{p | x € Uy}

Note that since for all p > 1, x € U, and the rationals are dense in the reals, 0 < f (x) <1.Foralla € A,
note that a € Uy, therefore f(a) = 0. Similarly, for all b € B, note that b ¢ Uy, as a result b ¢ U, for all
p € [0,1], but b € U, for all g > 1, therefore, f(b) =inf{gcQ |g>1} =1

All that remains is to show that f is continuous. Let x € X and (¢,d) € [0,1] be an open interval
containing f(x). Choose any two rational numbers p, g such that ¢ < p < f(x) < g < d. Let us consider
the image of the set Y = U, \U,. Forally € Y, f(y) > p, while f(y) < g, therefore, f(y) € (c,d), as a result,
f(Y) C (¢, d) and f is continuous. This completes the proof. |

Lemma 3.22 (Jones). Let X be a separable and normal space. Then for any set D C X that is closed and discrete
in X, we have 2/P1 < 2w,

Proof. ]

Proposition 3.23. The Sorgenfrey plane, ]R% is not normal.

Proof 1. Notice that Q x Q is dense in R2, which is therefore separable. Consider
L={xx(-x)|x€eR} CR

It is not hard to argue that L is closed in R? and has the discrete topology as a subspace of R?. Due to
Lemma 3.22, we see that ]R% cannot be normal. |

Proof 2. Let D = Q x Q and L be as defined in the previous proof. Suppose IR% were normal. We shall now
define a function f : P(L) — P(D). Let A C L. Then A is closed in IR? since L is discrete and closed in R?.
If A =&, define f(A) = @. If A = L, then define f(A) = D. If & C A C L, then there are disjoint open sets
U, and V4 containing A and L\ A respectively. Define f(A) = DN Ua,.

We contend that f is an injective function. First, note that forany @ C A C L, @ C f(A) C L (this is not
hard to show). Now, suppose A, B C L such that f(A) = f(B). If A = @ or A = L then B = A. Therefore,
we may suppose that @ C A, B C L. Without loss of generality, suppose A\B # @. Then, Uy NV # &,
consequently, f(A)\f(B) # @, which establishes injectivity.

The contradiction is immediate from a cardinality argument. u
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Corollary 3.24. The product of two normal spaces need not be normal. Further, IR% is regular but not
normal.

Definition 3.25.If A and B are two subsets of a topological space X, and if there is a continuous
function f : X — [0,1] such that f(A) = {0} and f(B) = {1}, we say that A and B can be separated by a
continuous function.

Definition 3.26 (Completely Regular). A space X is completely regular or T, 1 if one-point sets are closed

in X and for each point xp and each closed set A not containing xq, there is a continuous function
f: X — [0,1] such that f(xp) = 1and f(A) = {0}.

Theorem 3.27. A subspace of a completely reqular space is reqular. A product of completely regular spaces is
completely regular.

Proof. Let X be completely regular and Y C X. Obviously, one point sets are closed in Y. Let xp € Y and A
be a closed set in Y that is disjoint from it. There is a closed set F in X such that A = FNY. Then, thereis a
continuous function f : X — [0, 1] such that f(xp) = 1 and f(F) = {0}. Then, the restriction of f to Y is the
desired continuous function separating xy and A.

Suppose {Xa}acj is a collection of completely regular spaces and let X = [T,cj Xa- Let a = (aa)aes
and A a closed set in X not containing a. Then, there is a basis element [[,c; U, containing a that is
disjoint from A. Then, there is a finite set of indices {a1,...,a,} such that Uy, # Xg; for 1 < i < n. Since
each Xy, is completely regular, there is a continuous function f,, : Xu, — [0,1] such that f (a,xi) =1and
f(Xa;\Uy;) = {0}. Define the continuous function ® : X — [0,1] by

F) = far (703 (X)) - -+ fay (7, (X))

It is not hard to see that this function separates a and A. |

Corollary 3.28. A locally compact Hausdorff space is completely regular.

Proposition 3.29. Let X be completely regular and K, A be a disjoint compact-closed pair in X. Then, K and A
can be separated by a continuous function.

Proof. For each x € K, there is a continuous function fy : X — [0,1] such that f(x) = 1 and f(A) =
{0}. Let Uy := fr1((1/2,1]). Then {U,},ek forms an open cover for K, therefore has a finite subcover,
{Uy,,..., Uy, }. Define g = max{fx,,..., fx,}. Then, g(x) > 1/2forall x € K and g(A) = {0}. Finally,
define h = 2min{g, 1/2}. Then, h(K) = {1} and h(A) = {0}. [ ]

Corollary 3.30. Let X be locally compact Hausdorff, K a compact subset and A a disjoint closed subset.
Then, there is a continuous function separating K and A.
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Theorem 3.31. Let X be a locally compact Hausdorff space and K C X be compact. Let V be an open set
containing K. Then there is a continuous function f : X — [0,1] with compact support such that f(K) = 1
and supp(f) C V.

Proof. First, we show that there is a compact set K’ and an open set U such that K C U C K’ C V. For each
a € K, there is a neighborhood U, with compact closure such that a € U, C V. Since {Ua} forms an open
cover for K, it has a finite cover, say {Uy,, ..., Uy, }. Define U = Uy, U--- U U, and K' = U, U - - - U U,,,.
Due to the previous proposition, there is a continuous function such that f(K) = 1 and f(X\U) = 0.
Obviously, {x € X | f(x) # 0} C K’ and since K’ is closed, Supp f C K’ whence it is compact. This
completes the proof. [ |

Lemma 3.32. Let X be normal and A C X. Then, there is a function f : X — [0,1] such that f~1({0}) = A
if and only if A is a closed G set.

Proof. Suppose there is a function f : X — [0,1] such that f~1({0}) = A. Then, obviously A is closed,

further
= 1
A= - -
ol ([0 ))
n=1
whence A is Gg.

Conversely, suppose A is a closed G; subset of X. Then there is a countable collection of open sets
{U,} such that A = N;_; U,. Using normality and the Urysohn Lemma, there is a continuous function
fn: X —[0,1] such that f(A) = {0} and f(X\U,) = {1}. Define the function

f= ilznfn

Using the Weierstrass M-test, it is not hard to see that the convergence of the series to f is uniform and thus
f is a continuous function satisfying the required prooperties. [ |

Theorem 3.33.

Theorem 3.34 (Imbedding Theorem). Let X be Fréchet. Suppose { fy }nc] is an indexed family of continuous
functions f, : X — R satisfying the requirement that for each point xo € X and each neighborhood U of x,
there is an index « such that f, is positive at xo and vanishes outside U. Then the function F : X — R/ defined

by
F(x) = (fa(x))aeg
is an imbedding of X in R/. In particular, if f, maps X into [0, 1] for each o, then F imbeds X in [0,1]/.

Proof. That F is a continuous function is obvious. Let Z = F(X). Let U be open in X. We shall show that
F(U) is open in Z. Choose some zy € F(U), then, there is some xy € U such that F(xyp) = zp. There is
some index B such that fz(xg) > 0 and fg vanishes outside U. Let W = 7'([;1 ((0,00)) N Z. We contend that
zgp € W C F(U). That zy € W is obvious. Now, let z € W, then there is some x € X such that F(x) = z.
Since 7g(z) > 0, fg(x) > 0and thus x € U, consequently, F(x) € F(U). This completes the proof. ]
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Corollary 3.35. A space X is completely regular if and only if it is homeomorphic to a subspace of
[0,1)/) for some indexing set .

Proof. Suppose X were completely regular. For each pair (x,U) of a point and an open set U containing
x, there is a continuous function f : X — [0,1] such that f(x) = 1 and f(X\U) = {0}. Let {fa}sc be
the collection of all such continuous functions. Then, due to Theorem 3.34, there is an imbedding F : X —
[0,1)/. The converse is obvious. [ ]

Proposition 3.36. A subspace of a normal space need not be normal.

The following proof uses the forthcoming Tychonoff Theorem.

Proof. We have seen that R? is not normal. But since IR, is normal and therefore, completely regular, so is
IR?. Consequently, R? is homeomorphic to a subspace of [0, 1)/ for some indexing set J. Due to the Tychonoff
Theorem, [0, 1)/ is compact Hausdorff, and thus, normal. This completes the proof. u

3.5 The Urysohn Metrization Theorem

Theorem 3.37 (Urysohn Metrization Theorem). Every reqular space X with a countable basis is metrizable.

Proof. Recall first that every regular space with a countable basis is normal. We shall show that X is metriz-
able by constructing an imbedding of X into R*. We shall first show that there is a countable sequence of
functions {f, } from X to [0, 1] such that for all xp € X and a neighborhood U of xy, there is a function f,
such that f(xp) > 0and f(x) = 0forall x € X\U.

Let B = {B,} be a countable basis for X. Then, for all pairs (m, n) such that B, C By, define the function
gmn : X — [0,1], using Urysohn’s Lemma, such that ¢y »(Bm) = {1} and gm(By) = {0}. Obviously, the
set {gmn | m,n € IN} is countable and it is not hard to see that this is our desired sequence of functions
().

From Theorem 3.34 and the sequence of functions constructed above, we see that X can be imbedded
into R%, and hence, is metrizable. |

3.6 Tietze Extension Theorem

Lemma 3.38. Let X be a normal space and A be a closed subspace of X. Let f : A — [—r,r] be a continuous
map. Then, there is a continuous function g : X — [—r, r| such that

|f(a) —g(a)] <2r/3 lg(x)| <r/3 forallac A, x € X

r r r r
he|on-g) m= 53] s3]

B=f"'I) C=f(L)

Since I; and I3 are closed in [—7, 7], B and C must be disjoint and closed in X. Now, due to Urysohn’s
Lemma, there is a function g : X — [—r/3,7/3] such that g(B) = {—r/3} and g(C) = {r/3}, which has a
natural extension g : X — [—7,7].

Obviously, |¢(x)| < r/3 for all x € X. Further, foralla € A, ifa € B, then g(a) = —r/3,and f(a) € L,
similarly, if a € C, then g(a) = r/3 and f(a) € I3. This immediately implies the desired conclusion. [ ]

Proof. Define

and
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Theorem 3.39 (Tietze Extension Theorem). Let X be a normal space; let A be a closed subspace of X

1. Any continuous map of A into the closed interval [—1,1] of R may be extended to a continuous map of all
X into [—1,1]

2. Any continuous map of A into R may be extended to a continuous map of all of X into R
Proof. The main idea of the proof is to construct a uniformly convergent sequence of continuous functions

to f on A. This would immediately imply the continuity of the limiting function over X, due to the Uniform
Limit Theorem.

1. Using the preceeding lemma, there is a fucntion g7 : X — [—1,1] such that |f(a) — g1(a)| < 2/3,
while |g(x)| <1/3foralla € Aand x € X. Let us define f; : A — [—2/3,2/3] as

fi(x) = f(x) = 81(x)

which is a continuous function. Then, we may reuse the previous lemma to define a function g (x) :
X — [~1,1] such that | f1(a) — g2(a)| < (2/3)?, while |g(x)| < (2/3)(1/3) and so on. As a result, we
define the function g, : X — [—1, 1] satisfying
2 n—1
G)

@ -su@l < (5) sl <3

Finally, define the functions s, : X — R

We note that

LR () s L (2)

i=1

Hence, we may take the restriction of s, to [—1,1], which would also be continuous since it is the
range restriction of a sum of finitely many continuous functions. Now, due to the Weierstrass M-test,
the sequence of functions s, are uniformly convergent. Further, since

@ =i < ()

we know that the convergent function s : X — [—1, 1] agrees with f on A. This completes the proof.

2. Recall that the spaces (—1,1) and R are homeomorphic. Therefore, it suffices to prove the statement
for functions of the form f : A — (—1,1). Using the first part of this theorem, we know that there is
a function ¢ : X — [—1,1]. We shall use this function to obtain an extension / of f from X — (—1,1).
Let D = ¢~ 1({-1}) Ug ' ({1}). Since G is continuous, D is closed in X and must be disjoint from
A. Then, using Urysohn’s Lemma, there is a function ¢ : X — [0,1] such that ¢(A) = {1} and
$(D) = {0}. Then, the function h(x) = ¢(x) - g(x) is a continuous function from X to (—1,1) that
agrees with f on A. This completes the proof.
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Chapter 4

Nets and Filters

4.1 Nets

Definition 4.1 (Directed Set, Net, Cofinal). A directed set is a reflexive and transitive relation (I, <)
such that for all , 8 € I, thereis v € [ such that e < yand p < 7. A subset | C [ is said to be cofinal
in [ if for every a € I, there is B € | such that « < B.

Proposition 4.2. If | is cofinal in (I, <), then (], <) is a directed set.

Proof. Obviously, (], <) is a reflexive and transitive relation. Let «, 8 € ], then there is v € I such that
«, B < . Now, there is § € | such that v < § and the conclusion follows. [ |

Definition 4.3 (Net, Convergence). A net is a function from a directed set (I, <) to a topological space
X. A net (xy)4e; is said to converge to x € X if for each neighborhood U of x, there is a € I such that

x<p=—xgecl

Notice that the convergence in the case of nets reduces to the convergence of sequences when (I, <) =
(N, <) with the standard total ordering.

Lemma 4.4. If X is Hausdorff, then a net in X converges to at most one point.

Proof. Suppose (xz)qe; converges to at least two distinct points x1, x2. Then, there are disjoint neighbor-
hoods U and V of x; and x; respectively. There is an index « € I such that x; € U whenever « < t and
B € I such that x; € V whenever 8 < t.

There is v € I such that a, B < 7, consequently, x, € UNV = @, a contradiction. |

Theorem 4.5. Let A C X. Then x € A if and only if there is a net of point of A converging to x.

Proof. Suppose x € A. Let % be the set of all neighborhoods of x. Define U < V in % if U D V. For each
U € %, pick some x; € UN A. This is a net in X that converges to x. The converse is trivial. ]
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Theorem 4.6. A function f : X — Y is continuous if and only if it maps convergent nets to convergent nets.

Proof. ]

Definition 4.7. Let x : (I, <) — X be a net. If (K, <) is a directed set and f : (K, <) — (I, <) is an
order preserving map such that f(K) is cofinal in I, then f o x : K — X is called a subnet of (x4 )ye].

Proposition 4.8. If (x, )] is a net converging to x, then every subnet converges to x.

Proof. ]
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Chapter 5

The Tychonoff Theorem

5.1 The Tychonoff Theorem

5.1.1 Filters and Ultrafilters

Definition 5.1 (Filter). A filter on a set X is a subset F of P(X) satisfying:
(@) o ¢ F
(b) fAe Fand AC BC X,thenB € F
(c) IfA,Be F,then ANB e F

It is not hard to see, using (a) and (b) that X € F for every filter 7 on X.

A subset o7 of P(X) is said to have the finite intersection property if the intersection of a finite subset of
&/ is nonempty.

Lemma 5.2. Let o7 C P(X) have the finite intersection property. Then there is a minimal filter containing <f .

Proof. Define % to be the closure of </ under finite intersection. Next, define
F={SCX|3Aec% ACS}

We shall show that F is a filter on X. Since % does not contain &, neither does F. Now, suppose A € F
and A C B, then by definition, there is C € % such that C C A, consequently, C C B and B € F. Finally, if
A,B € F,then thereare C,D € Y suchthat C C Aand D C B. Then, CND € U suchthat ChD C AN B,
and thus, A N B € F. This shows that F is a filter.

Let .7 be the set of all filters on X containing </. We know that . is nonempty due to the above
discussion. Now, define

F=F
Fes
from here it is not hard to see that .# is the unique minimal filter containing 27" |

Definition 5.3 (Ultrafilter). An ultrafilter on X is a filter that is maximal with respect to the containment
(partial) order.
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Theorem 5.4. Let F be a filter on X. Then F is an ultrafilter if and only if for all A C X, either A € F or
X\A € F but not both.

Proof. Let F be an ultrafilter on X and suppose A C X such that A ¢ F and X\A ¢ F. Define 7' =
FU{A}. Then, F' C P(X) and has the finite intersection property, consequently is contained in a filter 7
due to Lemma 5.2 and hence, 7 C F’' C F, a contradiction to the maximality of F.

Conversely, let F be a filter on X satisfying the statement of the theorem. Suppose there is a filter F’
on X satisfying F C F'. Let A € F'\F, then by the hypothesis, X\A € F, and thus X\ A € F’, whence
g =AN(X\A) € F, acontradiction. Hence, F is an ultrafilter. ]

Lemma 5.5. Every filter is contained in an ultrafilter.

Proof. Let F be a filter on a set X and .# be the set of all filters on X containing F. Notice that . forms a
poset under containment. Let ¢ be a chain in the poset (.7, C). Define the collection

F=|JF
Fev

We claim that .7 is a filter on X. Indeed, @ ¢ Fforall F € ¢, whence @ ¢ .Z. If A,B € %, then there is
F € € containing both A and B (since ¢ is a chain). Therefore, AN B € F C .%. Finally, suppose A € %
and A C B, then there is F € ¥ such that A € F, from which it would follow that B € F C .%#.

Finally, since .# is an element of .7, the chain ¢ is bounded above. Invoking Zorn’s Lemma, we have a
maximal element in . with respect to inclusion, which is an ultrafilter containing F. |

Corollary 5.6. Let &/ C P(X) have the finite intersection property. Then there is a ultrafilter on X
containing 7.

Proposition 5.7. Let F be an ultrafilter on X and A C X such that A intersects every element in F. Then,
AeF.

Proof. Suppose A ¢ F. Then, due to Theorem 54, X\A € F, a contradiction to the hypothesis that A
intersects every element in F. n

Definition 5.8 (Filter Convergence). A filter F on a topological space X is said to converge to x € X if
for every neighborhood U of x, U € F.

Definition 5.9 (Pushforward). Let F be a filter on X and f : X — Y be a map of sets. Then
foF ={ACY|f7(4) € F}

isa filteron Y.

Theorem 5.10. As defined above, f.F is indeed a filter on Y. Further, if F is an ultrafilter, then so is f.F

Proof. ]
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5.1.2 First Proof

This version of the proof requires a more suitable characterization of compactness:

Theorem 5.11. A topological space X is compact if and only if for every collection € of closed sets in X having
the finite intersection property,
¢

Cew
is nonempty.

We are now ready to prove the Tychonoff Theorem.

Proof 1 of The Tychonoff Theorem. Let &/ be a collection of subsets of [] X, having the finite intersection
ae]
property. It suffices to show that

A
Aed
is nonempty.
Let F be an ultrafilter containing /. We shall show that
N F
FeF
is nonempty, from which the result would follow.

Since F has the finite intersection property, so does 7, (F) = {7m.(F) | F € F}. Consequently, there is
Xy € Xy such that x, € 7, (F) forall F € F. Let x = (x4)qej. We claim that x € FforallF € F.

First, we shall show that every subbasis element containing x intersects every element of 7. Consider
the subbasis element 77, ! (U, ) where U, is a neighborhood of x, in X,. Since x, € 7, (F) forall F € F,
U, N 7o (F) # @, consequently, 7ty ' (Uy) NF # @ for all F € F. From here, using Proposition 5.7, F
contains every subbasis element containing x whence it contains every basis element containing x.

Finally, let U be an open set in X containing x. Then, U contains a basis element, say B that contains x.

Due to the preceeding paragraph, B € F, consequently, BN F # @ for all F € F and therefore UNF # @
forall F € F and x € F for all F € F. This completes the proof. |

5.1.3 Second Proof

We first characterise compactness using the convergence of filters and ultrafilters.

Theorem 5.12 (Ultrafilter Convergence Theorem). Let X be a topological space. X is compact if and only if
every ultrafilter F on X converges to at least one point.

Proof. Suppose X is compact. Since F has the finite intersection property, we must have (| F # &, and
FeF

thus there is x € X such that x € F forall F € F. Let U be a neighborhood of x in X. Then UNF # & for
all F € F, and due to Proposition 5.7, U € F. Thus F converges to x.

Now, suppose X is not compact. Then, there is an open cover {Uy }c; that has no finite subcover.
Define A, = X\U,. Then {A,} has the finite intersection property and hence is contained in an ultrafilter
J. Suppose J does converge to a point x € X. Choose € | such that x € Ug. By choice of x, we must
have Up € JF, but this is a contradiction to A[; e F. |

We are now ready to prove the Tychonoff Theorem.
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Proof 2 of The Tychonoff Theorem. Let % be an ultrafilter on X. Then (7, )+% is an ultrafilter on X,, conse-
quently, converges to a point x, € X,. Define the point x = (x4 )xcj. We contend that % converges to x.
Indeed, let U be an open set containing x, then it contains a basis element B = [, U, containing x. If we
show that B is contained in %, then it would immediately imply that U is contained in % . But since each
U, is contained in (71,).% , by definition, 7ty (U, ) is contained in % . Due to this and the fact that % is
closed under finite intersection, we have the desired conclusion. [ |

5.2 Stone-Cech Compactification

Definition 5.13 (Compactification). A compactification of a space X is a compact Hausdorff space Y
containing X as a subspace such that X = Y. Two compactifications Y; and Y, of X are said to be
equivalent if there is a homeomorphism / : Y7 — Y; such that i(x) = x for all x € X.

Lemma 5.14. Let X be a sapce and h : X — Z be an imbedding of X in the compact Hausdorff space Z. Then,
there is a corresponding compactification Y of X such that there is an imbedding H : Y — Z that agrees with h
on X. Further, the compactification Y is uniquely determined up to equivalence.

Y is called the compactification induced by the imbedding .

Theorem 5.15. Let X be completely regular. Then there is a compactification Y of X having the property that
every bounded continuous map f : X — R extends uniquely to a continuous map of Y into R.

Proof. Let { fu }ne;j be the collection of all bounded continuou functions f, : X — R. Due to Theorem 3.34
and the fact that complete regularity implies the separation of points from open sets with a bounded func-
tion, there is an imbedding F : X — Z = [,¢/linf fo4(X),sup fu(X)]. Due to the Tychonoff Theorem, the
space Z is compact Hasudorff and hence, using Lemma 5.14, there is a compactification Y of X and a map
H : X — Z which agrees with F on X. Now, by taking the projection map 7,, we have a continuous map h
that agrees with f, on X.

The uniqueness of extension follows from a trivial property of a Hausdorff image space. u

Theorem 5.16. Let X be completely reqular and Y be a compatification of X satisfying the extension property
of Theorem 5.15. Given any continuous map f : X — K to a compact Hausdorff space K, the map f extends
uniquely to a continuous map g : Y — K.

Proof. Since K is compact Hausdorff and therefore completely regular, it may be imbedded into [0, 1)/ for
some indexing set J. Let f = (fa) be the imbedding. Then each map f, : X — [0,1] < R may be extended
uniquely to a map f, : Y — R. Further,

fu(Y) = fu(X) € fa(X) = [0,1]

and thus, we have an extension f : Y — K. This completes the proof. n

The Universal Property

Fix some completely regular space X and consider the category ¢ of all maps f : X — K for some compact
Hausdorff space K. A morphism between two objects f and g in ¥ is a continuous map / such that the
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following diagram commutes:

1

K1
It is immediate from the definition of the category that the map X < Y is universal in this category and

therefore is unique upto a unique isomorphism.
This object is known as the Stone-Cech compactification of X and is denoted by SX.
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Chapter 6

Metrization and Paracompactness

Definition 6.1 (Locally Finite). Let X be a topological space. A collection .27 of subsets of X Is said to
be locally finite in X if every point of X has a neighborhood that intersects only finitely many elements
of o7.

Definition 6.2 (Countably Locally Finite). A collection B of subsets of X is said to be countably locally
finite if B can be written as the countable union of collections B, each of which is locally finite.

6.1 Paracompactness

Definition 6.3 (Paracompact). A topological space X is said to be paracompact if every open covering
has a locally finite open refinement.

Proposition 6.4. A paracompact Hausdorff space is regular.

Proof. Let A C X be a closed set and x ¢ A. Then due to Hausdorff-ness, for each a € A, there is an open
neighborhood U, of 2 whose closure does not contain x. Consider the indexed set {U, },c4 U { X\ A}, which
is an open cover of X whence has a locally finite open refinement, say % . Let

v ={Ue€%|UCU,forsomea € A}.

Then, ¥ is an open cover for A and for any V € ¥, there is some U, such that V C U,, whence V C U, and
thus does not contain x.

Now, let
v=v u=x\{UvVv]|=x\x[UV].
Vey Vey vey
since 7 is locally finite
It is not hard to see that U and V form an open separation of x and A. ]
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Proposition 6.5. A paracompact Hausdorff space is normal.

Proof. Proceed as above with a little tweaking. |

Lemma 6.6. Let X be regular. Then the following are equivalent:
(a) Every open cover of X has a countably locally finite open refinement which is a cover.
(b) Every open cover of X has a locally finite refinement which is a cover.
(c) Every open cover of X has a locally finite closed refinement which is a cover.

(d) Every open cover of X has a locally finite open refinement which is a cover.

Proof. (a) = (b). Let o be an open cover of X.
(¢) = (d). This is the hardest part of the proof. Let </ be an open cover of X and let Z be a closed
refinement of .7 which is also a cover. Define

% := {U Copen X | U intersects finitely many elements in B}.

Then 7% is also an open cover of X whence has a locally finite closed refinement 4 which is also a cover.
Now, for each B € %, let

¢(B):={C|Ce¥and CNB =g}
and let

EB)=x\ |J C

Ce%(B)
Then E(B) is an open' set containing B. For each B € %, pick F(B) € </ containing B and finally define
2 :={E(B)NF(B) | B € #}.

That this is an open refinement of &7 covering X is trivial. It remains to show that & is locally finite. Let
x € X. Then, there is a neighborhood W of x that intersects finitely elements in ¢, say Cy, . .., Cx and since
% forms a cover, W C C; U -+ -UC;.

Note that if C € ¢ intersecting E(B) N F(B) for some B € %, then C intersects E(B) whence C intersects
B by definition. Owing to the local finiteness of 24, C intersects B and hence C can intersect only finitely
many elements of 2.

Whence W can intersect only finitely many elements of Z implying the desired conclusion.

(d) = (a). Trivial. This completes the proof. ]

Proposition 6.7 (A. H. Stone). Every metrizable space is paracompact.

The machinery and proof is due to M. E. Rudin.
Proof. |

Proposition 6.8. A reqular Lindelof space is paracompact.

Proof. Let </ be an open cover of a regular Lindelof space X. Then, there is a countable subcollection that
covers X. Since we have a countably locally finite refinement of <7 which is a cover, due to Lemma 6.6, the
space is paracompact. |

ISince C(B) is locally finite.
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6.1.1 Partitions of Unity

Definition 6.9 (Partition of Unity). Let {U, },<; be an indexed open covering of X. An indexed family
of continuous functions ¢, : X — [0, 1] is said to be a partition of unity on X dominated by {Uy }pcj if

(a) Supp ¢u C U, foreacha € J.
(b) {Supp ¢u }aej is locally finite.
(© Y ¢u(x) =1foreachx € X.

ac]

Lemma 6.10 (Shrinking Lemma). Let X be a paracompact Hausdorff space and {Uy } e be an indexed open
cover of X. Then there is a locally finite indexed open cover {Vy }qej of X such that Vo C U, for each a € J.

Proof. Let &/ denote the collection of all open sets U in X such that U is contained in some U,. We first
contend that <7 is an forms an open cover of X. Indeed, every x € X is contained in some U, and since X
is regular, there is a neighborhood V of x such that x € V C V C U, whence x is covered by /.

Since X is paracompact, the open cover </ has a locally finite open refinement . For each « € ], define

Vo= |J BC U
Be#
BCU,

Since the set {B € # | B C U, } C A is locally finite, we have

Vo= |J BC U
Be#
BCU,
Further, using the fact that X is regular, it is not hard to see that if x € U,, then x € V, and thus the collection
{ Vi }aej forms an open cover for X and is an open refinement of {Uy } ;-
Lastly, we must show that {V,} is locally finite. Let x € X. Since {U,} was locally finite, there is a
neighborhood U of x which intersects finitely many of the U,’s whence it intersects finitely many of the
Vi's. This completes the proof. n

Theorem 6.11. Let X be a paracompact Hausdorff space and {Uy }nc| an indexed open cover of X. Then there
is a partition of unity on X dominated by {Uy }yej-

Proof. First, by repeated application of Lemma 6.10, there are successive locally finite precise open refine-
ments {Wy },ej and {V, }4ej such that for each a € J,

W,CV, and V, C U,.

Using Lemma 3.21, there is a continuous function ¢, : X — [0, 1], such that ¢, (W) = 1 and ¢, (X\Vy) = 0.
It is not hard to see that o
Supp ¢ C Vi C U,.

Consider the function @ : X — R given by

®(x) = ) palx).

we]
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Let x € X. Due to local finiteness, there is an open neighborhood U of x such that U intersects only finitely
many of the Vs whence U C X\ V, for all but finitely many a € ], whence the sum makes sense because it
is essentially finite.

Moreover, since {W, } is an open cover of X, every x € X belongs to at least one W, and thus ®(x) is
positive for all x € X. It is not hard to see now that the collection

()
P we]

is a partition of unity dominated by {Uj }. [ ]
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Chapter 7

Complete Metric Spaces and Function
Spaces

7.1 Complete Metric Spaces

Definition 7.1 (Completeness). A metric space is said to be complete if every Cauchy sequence con-
verges.

Lemma 7.2. A metric space X is complete if and only if every Cauchy sequence has a convergent subsequence.

Proof. One direction is trivial. Suppose now that every Cauchy sequence has a convergent subsequence.
Let {x,} be a Cauchy sequence and {x;, } be the convergent subsequence that converges to x € X. Let
e > 0. Then there is K € N such that for all k > K, d(x,,, x) < ¢/2. Further, since the sequence is Cauchy,
there is N € IN such that for all m,n > N, d(x,, x,) < €/2. Let ] > K be such that n; > N. As a result, for
allm > n,

d(xp, x) < d(xXm, X)) +d(xy,x) <e

This completes the proof. n

Corollary 7.3. A compact metric space is complete. Further, R" is complete for each n € IN.

Proof. The first assertion follows from the fact that every compact metric space is sequentially compact.
Since every Cauchy sequence is bounded, it is contained in some closed n-cell, which is compact. The
conclusion follows. [ |

Lemma 7.4. Let X = [],cj Xq in the product topology. Let x,, be a sequence of points of X. Then x, — x if and
only if 7, (x) — 7Ta(X).

Proof. The forward direction follows trivially from the fact that 77, : X — X, is a continuous function.
Conversely, suppose 7y (X)) — 7x(x) for each a € J. Let U be an open set containing x, then U contains a
basis element of the form [[,c; Ux where U, = X, for all but finitely many a« € ], say a,...,a,. For each
a;, there is N; € N such that for all n > Nj, 7y, (x,) € Uy,. Finally, letting N = max{Nj, ..., N}, we have
that x, € []yej Uy foralln > N. [ ]
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Note that the above lemma is obviously not true for the box topology. Indeed, consider the sequence
{% X % X oo } N in R“ with the box topology. This sequence obviously does not converge to 0, but each
ne

component does converge to 0.

Theorem 7.5. If the space Y is complete in the metric d, then the space Y/ is complete in the uniform metric o
induced by d where | is any indexing set.

Proof. Let € > 0 be given. Set 6 = €/3. There is N € N such that for all m,n > N, p(fu, fn) < 6,
consequently, d(fu(«), fu(a)) < 6 for each & € J. Using the completeness of Y, the sequence {f,(«)}
converges to say f(«) where f : ] — Y. Now, for each a € ], there is M, such that for all m > M,,

d(fm(a), f(a)) < J. As a consequence, d(f(a), fu()) < 26 for each n > N and thus p(f, f,) < 26 < e. This
completes the proof. ]

Proposition 7.6. Let (X, d) be a complete metric space and A C X be closed. Then A is complete.

Proof. Let {a,} be a Cauchy sequence in A. Then, it is Cauchy in X, consequently, converges to a point
x € X. Since A is closed, x € A = A, and the conclusion follows. [ |

Definition 7.7. Let X be a topological space and Y a metric space. Then C(X,Y) denotes the subspace
of continuous functions from X to Y of YX and B(X,Y) denotes the subspace of bounded functions
from X to Y of YX.

Theorem 7.8. If the space Y is complete in the metric d and X a topological space, then YX, C(X,Y) and
B(X,Y) are complete in the uniform metric corresponding to d.

Proof. We shall show that C(X,Y) and B(X,Y) are closed in YX. The closedness of C(X,Y) follows from
the uniform limit theorem. To show that B(X,Y) is closed, we shall show that its complement is open.
Let f : X — Y be an unbounded function. We shall show that B5(f,1/2) is disjoint from B(X,Y). Let
g € Bs(f,1/2). Fix some basepoint yg € Y and M > 0. There is x € X such that d(yo, f(x)) > M +1/2. As
aresult, d(yo, g(x)) > M, this completes the proof. [ ]

7.2 Completion of a Metric Space

Theorem 7.9. Let (X, d) be a metric space. Then there is a complete metric space (Y, D) and an isometric map
®: (X,d) = (Y, D) such that ®(X) = Y. In this case, Y is called the completion of X.

We present two proofs of this theorem. The first is inspired by the construction of the real numbers from
the rationals, while the second imbeds X in a complete function space.

Proof 1. Let X denote the set of all Cauchy sequences in X. Since every constant sequence is Cauchy, the set
X is nonempty. Consider the relation ~ on X, given by

X~y <= ,}ij{}od(xn/yn) =0
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We claim that ~ is an equivalence relation. The reflexivity and symmetry of ~ is obvious. It remains to
show the transitivity of ~. Indeed, if x ~ y and y ~ z, then

0 < lim d(xy,z,) < nli_r)r;od(xn,yn) +d(Yn,zn) =0

n—oo

and the conclusion follows.
Let Y = X/ ~. Define the function D : Y x Y — R by

D([x], [y]) = lim d(xn,yn)

n—o0

We must first show that D is well defined. Indeed, let x,x" € [x] and y,y’ € [y]. Then,
}Lla}od(x;,y;) < ’}iirgod(x;,xn) +d(xn, Yn) +d(Yn, yy) = nlgl;lod(xn/]/n)

and by symmetry, the inequality also holds in the other direction and thus D is well defined. We now
show that D is a metric. To do so, notice that it suffices to verify that it satisfies the triangle inequality. Let
(x], [y], [z] € Y. Then,

Tim d(xs,20) < lim d(x, ) + d(yz0) = D((x], [y]) + D((y), 2))

Consider the map ® : (X,d) — (Y,D) by ®(x) = (x,x,...). It is obvious that this is an isometric
imbedding. Let [y] € Y wherey = (y,). Define x, = (Yn, ¥, ...). Since y is a Cauchy sequence, it is not
hard to see that [x,] — [y]. Hence, ®(X) is dense in Y.

Next, note that any Cauchy sequence in ®(X) convergesin Y, for if {[(xy, Xp, . ..)] } is a Cauchy sequence
in ®(X), then it converges to [(x1,xp,...)].

Finally, we shall show that Y is complete. Let {[y,]} be a Cauchy sequence in Y. Since ®(X) is dense
in Y, there is a sequence {x,} in X such that D(®(x,), [yx]) < 1/n. Itis not hard to see that {®(x,)} is a
Cauchy sequence and converges to some point x € Y. We contend that [y,] — x. Let ¢ > 0 be given and
N € N such that 1/N < &/2. Further, let M € IN such that for all n > M, D(®(x,),x) < /2. As a result,
for all n > max{M, N},

D([yal, x) < D([yal, ®(xa)) + D(®(x), %) < ¢

This completes the proof. |
Then next proof is shorter but less insightful.

Proof 2. We have already shown that B(X, R) is complete under the sup-metric. We shall now imbed (X, d)
in B(X,R). Fix some point xy € X. For each a € X, define the function ¢, : X — R by

¢a(x) =d(x,a) —d(x,xg)

It is not hard to see, using the triangle inequality that |¢,(x)| < d(a, x0). Thus, ¢, € B(X,R). We claim that
the map @ : X — B(X,R) given by ®(a) = ¢, is an imbedding under the sup-metric on B(X,R). Note
that we have

|9a(x) = ¢u(x)| = [d(x,a) —d(x,x0) —d(x,b) +d(x,x0)| = [d(x,a) —d(x,b)| <d(a,b)

as a result, p(¢,, ¢p) < d(a,b). On the other hand, since |¢,(a) — ¢, (a)| = d(a,b), we must have p(¢,, ¢p) =
d(a,b). Thus, ® is an isometric imbedding. The conclusion follows by taking Y = ®(X). [ ]

7.3 Compactness in Metric Spaces

Definition 7.10 (Total Boundedness). A metric space (X, d) is said to be totally bounded if for each
e > 0, there is a finite cover of X by e-balls.
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Theorem 7.11. A metric space (X, d) is compact if and only if it is complete and totally bounded.

Proof. The forward direction is trivial. Conversely, suppose (X,d) is complete and totally bounded. We
shall show that it is sequentially compact. Let {x, } be sequence in X. Using total boundedness, there is a
covering of X with 1-balls. Choose the ball containing x,, for infinitely many indices n. Call the set of all
such x;’s as J;. Inductively, given J,_1, consider a finite covering of X with 1/n-balls and choose the ball
containing x; € J,_1 for infinitely many indices k. Then J; O J, 2 --- and furthermore, diam J; < 2/k.
From each Ji, choose x,,, such that n; > n;_; which can obviously be done since each J; contains x; for
infinitely many indices #.

Finally, it is not hard to see that {x,, } forms a Cauchy sequence and is thus convergent. Hence (X, d) is
sequentially compact, as a result, compact. |

Definition 7.12 (Equicontinuous). Let X be a topological space and (Y, d) a metric space. A subset F
of C(X,Y) is said to be equicontinuous at xo € X if for each € > 0, there is a neighborhood U of x
such that forall x € U and f € F, d(f(x), f(x9)) < e. Further, F is said to be equicontinuous if it is
equicontinuous at each point x € X.

Theorem 7.13. Let X be a topological space and (Y, d) a metric space. Then if F C C(X,Y) is totally bounded
under the uniform metric corresponding to d, then it is equicontinuous.

Proof. Let 0 < & < 1be given and xg € X. Let 6 = &/3. Then there is a collection {Bg(f;,d)}}; of &-
balls that cover F. Since this collection is finite, there is a neighborhood U of xg such that for all x € U,
d(fi(x), fi(xg)) <dforl <i<n.

Let f € F. Then there is an index j such that f € B;(f;,0) and hence p(f, f;) < 6. Using the triangle
inequality, we have, for all x € U,

d(f(x), f(x0)) < d(f(x), fj(x)) +d(fj(x), fj(x0)) +d(f (x0), fj(x0)) <36 =¢

This completes the proof. ]

Lemma 7.14. Let X be a compact topological space and Y a compact metric space. If the subset F of C(X,Y) is
equicontinuous under d, then F is totally bounded under the uniform and sup metrics corresponding to d.

Proof. Since X is compact, all functions in C(X,Y) are bounded and as a result, the sup metric is well
defined. We shall show total boundedness in the sup metric which would immediately imply total bound-
edness in the uniform metric.

Lete > 0 and é = ¢/3. Using equicontinuity, for each x € X, there is a neighborhood U, of x such
that for all t+ € Uy, d(f(t),f(x)) < 6. Since X is compact, there is a finite cover, {Uy,,, ..., Uy }. Using
compactness and therefore, total boundedness of Y, there is a covering of Y by §/2-balls, {V;,..., Viu}.

Let ] be the collection of all functions « : {1,...,k} — {1,..., m} such that for there is a function f, € F
such that fy(a;) € V, ;). We shall show that {B,(fa, €) }acj forms a cover for F.

Let f € F. Foreach 1 <i < k, choose an integer a(i) € {1,...,m} such that f(a;) € V,;. Obviously,
a € Jand fy(a;) € V(i) Asa result, for all x € X, choose a; such that x € U, then

d(f(x), fa(x)) < d(f(x), f(a:)) +d(f (@), falai)) +d(fulai), fu(x)) <30 = ¢
This completes the proof. |
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Definition 7.15. If (Y, d) is a metric space, a subset F of C(X, Y) is said to be pointwise bounded under
d if for each x € X, the subset 7, = {f(a) | f € F} of Y is bounded under d.

Theorem 7.16 (Classical Ascoli’s Theorem). Let X be a compact space and (R", d) have the standard metric
topology and give C(X,R") the corresponding uniform topology. A subspace F of C(X,R") has compact
closure if and only if F is equicontinuous and bounded.

Proof. Since X is compact, the uniform metric and sup metric induce the same topologies. As a result, it
suffices to consider the sup metric. Let G denote the closure of F in C(X,R").

(=) Suppose G is compact and therefore, is totally bounded under p. Using a preceeding lemma, we may
conclude that it is equicontinuous. Pointwise boundedness follows from the fact that it is compact
and therefore bounded, as a result, d(f(x), g(x)) < M for some M > O forall f,g € Gand x € X. As
aresult, diam G, < M.

(<) Now suppose F is equicontinuous and pointwise bounded. We shall first show that G is equicontin-
uous and pointwise bounded. Since G is the closure of F, diam G = diam F and pointwise bounded-
ness follows. We now show equicontinuity. Let ¢ > 0 and choose some xy € X. There is a neighbor-
hood U of xq such that for all x € U, d(f(x), f(x0)) < €/3. Let g € G. Then, there is some f € F such
that p(f,g) < /3. Then,

d(8(x),8(x0)) < d(g(x), f(x)) +d(f(x), f(x0)) +d(f(x0),g(x0)) < e

for all x € U. This shows equicontinuity.

Next, we shall show that |J g(X) is bounded in Y. Using equicontinuity, for each a € X, there is a
g€g

neighborhood U, of 4 such that for all x € U,, and g € G, d(g(x),g(a)) < 1. Since X is compact, there

is a finite cover {U,,, ..., Uy } of X. Now, for any ¢ € G and x1,x, € X, there are open sets, say U,

and U,, containing x; and x; respectively. Then,

d(g(x1),8(x2)) < d(g(x1),g(a1)) +d(g(ar),g(a2)) +d(g(a2), g(x2))
<2+d(g(a1),g(a2))
<2 d ; ;
S 2+ max, (8(ai), g(aj))
The last quantity is bounded since G,, is bounded for each 1 <i < k.

Finally, we shall show that G is compact. Note that since it is a closed subset of C(X,R"), it is complete,
therefore, it suffices to show that it is totally bounded. In the previous paragraph, we have shown that

U g(X) isbounded in R" and therefore, is a subset of a compact subspace Y of R", consequently, we
g€g
may view G as a subspace of C(X,Y) and total boundedness follows from the previous lemma.

Theorem 7.17 (Classical Arzela’s Theorem). Let X be compact and let f, € C(X,RF) for all k € N. If the
collection { f,}5_; is pointwise bounded and equicontinuous, then it has a uniformly convergent subsequence.

Proof. Let F = {f,}%_, then due to Ascoli’s Theorem, F has compact closure G in C(X,RF). Since G
is a compact metric space, it is sequentially compact, as a result, there is a subsequence { fn/.} which is
convergent in the uniform metric, and thus uniformly convergent. u

The following is the version of Arzela-Ascoli that Rudin states:
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Corollary 7.18. Let X be compact and {f,,} be a sequence of functions in C(X,R¥) for some positive
integer k. If { f,} is pointwise bounded and equicontinuous on X, then

(@) {fx} is uniformly bounded on X

(b) {fn} contains a uniformly convergent subsequence

7.4 The Stone-Weierstrass Theorem

Definition 7.19 (Algebra). Let X be a topological space. A family &/ C C(X,R) is said to be a real
algebraif forall f,¢g € &/ andc € R,

f+ged, feed, cfed

Similarly, a complex algebra satisfies all the above requirements along with ¢ € C and &/ C

C(X,C).

Definition 7.20 (Uniformly Closed). An algebra «# C C(X,K), where K = R, C is said to be uniformly
closed if it is a closed set in the uniform topology given to C(X,K). Analogously define the uniform
closure.

Definition 7.21. Suppose .27 is an algebra of functions on a set X, then ¢/ is said to separate points in
X if for every pair of distinct points x1, x; € X, there is a function f € o such that f(x1) # f(x2).

If for each x € X, there is a function f € ./ such that f(x) # 0, then we say that .« vanishes at no
point of E.

Lemma 7.22. Suppose </ is an algebra over a topological space X which separates points and vanishes at no
point on X. Suppose x1,xy € X are distinct and c1,c, € C. Then there is f € < such that f(x1) = c¢; and

f(xz) = ().

Proof. According to the hypohtesis on <7, there are continuous functions g, 11, k € </ such that g(x1) # g(x2)
and h(x1) # 0and k(x;) # 0. Define the functions

u=(g—-gx))k v=(g—g(x))h

Since 7 forms an algebra, u,v € 7. Further, u(x1) = 0, u(xy) # 0, v(x1) # 0 and v(x) = 0. Finally, define
the function

T o) Pu(x)
Again, since &7 forms an algebra, f € ./ and the proof is complete. n

Theorem 7.23 (Stone-Weierstrass Theorem). Let X be a compact Hausdorff space and o7 C C(X,R). If o/
separates points on X and vanishes at no point of X, then </ is dense in C(X,R) in the sup metric (which is the
same as the uniform topology).

Proof. The proof proceeds in multiple steps. Let Z denote the closure of &7 in C(X,R). Then, we have
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Claim 1. If f € &, then |f| € A.

Proof. First,leta = sup |f|. Thus, —a < f < a on X. Using the Weierstrass Approximation Theorem, there
xeX
is a sequence of polynomials {p,(t)} that converge uniformly to |¢| on the interval [—a, a]. Note that

the function pj, o f is in the algebra <7, since it is a polynomial in f, therefore, the sequence {p,(f)}
of continuous functions in .7 converge in the sup metric to |f|, as a result, |f| € 2, since the latter is
a closed set.

Claim 2. If f,g € % then max{f, g}, min{f, g} € A.

Proof. Follows from the following identities:

max{f,g} = %'f_g‘ min{f, g} = Hg%w

Claim 3. Let f € C(X,R), x € X and € > 0. Then there is a function gx € % such that g(x) = f(x) and
gx(t) > f(t) —eforeacht € X

Proof. Note that &/ C % and due to Lemma 7.22, for every y € X, there is a continuous function h, € .o/
such that 1, (x) = f(x) and hy,(y) = f(y). Let Uy be the open set (f — h,)~!((—o0,¢)). Notice that
{Uy} is an open cover for X, and thus has a finite subcover, say {Uy,,..., Uy, }. Finally, define the
function

gx = max{hy,,..., hy,}

Note that in fact, g € 7. The conclusion follows.
Claim 4. Let f € C(X,R) and ¢ > 0, there exists a function h € of such that |h(x) — f(x)| < e

Proof. In the previous claim, we have constructed the functions gy. Let Uy = (gx — f)~((—o0,¢)). Then,
{Vy} forms an open cover for X, and therefore has a finite subcover, say {Vy,, ..., Vy, }. Define the
function

h=min{gy,...,§x}
It is not hard to see that |h — f| < e on X.

From the four claims, we see that for each ¢ > 0 and each f € C(X,R), there is h € < such that
|h — f| < € and the conclusion follows. [ ]

Definition 7.24. A complex algebra <7 is said to be self-adjoint if for every f € o7, f € </, where f
denotes the complex conjugate of f.

Theorem 7.25. Let X be a compact Hausdorff space and o7 C (X,C) a self-adjoint complex algebra which
separates points and vanishes at no point of X. Then, </ is dense in C(X, C).

Proof. Let f =u+iv € /. Thenu = f;—? € /. Let x1,xp € X be distinct points. Then, due to Lemma 7.22,
thereis f € & such that f(x1) = 0and f(x2) = 1, then, for u = # € o/, u(x;) = 0and u(xy) = 1. Finally,

let xg € X, then there is f € & such that f(xy) # 0, then, the function § = f(xg)f(x) € & is such that
g(xp) > 0, and thus R(g)(xg) > 0.

If we denote &g = {R(f) | f € 4/}, then </ forms a real algebra that separates points and vanishes at
no point of X. Therefore, for any f = u +iv € C(X,C), there is a sequence of functions u,, v, converging
uniformly to u and v respectively. As a result, f, = u, + iv,;, converges uniformly to f. This completes the

proof. ]
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Theorem 7.26. Let X be a compact Hausdorff space. Then X is metrizable if and only if C(X,R) is separable.

Proof. [ |
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Chapter 8

Baire Spaces and Dimension Theory

Definition 8.1 (Baire Space). A space X is said to be a Baire space if the following condition holds:

Given any countable collection {A, } of closed sets in X, each of which has empty interior

o
in X, their union |J A, also has empty interior in X.
n=1

Lemma 8.2. Let X be a topological space. Then X is Baire if and only if given any countable collection {U,} of

open dense sets in X, their intersection (| U, is dense in X.
n=1

Lemma 8.3. Let X be a complete metric space and Ay O Ay O - - - be a descending chain of nonempty closed
sets in X with lim diam A, = 0. Then, (| Ay is nonempty.
n—co =1
Proof. Using the Axiom of Choice, pick x, € Ay. It is not hard to show that these form a Cauchy sequence.

Thus, must converge to some x € X. Using simple arguments, it is easy to see that x € A, for all n € IN.

(o]
Thus, x € | Ay, and thus the intersection is nonempty. |
n=1

Theorem 8.4. Let X be a topological space. Then, X is Baire if
(a) X is compact and Hausdorff .

(b) X is a complete metric space.

Proof. Let {U,} be a countable collection of open, dense subsets of X. Let G = NU,. Letx ¢ Gand U a
neighborhood of x.

(a) The intersection U; N U is a nonempty open set in X, because U is dense in X. Pick some point
x1 € Uj N U. Using the regularity of X, there is an open set V; containing x such that V; C Uj. Now,
V1 is an open set containing x;, consequently, has nonempty intersection with U,. As a result, there is
a point x; in V1 N U, and proceeding similarly, we obtain a descending chain V; 2 V; D - - - of closed
sets in X, all of which are contained in U. As a result, V = |V}, is contained in U and due to Cantor’s
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Intersection Theorem, is nonempty. Hence,

o VaCUN( U, =UNG

n=1 n=1
thus G is dense in X.

(b) When X is a complete metric space, we use a similar strategy as above. Just, instead of using regu-
larity, we use the fact that any open ball contains a closed ball of arbitrarily small radius. Finally, we
would have a descending sequence of nonempty closed sets A1 D Ap D - with nh_r)r;o diam A, =0,

and due to the preceeding lemma, their intersection is nonempty.

Lemma 8.5. Any open subspace Y of a Baire space X is itself a Baire space.

Proof. Let {A;} be a countable collection of closed sets with empty interiors in Y. Let A, denote the closure
of A, in X. We contest that A,, has empty interior, forif U C Ay, then itis not hard to show that UN A, # &,
from which it follows that U N Y C A,, contradicting the fact that A, has an empty interior.

Thus, |J A, has empty interior in X. Now, if U C [JA,inY, then U C |J Ay, and U is open in X since Y
is open in Y, a contradiction. Thus Y is Baire. u

Corollary 8.6. A locally compact Hausdorff space is Baire.

Proof. Let X be a locally compact Hausdorff space and Y its one point compactification. Since Y is compact
Hausdorff, it is Baire. Further, since X is an open subset of Y, it must be Baire. [ |
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