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Chapter 1

Lebesgue Measure

1.1 Outer Measure

The Lebesgue Outer Measure, unlike the Lebesgue Measure is defined for every subset of R. We construct
the Lebesgue Measure from the outer measure by restricting it to a class of special subsets.

Definition 1.1 (Interval). An unbounded interval is of one of the following forms:

(−∞, a], (−∞, a), [a, ∞), (a, ∞)

while a bounded interval is of one of the following forms:

[a, b], (a, b], [a, b), (a, b)

For an unbounded interval, we define ℓ(I) = ∞ while for a bounded interval, we define ℓ(I) =
b − a.

Definition 1.2 (Outer Measure). Let A ⊆ R. Consider the countable collections {Ik}k∈N of nonempty
open bounded intervals that cover A, that is, A ⊆ ⋃

k∈N

Ik and define

m∗(A) = inf

 ∑
k∈N

ℓ(Ik)

∣∣∣∣ A ⊆
⋃

k∈N

Ik


It is obvious that m∗(∅) = 0. Moreover, for sets A ⊆ B, the set of covers of B is a subset of covers of A,

consequently, m∗(A) ≤ m∗(B). Further, let A = {a1, a2, . . .} be a countable set. Consider the cover {Ik}k∈N

where Ik =
(

ak − ε
2k+1 , ak +

ε
2k+1

)
. Then,

0 ≤ m∗(A) ≤ ∑
k∈N

ε

2k = ε

Since the above holds for all ε > 0, we conclude that m∗(A) = 0.

Proposition 1.3. Let I be an interval. Then m∗(I) = ℓ(I).

Proof. Let I = [a, b]. We shall first show that m∗(I) = b − a. It is easy to see that m∗(I) ≤ b − a. Let {Ik}k∈N

be a collection of open intervals covering [a, b]. Since I is compact, there is a finite subcover, say {Ik}n
k=1.
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We shall show that
∞

∑
k=1

ℓ(Ik) ≥
n

∑
k=1

ℓ(Ik) > b − a

which would imply the desired conclusion.
Since a ∈ I, there is an open interval, say, I1 = (a1, b1) containing a. If b1 > b, stop here and set N = 1.

Else, choose an interval, say I2 = (a2, b2) containing b1. If b2 > b, stop here and set N = 2 and so on. This
process must terminate since n is finite, consequently, N ≤ n.

Notice that due to the choice of the ai and bi’s, ak+1 < bk for all k ≤ N − 1 and bN > b. Then,

n

∑
k=1

ℓ(Ik) ≥
N

∑
k=1

ℓ(Ik) = (bN − a1) +
N−1

∑
k=1

(ak+1 − bk) > b − a

Now, let I be any bounded interval. Obviously there exist closed bounded intervals J1 and J2 such that

J1 ⊆ I ⊆ J2 and ℓ(J1) + ε = ℓ(I) = ℓ(J2)− ε

Then, we have
ℓ(I)− ε = m∗(J1) ≤ m∗(I) ≤ m∗(J2) = ℓ(I) + ε

Since the above inequality holds for all ε > 0, we have the desired conclusion.
The case when I is unbounded is easy enough. ■

The following follows readily from the definition.

Proposition 1.4. The outer measure m∗ is translation invariant. That is, for any set A ⊆ R and y ∈ R,

m∗(A + y) = m∗(A)

Proposition 1.5. The outer measure m∗ is countably subadditive, that is, if {Ek}k∈N is a countable collection
of sets, disjoint or not, then

m∗

 ⋃
k∈N

Ek

 ≤ ∑
k∈N

m∗(Ek)

Proof. If any of the Ek’s has infinite outer measure, then the inequality follows trivially. Henceforth suppose
that all Ek have finite outer measure. Let ε > 0 be given. By definition, for every k ∈ N there is a collection
of open intervals {Ik,i}i∈N such that

Ek ⊆
⋃

i∈N

Ik,i and
∞

∑
i=1

ℓ(Ik,i) < m∗(Ek) +
ε

2k

Now, note that {Ik,i}k,i∈N is an open cover for
⋃

k∈N Ek, consequently, we have

m∗

 ⋃
k∈N

Ek

 ≤
∞

∑
k=1

∞

∑
i=1

ℓ(Ik,i) < ε +
∞

∑
k=1

m∗(Ek)

Since the above inequality holds for all ε > 0, we have the desired conclusion. ■

As a corollary, we have finite subadditivity.

5



Corollary 1.6. Let {Ek}n
k=1 be a finite collection of sets, disjoint or not, then

m∗

 n⋃
k=1

Ek

 ≤
n

∑
k=1

m∗(Ek)

Proof. Let Ek = ∅ for all k > n in Proposition 1.5. ■

Theorem 1.7. The Lebesgue Outer Measure m∗ is a metric outer measure. That is, if A and B are bounded
subsets of R that are positively separated, then m∗(A ∪ B) = m∗(A) + m∗(B).

In order to prove the above theorem, we require the following lemmas:

Lemma 1.8. Let I be an open bounded interval and ε, δ > 0. Then, there is a finite collection of open bounded
intervals {Ik}∞

k=1 such that diam Ik < δ for all k ∈ N and ∑∞
k=1 ℓ(Ik) < ℓ(I) + ε.

Lemma 1.9. Let E ⊆ R be bounded. Given ε, δ > 0, there is an open cover of E by bounded intervals {Ik}∞
k=1

with diam Ik < δ for all k ∈ N and
∞

∑
k=1

ℓ(Ik) < m∗(E) + ε

The following proof is a sketch.

Proof. Let {Ik}∞
k=1 be an open cover by bounded intervals of E such that

∞

∑
k=1

ℓ(Ik) < m∗(E) + ε/2

For each Ik, construct a finite open cover by bounded intervals {Jl}N
l=1 for it with intervals of diameter

less than δ such that
N

∑
l=1

ℓ(Jl) < ℓ(Ik) + ε/2k+1

Then the union of all such filterations is countable and has total length not exceeding m∗(E) + ε. ■

Proof of Theorem 1.7. Let α = d(A, B), ε > 0 and δ = α/3 and let {Ik}∞
k=1 be an open cover by bounded

intervals such that diam Ik < δ and ∑∞
k=1 ℓ(Ik) < m∗(A ∪ B) + ε. Let A be the subcollection of intervals that

intersect A and similarly define B. It is not hard to show that A ∩B = ∅, whence A ∪B is an open cover
by bounded intervals of A ∪ B. Then,

m∗(A) + m∗(B) ≤ ∑
I∈A

ℓ(I) + ∑
I∈B

ℓ(I) <
∞

∑
k=1

ℓ(Ik) < m∗(A ∪ B) + ε

since the above inequality holds for all ε > 0, we have m∗(A) + m∗(B) ≤ m∗(A ∪ B) from which the
conclusion follows. ■

1.2 Constructing the σ-Algebra
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Definition 1.10 (Measurable Sets). A set E is said to be measurable if for every A ⊆ R,

m∗(A) = m∗(A ∩ E) + m∗(A\E)

Remark 1.2.1. Since Proposition 1.5 guarantees that m∗(A) ≤ m∗(A ∩ E) + m∗(A\E), it suffices to show that
m∗(A) ≥ m∗(A ∩ E) + m∗(A\E).

Proposition 1.11. Any set of outer measure 0 is measurable. In particular, any countable set is measurable.

Proof. Let E ⊆ R have outer measure 0 and A ⊆ R. Since A ∩ E ⊆ E, using the monotonicity of m∗, we
have that m∗(A ∩ E) = 0. Now, using Proposition 1.5,

m∗(A\E) ≤ m∗(A) ≤ m∗(A ∩ E) + m∗(A\E) = m∗(A\E)

This shows that m∗(A) = m∗(A ∩ E) + m∗(A\E) and that E is measurable. ■

Proposition 1.12. The union of a finite collection of measurable sets is measurable.

Proof. It suffices to show that the union of two measurable sets is measurable since the general result follows
from induction. Let E1 and E2 be measurable sets. Then, we have

m∗(A) = m∗(A ∩ E1) + m∗(A ∩ Ec
1)

= m∗(A ∩ E1) + m∗(A ∩ Ec
1 ∩ Ec

2) + m∗(A ∩ Ec
1 ∩ Ec

2)

≥ m∗(A ∩ (E1 ∪ E2)) + m∗(A ∩ (E1 ∪ E2)
c)

This coupled with m∗(A) ≤ m∗(A ∩ (E1 ∪ E2)) + m∗(A ∩ (E1 ∪ E2)
c) implies the desired conclusion. ■

Proposition 1.13. Let A be any set and {Ek}n
k=1 a finite disjoint collection of measurable sets. Then

m∗

A ∩

 n⋃
k=1

Ek


 =

n

∑
k=1

m∗(A ∩ Ek)

Proof. The equality obviously holds for n = 1. Let E1 and E2 be disjoint measurable sets. Then,

m∗(A ∩ (E1 ∪ E2)) = m∗(A)− m∗(A ∩ Ec
1 ∩ Ec

2)

= m∗(A)−
(
m∗(A ∩ Ec

1)− m∗(A ∩ Ec
1 ∩ E2)

)
= m∗(A)− m∗(A ∩ Ec

1) + m∗(A ∩ E2)

= m∗(A ∩ E1) + m∗(A ∩ E2)

We now proceed by induction on n. Note that
n−1⋃
k=1

Ek and En are disjoint. Consequently

m∗

A ∩

 n⋃
k=1

Ek


 = m∗

A ∩

n−1⋃
k=1

Ek


+ m∗(A ∩ En)

=
n−1

∑
k=1

m∗(A ∩ Ek) + m∗(A ∩ En)

This completes the proof. ■
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We readily obtain the following by setting A = R in the above proposition.

Corollary 1.14. Let {Ek}n
k=1 be a finite dsjoint collection of measurable sets. Then

m∗

 n⋃
k=1

Ek

 =
n

∑
k=1

m∗(Ek)

Definition 1.15 (Algebra). Let X be a set. A collection F of subsets of X is called an algebra if

(a) X ∈ F

(b) If A ∈ F , then X\A ∈ F

(c) Let n ∈ N and {Ai}n
i=1 be such that Ai ∈ F . Then

n⋃
i=1

Ai ∈ F

From the previous proposition, we can infer that the measurable sets form an algebra.

Proposition 1.16. A countable union of mesurable sets is measurable.

Proof. Let E be a countable union of measurable sets, {Ek}k∈N. Define

E′
k = Ek\

k⋃
i=1

Ei

It is not hard to see that {E′
k} is a collection of disjoint measurable sets whose union is E. Consequently,

without loss of generality, we may suppose that Ek are disjoint.

Define Fn =
n⋃

i=1
Ei. Since each Fn is measurable and F1 ⊆ F2 ⊆ · · · , we have, for any A ⊆ R,

m∗(A) = m∗(A ∩ Fn) + m∗(A ∩ Fc
n)

≥ m∗(A ∩ Fn) + m∗(A ∩ Ec)

=
n

∑
k=1

m∗(A ∩ Ek) + m∗(A ∩ Ec)

Since the above inequality holds for all n ∈ N, we must have that

m∗(A) ≥
∞

∑
k=1

m∗(A ∩ Ek) + m∗(A ∩ Ec) ≥ m∗(A ∩ E) + m∗(A ∩ Ec)

and hence E is measurable. ■

Definition 1.17 (σ-Algebra). Let X be a set. A collection F of subsets of X is called a σ-algebra if

(a) X ∈ F

(b) If A ∈ F , then X\A ∈ F

(c) If {Ai}∞
i=1 is a sequence of sets in F , then

∞⋃
i=1

Ai ∈ F
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From the previous proposition, we can infer that the collection of measurable sets forms a σ-algebra.

Proposition 1.18. Every interval is measurable.

Proof. We claim that it suffices to show that every interval of the form (a, ∞) is measurable. Indeed, from
here we have that every interval of the form (−∞, a] is measurable. Then,

(−∞, a) =
∞⋃

n=1

(
−∞, a − 1

n

]
is also measurable whence [a, ∞) is also measurable. Now, note that

[a, b] = [a, ∞) ∩ (−∞, b] [a, b) = [a, ∞) ∩ (−∞, b)
(a, b] = (a, ∞) ∩ (−∞, b] (a, b) = (a, ∞) ∩ (−∞, b)

and hence every interval is measurable.
We shall now show that every interval of the form (a, ∞) is measurable, for which it suffices to show

that m∗(A ∩ (a, ∞)) + m∗(A ∩ (−∞, a]) = m∗(A). Let A′ = A\{a}, then

m∗(A ∩ (a, ∞)) + m∗(A ∩ (−∞, a]) = m∗(A) ⇐⇒ m∗(A′ ∩ (a, ∞)) + m∗(A′ ∩ (−∞, a]) = m∗(A′)

Therefore, without loss of generality, we may suppose that a /∈ A. Define A1 = A ∩ (−∞, a] = A ∩
(−∞, a) and A2 = A ∩ (a, ∞). Let {Ik}k∈N be a collection of open bounded intervals that covers A. Define
I′k = Ik ∩ (−∞, a) and I′′k = Ik ∩ (a, ∞). Note that I′k and I′′k are both open bounded intervals and the
collections {I′k}k∈N and {I′′k }k∈N cover A1 and A2 respectively. Further, from the definition of I′k and I′′k , we
have that ℓ(Ik) = ℓ(I′k) + ℓ(I′′k ). Consequently,

m∗(A1) + m∗(A2) ≤
∞

∑
k=1

ℓ(I′k) +
∞

∑
k=1

ℓ(I′′k )

=
∞

∑
k=1

(
ℓ(I′k) + ℓ(I′′k )

)
=

∞

∑
k=1

ℓ(Ik)

Since this inequality holds for all covers {Ik} of A by open bounded intervals, we must have that
m∗(A1) + m∗(A2) ≤ m∗(A) and (a, ∞) is measurable. This completes the proof. ■

Lemma 1.19. Every open set is the disjoint union of a countable collection of open intervals.

Corollary 1.20. Open sets, closed sets, Gδ-sets and Fσ-sets are measurable.

Proposition 1.21 (Excision Property). Let E be a measurable set and E ⊆ A ⊆ R. Then,

m∗(A\E) = m∗(A)− m∗(E)

The proof of the above proposition follows from the definition of a measurable set and is omitted.
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Theorem 1.22. Let E ⊆ R. Then the following are equivalent:

(a) E is measurable

(b) For each ε > 0 there is an open set U containing E for which m∗(U\E) < ε

(c) There is a Gδ set G containing E for which m∗(G\E) = 0

(d) For each ε > 0, there is a closed set F contained in E for which m∗(E\F) < ε

(e) There is an Fσ set F contained in E for which m∗(E\F) = 0

Proof. We shall show that (a) =⇒ (b) =⇒ (c) =⇒ (a) along with (b) ⇐⇒ (d) and (c) ⇐⇒ (c), which
would imply the desired conclusion.

• (a) =⇒ (b) : First, suppose E has finite measure. Then, by definition, there is a covering of E with
open bounded intervals {Ik}k∈N such that

∑
k∈N

ℓ(Ik) < m∗(E) + ε

But using the countable subadditivity of the outer measure, we have

m∗(E) ≤ m∗

 ⋃
k∈N

Ik

 ≤ ∑
k∈N

ℓ(Ik) < m∗(E) + ε

Letting U =
⋃

k∈N

Ik, we have

m∗(U\E) = m∗(U)− m∗(E) < ε

Now suppose E has infinite measure. Let Fk = E ∩ [k, k + 1). Obviously each Fk is measurable and
has finite measure. Reindex the collection {Fk}k∈Z as {Ek}k∈N, where E =

⊔
k∈N

Ek and each Ek is

measurable and has finite measure. Choose an open set Uk containing Ek and m∗(Uk\Ek) < ε/2k. Let
U =

⋃
k∈N

Uk. Then,

m∗ (U\E
)
≤ m∗

 ⋃
k∈N

[Uk\Ek]

 <
∞

∑
k=1

ε

2k = ε

• (b) =⇒ (c) : Let Uk be an open set containing E such that m∗(Uk\E) < 1/k. Define G =
⋂

k∈N

Uk,

which is a Gδ-set. Then, E ⊆ G and

m∗(G\E) ≤ m∗(Uk\E) <
1
k

∀ k ∈ N

whence m∗(G\E) = 0.

• (c) =⇒ (a) : Since G is measurable, and G\E being a set of outer measure 0 is measurable, we must
have that E = G\(G\E) is measurable.

• (b) =⇒ (d) : Since E is measurable, so is Ec. Due to (b), there is a Gδ-set G containing Ec with
m∗(G\Ec) < ε. Consequently, F = Gc is an Fσ-set contained in E with E\F = G\Ec giving us the
desired conclusion.

• (d) =⇒ (b) : Similar to above.

• Similarly, one can show (c) ⇐⇒ (e)

This completes the proof. ■
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Theorem 1.23. Let E be a measurable set of finite outer measure. Then for every ε > 0, there is a fiinte disjoint
collection of open bounded intervals {Ik}n

k=1 for which if O =
⋃n

k=1 Ik then

m∗(E∆O) < ε

Proof. Due to Theorem 1.22 (b), there is an open set U containing E such that m∗(U\E) < ε/2. Further, due
to Lemma 1.19, there is a countable collection of disjoint (possibly empty) open intervals {Ik}k∈N such that
U =

⊔
k∈N

Ik. Since m∗(U) is finite, so is ∑k∈N ℓ(Ik), consequently, there is n ∈ N such that

∞

∑
k=n+1

ℓ(Ik) < ε/2

Define O =
n⊔

k=1
Ik. Then O ⊆ U and is measurable. Therefore, m∗(O\E) ≤ m∗(U\E) < ε/2 and

m∗(E\O) ≤ m∗(U\O) =
∞

∑
k=n+1

ℓ(Ik) < ε/2

whence the conclusion follows. ■

Theorem 1.24 (Lebesgue). A subset E of R is measurable if and only if for every open bounded interval (a, b),

b − a = m∗((a, b) ∩ E) + m∗((a, b)\E)

Proof. Let ε > 0. Then by definition, there is a collection of open bounded intervals {Ik}k∈N such that
E ⊆ O =

⋃
k∈N

Ik and

∞

∑
k=1

ℓ(Ik) < m∗(E) + ε

Then, we have

m∗(O\E) = m∗

 ∞⋃
k=1

[Ik\E]

 ≤
∞

∑
k=1

m∗(Ik\E) =
∞

∑
k=1

[
ℓ(Ik)− m∗(Ik ∩ E)

]
< m∗(E) + ε − m∗(O ∩ E) = ε

And we are done due to Theorem 1.22 (b). ■

1.3 The Lebesgue Measure and Properties

Definition 1.25 (Lebesgue Measure). The restriction of the set function outer measure to the collection
of measurable sets is called Lebesgue Measure. It is denoted by m. Therefore, if E is a measurable set, its
Lebesgue Measure is defined as

m(E) = m∗(E)

Proposition 1.26. If {Ek}∞
k=1 is a countable disjoint collection of measurable sets and A ⊆ R, then its union
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∞⋃
k=1

Ek is also measurable and

m∗

A ∩
∞⋃

k=1

Ek

 =
∞

∑
k=1

m∗(A ∩ Ek)

Proof. Obviously,
∞⋃

k=1
Ek is measurable and due to Proposition 1.5,

m∗

A ∩
∞⋃

k=1

Ek

 ≤
∞

∑
k=1

m∗(A ∩ Ek)

Further, due to Proposition 1.13,

m∗

A ∩
∞⋃

k=1

Ek

 ≥ m∗

A ∩
n⋃

k=1

Ek

 =
n

∑
k=1

m∗(A ∩ Ek)

Since the above inequality holds for all n ∈ N, we must have that

m∗

A ∩
∞⋃

k=1

Ek

 ≥
∞

∑
k=1

m∗(A ∩ Ek)

implying the desired conclusion. ■

Corollary 1.27. Lebesgue Measure is countably additive. if {Ek} is a countable disjoint collection of
measurable sets, then

m

 ∞⋃
k=1

Ek

 =
∞

∑
k=1

m(Ek)

Proof. Follows from Proposition 1.26 by taking A = R. ■

Consolidating what we have till now:

The set function Lebesgue Measure (m) defined on the σ-algebra of Lebesgue measurable sets, assigns length to
any interval, is translation invariant and countable additive.

Definition 1.28. A countabe collection of sets {Ek}∞
k=1 is said to be ascending if E1 ⊆ E2 ⊆ · · · and is

said to be descending if E1 ⊇ E2 ⊇ · · · .

Theorem 1.29 (Continuity of Measure). The Lebesgue Measure possesses the folowing continuity properties:

(a) If {Ak}∞
k=1 is an ascending collection of measurable sets, then

m

 ∞⋃
k=1

Ak

 = lim
k→∞

m(Ak)

12



(b) If {Bk}∞
k=1 is an descending collection of measurable sets and m(B1) < ∞, then

m

 ∞⋂
k=1

Bk

 = lim
k→∞

m(Bk)

Proof. We shall first show (a) and infer (b) from it.

(a) Define {Cn = An\An−1} with A0 = ∅. It then follows that {Cn} is a collection of dijoint measurable
sets such that

⋃
Cn =

⋃
An. Now, due to the countable additivity of measure,

m

 ∞⋃
n=1

An

 = m

 ∞⋃
n=1

Cn

 =
∞

∑
n=1

m(Cn) =
∞

∑
n=1

m(An)− m(An−1) = lim
n→∞

m(An)

(b) Define Dn = B1\Bn. Then, {Dn} is an ascending chain with
⋃

Dn = B1\
⋂

Bn. Consequently,

lim
n→∞

m(Dn) = m

 ∞⋃
n=1

Dn

 = m

B1\
∞⋂

n=1

Bn

 = m(B1)− m

 ∞⋂
n=1

Bn


Where we require m(B1) < ∞ to use the excision property. Then, we have

m(B1)− lim
n→∞

m(Bn) = m(B1)− m

 ∞⋂
n=1

Bn


whence the conclusion follows.

■

The assertion about descending chains may not hold if m(B1) = ∞. Take for example the descending
chain {(n, ∞)}∞

n=1. We have
⋂∞

n=1(n, ∞) = ∅ but m((n, ∞)) = ∞, and thus the limit lim
n→∞

m((n, ∞)) = ∞.

Lemma 1.30 (Borel-Cantelli). Let {Ek}∞
k=1 be a countable collection of measurable sets for which ∑∞

k=1 m(Ek) <
∞. Then almost all x ∈ R belong to at most finitely many of the Ek’s.

Proof. Let S be the set of all x ∈ R belonging to infinitely many of the Ek’s. Then,

S =
∞⋂

n=1

∞⋃
k=n

Ek

It is not hard to see that S is measurable.
But then we have

m (S) ≤ lim
n→∞

m

 ∞⋃
k=n

Ek

 ≤ lim
n→∞

∞

∑
k=n

m(Ek) = 0

where the last equality follows from the fact that ∑∞
k=1 m(Ek) is finite. This completes the proof. ■

1.4 Nonmeasurable Sets

Lemma 1.31. Let E ⊆ R be a bounded and measurable. Suppose there is a bounded, countably infinite set of real
numbers Λ for which the collection of translates {λ + E}λ∈Λ is disjoint. Then m(E) = 0.
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Proof. Using the countable additivity of Lebesgue Measure,

∞ > m

 ⋃
λ∈Λ

[λ + E]

 = ∑
λ∈Λ

m(E)

therefoere, m(E) = 0. ■

Definition 1.32 (Rational Equivalence). Let E ⊆ R. Define an equivalence relation on E by x ∼Q y if
x − y ∈ Q.

Theorem 1.33 (Vitali). Any set E of real numbers with positive outer measure contains a subset that is not
measurable.

Proof. Since every set of positive outer measure has a bounded subset with positive outer measure, we may
suppose without loss of generality that E is bouned. Let CE be a choice set over the equivalence classes over
E defined by ∼Q. We shall show that CE is not measurable. Suppose it is. Let Λ be a bounded collection
of rational numbers. Then, the collection {λ + CE}λ∈Λ is a collection of disjoint measurable sets. Then, we
can say due to the preceeding lemma that m(CE) = 0.

Let b ∈ R such that E ⊆ [−b, b] and choose Λ0 = [−2b, 2b] ∩ Q. We claim that E ⊆ ⋃
λ∈Λ0

[λ + CE].
Indeed, if x ∈ E, there is y ∈ [x]∼Q

∩ CE but since x, y ∈ [−b, b], we must have that λ = x − y ∈ [−2b, 2b]
and hence, x ∈ λ + CE

m∗(E) ≤ ∑
λ∈Λ0

m(λ + CE) = 0

a contradiction and we have the desired conclusion. ■

Corollary 1.34. There are disjoint sets of real numbers A and B for which

m∗(A ∪ B) < m∗(A) + m∗(B)

Proof. Suppose not, then for every pair of disjoint sets of real numbers A and B, m∗(A ∪ B) = m∗(A) +
m∗(B) and therefore, every subset of R is measurable. A contradiction to Theorem 1.33. ■

1.5 Cantor Set and Cantor Lebesgue Function

We shall first construct a descending chain of closed sets, {Cn}∞
n=1. First, consider the closed, bounded

interval I = [0, 1] and divide it into three intervals of equal length 1/3 and remove the interior of the
middle interval. Call the remaining set C1. Explicitly, C1 =

[
0, 1

3

]
∪
[

2
3 , 1
]
. Repeat this procedure for each

of the two intervals in C1 to obtain C2 and do this ad infinitum.
Finally, define

C =
∞⋂

n=1

Cn

Since each Ck is closed and bounded, it is compact and also measurable. Further, since C is the intersec-
tion of closed, bounded sets, it is closed and bounded and therefore compact and measurable. Finally, due
to Cantor’s Intersection Theorem, C is non-empty and measurable.

14



It is not hard to show using induction that m(Cn) =
(

2
3

)n
and thus,

m(C) ≤
(

2
3

)n

Since the above inequality holds for all n ∈ N, m(C) = 0.

Proposition 1.35. The Cantor set C is uncountable.

Proof. Suppose C is countable and let {ck}∞
k=1 be an enumeration of C. We shall construct a descending

sequence of compact (and therefore closed) sets as follows.
Note that C1 is the disjoint union of two closed intervals. Let F1 be the interval not containing c1. Now,

inductively, if we have Fk, note that Ck+1 ∩ Fk is the disjoint union of two closed intervals, then let Fk+1 be
the interval not containing ck+1.

It is not hard to see that Fk+1 is a descending sequence of closed and bounded, and therefore compact
sets. Then, due to Cantor’s Intersection Theorem, there is x ∈ ⋂∞

k=1 Fk ⊆ C. Therefore, x = cn for some n,
but this is a contradiction to the fact that x = cn /∈ Fn.

Hence, C is uncountable. ■

Definition 1.36 (Perfect). A set S is said to be perfect if the limit points of S are precisely the points of
S.

Proposition 1.37. The Cantor set C is perfect.

Proof. Let x ∈ C and ε > 0 be given. Let N ∈ N be such that 3−N < ε. Since x ∈ CN , there is a closed
interval F of length 3−N that contains x. But due to our constraints, F ⊆ B(x, ε). Note that F ∩ CN+1 is a
disjoint union of two closed intervals G1, G2 of length 3−(N+1). Without loss of generality, say x ∈ G2. Then,
consider the descending chain {G1 ∩ Ck}∞

k=1. Using Cantor’s Intersection Theorem, there is some element
of C in G1, consequently in F and thus B(x, ε). This completes the proof. ■

Proposition 1.38. The Cantor set C is nowhere dense.

Proof. Let O be an open set in R. If O ∩ C = ∅, then we are done. If not, then it contains an interval, say
(a, b). If (a, b) ∩ C = ∅, then we are done. If not, then let x ∈ (a, b) ∩ C. Then, there is some N ∈ N such
that the interval in CN containing x is completely contained in (a, b), call this interval I. Then, there is an
open set U ⊆ I such that CN+1 ∩ I = I\U. Then, U is an open set in O that does not intersect C, thereby
completing the proof. ■

Lemma 1.39. Every nonempty perfect set in R is uncountable.

Proof. We shall prove this by contradiction. Suppose A ⊆ R is perfect and countable. Therefore, it has an
enumeration A = {a1, a2, . . .}. Let U0 = (a1 − 1, a1 + 1). Let n ∈ N be the smallest index greater than 1
such that an ∈ U0. Let U1 be an open interval containing an such that U1 ⊆ U0 and a1 /∈ U1. Let F1 = U1.
Now, define U2 = . . . = Un−1 = U1 and F2 = . . . = Fn−1 = F1. Repeat this procedure ad infinitum. Now
consider the descending chain {Fn ∩ A}, which is such that an /∈ Fn ∩ A. But due to Cantor’s Intersection

Theorem, A ∩
∞⋂

n=1
Fn is nonempty, a contradiction. ■
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Now, define Ok = [0, 1]\Ck and O =
⋃∞

k=1 Ok. Then, obviously, O = [0, 1]\C. We shall now define a
sequence of functions {φk : Ok → [0, 1]} such that φk+1 is an extension of φk. To do this, note that Ok is a
disjoint union of 2k − 1 open intervals. On which we give φk the successive values{

1
2k , . . . ,

2k − 1
2k

}

It is not hard to see that φk and φk+1 agree on Ok. Using this, we may define φ over all of O. Finally, we
shall extend this to define φ over points of C as

φ(0) = 0 and φ(x) = sup{φ(t) | t ∈ O ∩ (0, x)}

This function φ is known as the Cantor-Lebesgue function.

Proposition 1.40. The Cantor-Lebesgue function is an increasing continuous function that maps [0, 1] onto
[0, 1]. It is differentiable at every point in O and the value of its derivative is equal to 0.

Proof. Note that each φk is increasing, consequently, for any x, y ∈ O with x < y, there is some index N
such that x, y ∈ ON and thus, φ(x) < φ(y), whence φ is increasing on O. Now let x ∈ C and y ∈ O with
x < y. If x = 0, then we trivially have that φ(x) < φ(y). Now suppose x > 0. Then φ(x) = sup{φ(t) |
t ∈ (0, x) ∩O}. But since φ(y) ≥ φ(t) for all t ∈ O ∩ (0, x), we have that φ(x) ≤ φ(y). When x, y ∈ C, the
conclusion is obvious. Thus φ is increasing.

Next, we shall show that φ is continuous. That φ is continuous on O is easy to see since it is continuous
on each Ok. Let x0 ∈ C. Then, for each Ok, x lies between two open intervals of Ok. Let ε > 0 and
choose k such that 2−k < ε. Choose ak in the interval just before x and bk in the interval just after x. Let
δ = min{|ak − x|, |bk − x|}. Whenever |x − y| < δ, |φ(x)− φ(y)| ≤ |φ(ak)− φ(bk)| = 2−k < ε. This implies
continuity of φ at x.

Finally, we may conclude that φ maps [0, 1] to [0, 1] using the Intermadiate Value Theorem. ■

Theorem 1.41. Let φ : [0, 1] → [0, 1] be the Cantor-Lebesgue function and define the function ψ : [0, 1] →
[0, 1] by ψ(x) = φ(x) + x for all x ∈ [0, 1]. Then ψ is a strictly increasing continuous function that maps [0, 1]
onto [0, 2] and

(a) maps the Cantor set C onto a measurable set of positive measure and

(b) maps a measurable set, a subsest of C onto a nonmeasurable set.

Proof. Note that since ψ is a strictly increasing continuous function, it has a continuous inverse, as a result,
it is a homeomorphism from [0, 1] to [0, 2]. Then ψ(C) is closed and ψ(O) is open. These two are disjoint
sets whose union is [0, 2]. Let {Ik} be the set of intervals that are removed while constructing the Cantor
set. Then they are all disjoint and ψ(Ik) is simply a translation of Ik and is therefore homemomorphic to Ik.
Consequently,

m
(
ψ(O)

)
= m

 ∞⋃
k=1

ψ(Ik)

 =
∞

∑
k=1

m(ψ(Ik)) =
∞

∑
k=1

m(Ik) = m(O) = 1

Thus, m(ψ(C)) = 1, which proves (a).
Due to Theorem 1.33, there is a non-measurable set V ⊆ ψ(C). Define U = ψ−1(V) ⊆ C. Since U has

measure 0, it is measurable and is mapped to a nonmeasurable set V, which proves (b). ■
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Theorem 1.42. Let f : [a, b] → R be Lipschitz. Then f maps measurable sets to measurable sets.

Proof.

• f maps sets of measure 0 to sets of measure 0: Let E ⊆ [a, b] have measure 0 and ε > 0. Note that it
would suffice to show that m∗( f (E)) = 0, since that would immediately imply the measurability of
f (E). Let {Ik} be a collection of open bounded intervals that cover E such that ∑∞

k=1 ℓ(Ik) < ε. Since
f is a continuous function, it maps intervals to intervals. Now, since f (E) ⊆ ⋃

f (Ik). It follows that

m∗( f (E)) ≤
∞

∑
k=1

ℓ( f (Ek)) < cε

It follows that m∗( f (E)) = 0.

• f maps Fσ sets to Fσ sets: Let F be an Fσ set. Then, there is a countable collection {An} of closed sets
such that F =

⋃
n∈N An. Note that each An is closed and bounded, therefore, its image is compact

(since f is continuous) and hence closed and bounded. As a result,

f (F) =
⋃

n∈N

f (An)

and is an Fσ set.

• Putting it together: Let E ⊆ [a, b] be measurable. Then, there is an Fσ set F that is contained in E such
that m(E\F) = 0. Now,

f (E)\ f (F) ⊆ f (E\F)︸ ︷︷ ︸
has measure 0

and hence, m( f (E)\ f (F)) = 0 and thus f (E) is measurable.

■

Lemma 1.43. Let f : X → Y be a continuous function between two topological spaces X and Y. Then, for every
Borel set B in Y, f−1(B) is a Borel set in X.

Proof. Define
M = {E ⊆ Y | f−1(E) is Borel}

We claim that M is a σ-algebra. If E ∈ M, then f−1(Y\E) = X\ f−1(E), which is Borel and hence, Y\E ∈ M.
Similarly, let {E1, E2, . . .} ⊆ M. We have

f−1

 ∞⋃
n=1

En

 =
∞⋃

n=1

f−1(En)

where the quantity on the right is a Borel set, whence
∞⋃

n=1
En ∈ M from which it follows that M is a σ-

algebra.
Finally, since TY ⊆ M, it must contain all Borel sets and we have the desired conclusion. ■

Lemma 1.44. Let f : I → R be a strictly increasing function where I is an interval. Then f maps Borel sets to
Borel sets.

Proof. It is not hard to show that f has a continuous inverse from g : f (I) → I. Since I is an interval, so is
f (I). Let B be a Borel set contained in I. Then f (B) = g−1(B) is Borel due to the previous lemma. ■
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Theorem 1.45. The Cantor set C contains a measurable set that is not Borel.

Proof. Recall that we have shown that the function ψ = φ+ id maps a measurable set A to a non measurable
set. But since ψ is a strictly increasing continuous function defined on an interval, it must map Borel sets to
Borel sets. Consequently, A is not Borel lest f (A) be measurable. ■

Theorem 1.46. The set of all Lebesgue Measurable subsets of R has cardinality greater than R.

Proof. Assuming CH, we have shown that C has cardinality equal to R. Since m(C) = 0, every subset of the
Cantor set is measurable, consequently, the set of Lebesgue measurable sets contains a set that is in bijection
with the power set of R, consequently, it must have cardinality greater than that of R. ■

Theorem 1.47. Q is not a Gδ set.

Proof. Suppose Q were a Gδ set. Then, there would exist a countable collection of open sets {Uk}k∈N such
that Q =

⋂
k∈N

Uk. Let Q = {q1, q2, . . .} be an enumeration for Q and define Vk = Uk\{qk}. Then {Vk} is a

collection of nonempty open sets such that
∞⋂

n=k
Vk = ∅.

Choose some open, bounded interval J1 with nonzero measure in V1, which is known to exist since
it is a nonempty open set. This interval obviously contains a nonempty closed interval I1 with nonzero
measure. Since I1 and J1 contain infinitely many rationals, their intersection with V2 is nonempty and
contains infinitely many rationals. Choose some open interval with nonzero measure in the set J1 ∩ V2 and
call this J2 and similar to above construct I2 and continue in this fashion.

We would obtain a descending sequence of closed and bounded intervals I1 ⊇ I2 ⊇ · · · such that
Ik ⊆ Vk. Now, due to Cantor’s Intersection Theorem,

⋂
k∈N

Ik ̸= ∅ which is a contradiction. ■
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Chapter 2

Lebesgue Measurable Functions

Theorem 2.1. Let the function f have a measurable domain E. Then the following statements are equivalent:

(i) For each real number c, the set E1(c) = {x ∈ E | f (x) > c} is measurable

(ii) For each real number c, the set E2(c) = {x ∈ E | f (x) ≥ c} is measurable

(iii) For each real number c, the set E3(c) = {x ∈ E | f (x) < c} is measurable

(iv) For each real number c, the set E4(c) = {x ∈ E | f (x) ≤ c} is measurable

Each of the above implies that for each extended real number c, the set

{x ∈ E | f (x) = c}

is measurable.

Proof. We shall show that (i) =⇒ (iv) =⇒ (iii) =⇒ (ii) =⇒ (i). This follows from the following equalities:

E4(c) = E\E1(c)

E3(c) =
∞⋃

n=1

E4

(
c − 1

n

)
E2(c) = E\E3(c)

E1(c) =
∞⋃

n=1

E2

(
c +

1
n

)
Now, if c is finite, then

{x ∈ E | f (x) = c} = E2(c) ∩ E4(c)

and is measurable. Next, if c = ∞, then

{x ∈ E | f (x) = c} =
⋂

n∈N

E1(n)

■

We denote the extended real line by [−∞, ∞]. The arithmetic on this real line is well known and we omit
its discussion.
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Definition 2.2 (Measurable Function). An extended real-valued function f : E → [−∞, ∞] defined on
E is said to be Lebesgue measurable, or just measurable provided E is measurable and it satisfies one of
the four statements of Theorem 2.1.

Proposition 2.3. Let E be a measurable set and f : E → [−∞, ∞]. Then f is measurable if and only if for each
open set O, f−1(O) is measurable.

Proof. Suppose the inverse image of each open set is measurable, consequently, the inverse image of (c, ∞)
is open for all c ∈ R, and due to Theorem 2.1, f is measurable.

Now suppose f is measurable. Then,

f−1((a, b)) = f−1((−∞, b)) ∩ f−1((a, ∞))

is measurable. Since O is open, it can be written as the union of countably many disjoint open intervals,
and thus, the inverse image of O can be written as the union of countably many disjoint measurable sets
and is measurable. This completes the proof. ■

Corollary 2.4. If E is measurable and f : E → Ra is continuous, then it is measurable.

aNote that we are not talking about an extended real valued function here

Proposition 2.5. A monotone function that is defined on an interval is measurable.

Proposition 2.6. Let f , g : E → [−∞, ∞]

(i) If f is measurable on E and f = g a.e. on E, then g is measurable on E

(ii) For a measurable subset D of E, f is measurable on E if and only if the restrictions of f to D and E\D are
measurable.

Proof. (i) Let A = {x ∈ E | f (x) ̸= g(x)}. It is known that m(A) = 0. Then, for any c ∈ R,

{x ∈ E | g(x) > c} = {x ∈ A | g(x) > c} ∪
(
{x ∈ E | f (x) > c} ∩ (E\A)

)
Since {x ∈ A | g(x) > c} ⊆ A, it has outer measure 0 and is measurable. Further, since measurable
sets are closed under intersection, {x ∈ E | f (x) > c} ∩ (E\A) is measurable. As a result, their union
is measurable.

(ii) Simply note that

{x ∈ E | f (x) > c} = {x ∈ D | f (x) > c} ∪ {x ∈ E\D | f (x) > c}

■

Assertion (i) of the previous theorem allows us to extend a measurable function to another measurable
function. Take for example two extended real valued functions f and g finite on E\E0 where E0 has mea-
surae 0. Then, f + g is defined on E\E0. If we were to show that f + g is measurable on E\E0, any extension
of it to E would also be measurable.
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Theorem 2.7. Let f and g be measurable (extended real valued) functions on E that are finite a.e. on E. Then

(a) For any α and β, α f + βg is measurable on E

(b) f g is measurable on E

Proof. Note that since f , g are finite a.e. on E, we may suppose, due to the discussion preceeding the
statement of the theorem that f , g are finite everywhere on E. Then, it shall suffice to show that both α f and
f + g are measurable. Without loss of generality, let α > 0. Then

{x ∈ E | α f (x) < c} = {x ∈ E | f (x) < c/α}

Thus, α f (x) is measurable.
Next, we shall show that f + g is measurable for which it suffices to show that {x ∈ E | f (x) + g(x) < c}

is measurable. We claim that

{x ∈ E | f (x) + g(x) < c} =
⋃

q∈Q

{x ∈ E | f (x) < q} ∩ {x ∈ E | g(x) < c − q}

Indeed, if f (x) + g(x) < c, then there is a rational q such that f (x) < q < c − g(x), consequently, f (x) < q
and g(x) < c − q. Since the rationals are countable, we have the desired conclusion.

Finally, note that

{x ∈ E | f (x)2 > c} =

{
{x ∈ E | f (x) >

√
c} ∪ {x ∈ E | f (x) < −

√
c} c ≥ 0

E c < 0

Thus, f 2 is also measurable. Now, simply note that

f g =
1
2

(
( f + g)2 − f 2 − g2

)
whence f g is measurable. ■

Proposition 2.8. The composition of two measurable functions need not be measurable.

Proof. Define the function

ψ(x) =

{
φ(x) + x x ∈ [0, 1]
2x x /∈ [0, 1]

where φ is the Cantor-Lebesgue function. We have already shown that ψ is continuous and strictly increas-
ing, and is therefore a bijection from R to R. We have also shown that there is A ⊆ C such that ψ(A) is not
measurable. Let χA be the characteristic function from R to R for the set A. We claim that f = χA ◦ ψ−1

is not measurable, which would prove the statement of the proposition, since ψ−1 is continuous and thus
measurable.

Indeed,
{x ∈ R | f (x) > 0.5} = {x ∈ R | ψ−1(x) ∈ A} = ψ(A)

which is not measurable. This shows that f is not measurable. ■

Proposition 2.9. Let E be measurable, g : E → R be measurable and f : R → R be continuous. Then the
composition f ◦ g : E → R is measurable.

Proof. Let O be an open set in R. Then ( f ◦ g)−1(O) = g−1( f−1(O)). Since f is contiuous, f−1(O) is open
and thus g−1( f−1(O)) is measurable, implying that f ◦ g is measurable. ■

21



Proposition 2.10. Let f : E → [−∞, ∞] be an extended real valued measurable function on a measurable
domain E. Then, for every Borel set B, f−1(B) is measurable.

Proof. Let M = {A ⊆ R | f−1(A) is measurable}. It is not hard to show that M is a σ-algebra. Further, M
contains all the open sets in R, consequently, contains all the Borel sets in R. This completes the proof. ■

Theorem 2.11. Let E be measurable and { fn : E → [−∞, ∞]} be a sequence of measurable functions. Define

g = sup fn and h = lim sup
n→∞

fn

Then g and h are measurable.

Proof. Let c ∈ R. Then we have

{x ∈ E | g(x) > c} =
⋃

n∈N

{x ∈ E | fn(x) > c}

and

{x ∈ E | h(x) > c} =
⋂

n∈N

∞⋃
m=n

{x ∈ E | fm(x) > c}

both of which are measurable. This completes the proof. ■

Similarly, one can show that inf fn and lim inf fn are measurable.

Corollary 2.12. Let E be measurable and f , g : E → [−∞, ∞] be measurable functions. Then min{ f , g}
and max{ f , g} are measurable.

Proof. Note that

max{ f , g} = lim sup{ f , g, f , g, f , g, . . .}
min{ f , g} = lim inf{ f , g, f , g, f , g, . . .}

■

For a function f : E → [−∞, ∞], define f+ = max{ f , 0} and f− = −min{ f , 0}. It is obious that f+ and
f− are nonnegative functions and f = f+ − f− on E.

2.1 Pointwise Limits and Simple Approximation

We begin by reacalling some definitions from Real Analysis.

Definition 2.13. For a sequence { fn} of functions with common domain E and a function f on E and a
subset A of E, we say that

(i) The sequence { fn} converges to f pointwise on A provided lim
n→∞

fn(x) = f (x) for all x ∈ A

(ii) The sequence { fn} covnerges to f pointwise a.e. on A provided it converges to f pointwise on
A\B where m(B) = 0

(iii) The sequence { fn} converges to f uniformly on A provided for each ε > 0 there is an index N
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for which
| f − fn| < ε on A for all n ≥ N

Recall that the pointwise limit of a Riemann integrable function need not be Riemann integrable. Mea-
surable functions on the other hand are better behaved under pointwise limits.

Proposition 2.14. Let { fn} be a sequence of measurable functions on E that converges pointwise a.e. on E to
the function f . Then f is measurable.

Proof. Let E0 be such that { fn} converges pointwise on E\E0. If we show that f is measurable on E\E0,
then every extension of f to E is measurable. Therefore, without loss of generality, we may suppose that
{ fn} converges pointwise on E.

If { fn} converges pointwise, then f = lim sup fn and is measurable. ■

The characteristic function of a set A, denoted χA is defined as

χA =

{
1 x ∈ A
0 x /∈ A

Definition 2.15 (Simple Function). A real-valued function φ defined on a measurable set E is called
simple if it is measurable and takes only a finite number of distinct values.

It is not hard to infer from the definition that a simple function can be represented as

φ =
n

∑
k=1

ckχEk

where Ek’s are disjoint and measurable. This is known as the canonical representation of the simple
function.

Note that the simple functions that we consider are real valued and not extended real valued.

Lemma 2.16 (Simple Approximation Lemma). Let f be measurable real-valued bounded function on E.
Then for each ε > 0, there are simple functions φε and ψε defined on E such that

φε ≤ f ≤ ψε and 0 ≤ ψε − φε < ε

Proof. Since f is bounded, there is an open interval (c, d) containing f (E). Consider a partition

c = y0 < y1 < · · · < yn−1 < yn = d

such that yk − yk−1 < ε. Define Ek = f−1([yk−1, yk)) and the functions

ψ =
n

∑
k=1

ykχEk and φ =
n

∑
k=1

yk−1χEk

Obviously, for all x, ψ − φ < ε, further, there is a unique k such that x ∈ Ek. Then φ(x) = yk−1 < f (x) <
yk = ψ(x). This completes the proof. ■
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Theorem 2.17 (Simple Approximation Theorem). Let E be measurable and f : E → [−∞, ∞] is measur-
able if and only if there is a sequence {φn} of simple functions on E which converge pointwise on E to f and has
the property that |φn| ≤ | f | on E for all n. If f is nonnegative, we may choose {φn} to be increasing.

Proof. If there is a sequence of simple functions that converge to f , then f is measurable since it is the
pointwise limit of measurable functions.

Now suppose f is measurable. We shall first prove the statement in the case when f is nonnegative. Let
En = {x ∈ E | f (x) ≤ n}, which is measurable. Due to Lemma 2.16, there are simple functions φn and ψn
on En such that

0 ≤ φn ≤ f ≤ ψn and 0 ≤ ψn − φn < 1/n on En

Extend both φn and ψn to E by defining φn(x) = ψn(x) = n when x ∈ E\En. It is not hard to show that
the sequences {φn} and {ψn} converge pointwise to f on E. Now, let φ′

n = max{φ1, . . . , φn}. Then, {φ′
n} is

an increasing sequence of functions that converge to f .
Now, we shall prove the problem statement for a general function f = f+ − f−. Since f+ and f− are

nonnegative functions, there are sequences φ+
n and φ−

n of simple functions satisfying the assertion of the
theorem. Note that the functions φ+

n and φ−
n are defined in such a way that they do not both take nonzero

values at the same point. Then,

|φ+
n − φ−

n | = φ+
n + φ−

n ≤ f+ + f− = | f |

which completes the proof. ■

2.1.1 Step Functions

A step function is a special kind of simple function. It is of the form ∑n
k=1 αkχEk where each Ek is an

interval. One must note that step functions are not as strong as simple functions, that is to say that they do
not approximate measurable functions as well as simple functions do.

Theorem 2.18 (Step Approximation Theorem). Let I be a closed, bounded interval and f : I → R a
bounded measurable function. Let ε, δ > 0. Then there is a step function h on I and a measurable subset F of I
for which

|h − f | < ε and m(I\F) < δ

To prove the above theorem, we require a series of lemmas.

Lemma 2.19. Let E ⊆ I be measurable. Let ε > 0. Show that there is a step function h : I → R and a
measurable subset F of I for which

h = χE on F, and m(I\F) < ε

Proof. Let U be an open set containing U such that m(U\E) < ε/2. Now, U may be written as as disjiont
union of open intervals {Ik}∞

k=1 where some intervals may be empty. Using the continuity of measure, there
is a positive integer N such that

∞

∑
k=N+1

ℓ(Ik) < ε/2

Define O =
N⋃

k=1
Ik and F = (O ∩ E) ∪ (I\U). Then,

I\F = (U\E) ∪ (U\O)

and thus, m(I\F) ≤ m(U\E) + m(U\O) < ε. Finally, define h = χO . Since F ∩ O = O ∩ E ⊆ E, the
restrictions on h are satisfied. ■
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Lemma 2.20. Let ψ : I → R be a simple function, E ⊆ I be measurable and ε > 0. Then there is a step function
h : I → R and a measurable subset F of I for which

h = ψ on F, and m(I\F) < ε

Proof. Follows from the previous lemma by taking linear combinations. ■

Proof of Theorem 2.18. Due to Lemma 2.16, there is a simple function ψ : I → R such that 0 ≤ f −ψ < ε. Due
to the preceeding lemma, there is a step function h : I → R and a measurable subset F of I with m(I\F) < δ
such that h = ψ on F. The conclusion now follows. ■

2.2 Egoroff and Lusin’s Theorems

Theorem 2.21 (Egoroff). Let E be a measurable set with finite measure. Let { fn} be a sequence of measurable
functions on E that converge pointwise a.e. on E to the extended real-valued function f which is finite a.e. Then
for each ε > 0, there is a closed set F ⊆ E for which

{ fn} ⇒ f on F and m(E\F) < ε

Since { fn} → f pointwise a.e. on E, there is a subset E0 such that m(E0) = 0 and { fn} → f pointwise
on E\E0. Similarly, there is E′

0 such that f is finite on E\E′
0 and m(E′

0) = 0. Let E′ = E\(E0 ∪ E′
0). Then

m(E′) = m(E) and { fn} → f pointwise on E′ and f is finite on all of E′. Then, if we prove Egoroff’s
Theorem on E′, we woud have a closed subset F of E′ such that { fn} ⇒ f on F and m(E\F) = m(E′\F) < ε,
and hence would prove it for the general case. Therefore, without loss of generality, we may suppose that
{ fn} → f pointwise on E and is finite on all of E.

In order to prove the reduced statement of Egoroff’s Theorem, we require the following lemma,

Lemma 2.22. Let E have finite measure and { fn} → f pointwise on E where f is finite on all of E. Then, for
every η > 0 and δ > 0, there is a measurable subset A ⊆ E and index N ∈ N such that

| fn − f | ≤ η ∀ n ≥ N on A and m(E\A) < δ

Proof. Define the collection of sets {Fn} as

Fn := {x ∈ E | | f (x)− fn(x)| < η}

Since the function | f − fn| is measurable, so is the set Fn. Now, define

En :=
∞⋂

k=n

Fk = {x ∈ E | | f (x)− fn(x)| < η, ∀n ≥ N}

Since En is the countable intersection of measurable sets, it is measurable. Furthermore, by definition, the
collection {En} forms an ascending chain satisfying

∞⋃
n=1

En = E

Consequently, lim
n→∞

m(En) = m(E) < ∞. Hence, there is N ∈ N such that m(E\EN) = m(E)− m(EN) < δ.

Let A = EN . Then, for all x ∈ A, | f (x)− fn(x)| < η for all n ≥ N. This completes the proof. ■

We can now prove Theorem 2.21.
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Proof of Theorem 2.21. Due to our discussion above, we may suppose that fn → f pointwise on E and f
is finite on all of E. Let An be such that there is an index N with | f − fk| ≤ 1/n for all k ≥ N and

m(E\An) < ε/2n+1. Define A =
∞⋂

n=1
An. Then

m(E\A) ≤
∞

∑
n=1

m(E\An) < ε/2

We claim that fn ⇒ f uniformly on A. Choose some η > 0. Then, there is N ∈ N such that 1/N < η.
Consequently, for all x ∈ AN , there is an index M such that for all k ≥ M, | f − fk| < η. But since A ⊆ AN ,
we have that for all x ∈ A, there is an index M such that for all k ≥ M, | f (x)− fk(x)| < η, which implies
uniform convergence.

Now, since A is the countable intersection of measurable sets, it is measurable. As a result, due to
Theorem 1.22, there is a closed set F ⊆ A with m(A\F) < ε/2. Thus, F ⊆ E and m(E\F) < ε and fn ⇒ f on
F. This completes the proof. ■

Let us consider the case when m(E) = ∞. Consider the sequence of functions fn : R → R given by

fn(x) = x
(

1 − 1
n

)
Then, it is not hard to see that fn → f on E = R and f is finite on E. Choose any ε > 0 and let F ⊆ R

be a closed subset of R such that m(R\F) < ε. Since R\F is open in R, it is the disjiont union of open
intervals. Further, since it has finite measure, all the disjiont intervals must be bounded. As a result, F
is not bounded.

We now claim that fn may not converge uniformly to f on F. Suppose it did, then, pick some δ > 0.
Then, there is N ∈ N such that for all n ≥ N, | f − fn| < δ on F. But this implies |x/n| < δ on F, which
is absurd, since F is unbounded.

The above discussion shows that Egoroff’s theorem may not hold on dropping the finite measure hypothe-
sis.

Next, we come to Lusin’s Theorem, illustrating the third of Littlewood’s three principles. We shall state
the theorem first, then prove a useful lemma and finally prove the theorem.

Lemma 2.23. Let f be a simple function defined on E. Then for each ε > 0, there is a continuous function g on
R and a closed set F contained in E for which f = g on F and m(E\F) < ε.

Proof. Let f = ∑n
i=1 aiχEi where the sets Ei are disjoint. Due to Theorem 1.22, there are closed sets Fi with

m(Ei\Fi) < ε/n and Fi ⊆ Ei. Let F =
⊔n

k=1 Fi. Then F is closed. Define the function g on F by g(x) = ai
if x ∈ Fi. Note that this function is well defined because the Fi are disjoint. Then, using Tietze’s Extension
Theorem, we may extend g to a continuous function on all of R.

Finally, note that

m(E\F) = m

 n⊔
k=1

(Ek\Fk)

 =
n

∑
k=1

m(Ek\Fk) < ε

This completes the proof. ■

Lusin’s Theorem essentially extends the above proposition to general measurable functions.

Theorem 2.24 (Lusin). Let f : E → R be real valued measurable. Then for each ε > 0, there is a continuous
function g : R → R and a closed set F ⊆ E such that f = g on F and m(E\F) < ε.
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Proof. We divide the proof into two cases, one for when m(E) < ∞ and the other for when m(E) = ∞.

m(E) < ∞: Due to the Simple Approximation Theorem, there is a sequence φn : E → R of simple functions
that converge to f on E. Using the preceeding lemma, there is a sequence of continuous functions gn :
R → R and closed sets Fn such that the restriction of gn to Fn is φn and m(E\Fn) < ε/2n+2. Further,
due to Egoroff’s Theorem, there is a closed set F0 that is contained in E such that { fn} converges to f

uniformly on F0 and m(E\F0) < ε/22. Define F =
∞⋂

n=0
. Then m(E\F) ≤ ε/2 < ε and since φn converge

uniformly on F0 and thus on F, so do gn and their pointwise limit g is continuous on F. Finally, due
to the Tietze Extension Theorem, this function may be extended to a continuous function g : R → R.

m(E) = ∞: Consider the collection {E ∩ [k, k + 1)}k∈Z, which is a countable collection of disjoint sets
whose union is E. Reindex this set as {En}. For each En, there is a closed subset Fn such that
m(En\Fn) < ε/2n+1 and there is a continuous function gn on En which agrees with f on Fn. Since
the collection Fn is locally finite, the Pasting Lemma holds and there is a continuous function g on⋃

Fn which agrees with f . Again, since Fn is locally finite, the union
⋃

Fn is closed and thus, we may
use the Tietze Extension Theorem.

■
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Chapter 3

Lebesgue Integration

3.1 Lebesgue Integral of Bounded Function on Finite Measure Sets

In this section we shall study only bounded functions on sets of finite measure and show that all Riemann
Integrable functions are Lebesgue Integrable. Of course, to prove this result, it suffices to consider a domain
of finite measure since the Riemann Integral is defined over a bounded interval.

We shall also show in this section that all bounded measurable functions on a set of finite measure are
integrable, due to Lemma 2.16. In the next section, we shall extend our theory of integration to general
measurable functions, which need not be finite and which may be defined over sets of infinite measure.

Definition 3.1 (Integral of Simple Functions). Let ψ : E → R be a simple function with canonical
representation

ψ =
n

∑
i=1

αiχEi

Then, we define the integral of ψ over E by

∫
E

ψ =
n

∑
i=1

αim(Ei)

Proposition 3.2. Let {Ei}n
i=1 be a finite disjoint collection of measurable subsets of a set of finite measure E. If

φ = ∑n
i=1 αiχEi on E, then ∫

E
φ =

n

∑
i=1

αim(Ei)

Proof. Trivial. ■

Proposition 3.3 (Simple Linearity and Monotonicity). Let φ and ψ be simple functions on a set of finite
measure E. Then for any α, β ∈ R, ∫

E
αφ + βψ = α

∫
E

φ + β
∫

E
ψ

Further, if φ ≤ ψ on E, then
∫

E φ ≤
∫

E ψ.
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Proof. Since φ and ψ take finitely many distinct values, we may represent E as the disjoint union of mea-
surable sets Ei, such that φ and ψ are constant on each Ei. Then, we may write

φ =
n

∑
i=1

aiχEi ψ =
n

∑
i=1

biχEi

As a result, we have

αφ + βψ =
n

∑
i=1

(αai + βbi)χEi

=⇒
∫

E
αφ + βψ =

n

∑
i=1

(αai + βbi)m(Ei) = α
n

∑
i=1

aim(Ei) + β
n

∑
i=1

bim(Ei) = α
∫

E
φ + β

∫
E

ψ

Next, ∫
E

ψ −
∫

E
φ =

∫
E
(ψ − φ) ≥ 0

since ψ − φ ≥ 0. ■

Definition 3.4 (Upper and Lower Integrals). Let E ⊆ R have finite measure and f : E → R be a
bounded function. We define the lower and upper Lebesgue integral of f over E to be

∫
E

f = sup


∫

E
φ

∣∣∣∣∣ φ simple and φ ≤ f on E


∫

E
f = inf


∫

E
φ

∣∣∣∣∣ φ simple and f ≤ φ on E


Then f is said to be Lebesgue Integrable over E provided its upper and lower Lebesgue intnegrals

over E are equal. The common value is termed the Lebesgue Integral of f over E and is denoted by
∫

E f .

Since every step function is simple we immediately have that every Riemann Integrable function is
Lebesgue Integrable.

Theorem 3.5. Let E ⊆ R have finite measure and f : E → R be a bounded measurable function. Then f is
integrable over E.

Proof. Due to Lemma 2.16, there are simple functions φ, ψ such that φ ≤ f ≤ ψ and ψ − φ < 1/n. Conse-
quently, ∫

E
ψ − φ ≤ 1

n
m(E)

This immediately implies the desired conclusion. ■

Theorem 3.6 (Linearity and Monotonicity). Let E ⊆ R have finite measure and f , g : E → R be bounded
measurable functions. Then for any α, β ∈ R∫

E
(α f + βg) = α

∫
E

f + β
∫

E
g
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and if f ≤ g on E, then ∫
E

f ≤
∫

E
g

Proof. We shall show linearity in two steps. First, we shall show that
∫

E α f = α
∫

E f . The case for α = 0 is
trivial. Let us consider the case α > 0, since the other case follows analogously.∫

E
α f = sup

ψ≤α f

∫
E

ψ = sup
φ≤ f

∫
E

αφ = α
∫

E
f

Next, we shall show that
∫

E( f + g) =
∫

E f +
∫

E g. First note that since f and g are bounded, so is f + g.
Now, for every pair of simple functions (ϕ, φ) with ϕ ≤ f and φ ≤ g, we have ϕ + φ ≤ f + g and thus,∫

E
( f + g) = sup

ψ≤ f+g

∫
E

ψ ≥
∫

E
(ϕ + φ) =

∫
E

ϕ +
∫

E
φ

Taking the supremum on both sides, we have
∫

E( f + g) ≥
∫

E f +
∫

E g. A similar inequality can be obtained
in the reverse direction and the conclusion follows.

Finally, for monotonicity, note that g − f ≥ 0 on E and therefore,
∫

E(g − f ) ≥ 0 and using linearity, we
have

∫
E g ≥

∫
E f . This completes the proof. ■

Proposition 3.7. Let E have finite measure and f : E → R be bounded. Then for any measurable E1 ⊆ E,∫
E1

f =
∫

E
f χE1

Proof. Let φ be a simple function such that φ ≤ f on E1. Extend φ to the function ϕ : E → R on E that is
defined as

ϕ(x) =

{
φ(x) x ∈ E1

0 x /∈ E1

It is not hard to see that ϕ ≤ f χE1 on E and thus∫
E

f χE1 ≥ sup
ϕ

∫
E

ϕ = sup
φ

∫
E1

φ =
∫

E1

f

Conversely, let φ be a simple function such that φ ≥ f on E1, then the extension ϕ is such that ϕ ≥ f χE1 on
E and therefore, ∫

E
f χE1 ≤ inf

ϕ

∫
E

ϕ = inf
φ

∫
E1

φ =
∫

E1

f

This completes the proof. ■

Corollary 3.8. Let E have finite measure and f : E → R be bounded. Suppose A and B are disjoint
measurable subsets of E. Then, ∫

A∪B
f =

∫
A

f +
∫

B
f

Proof. Note that χA∪B = χA + χB. The conclusion is obvious now. ■
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Lemma 3.9. Let E have finite measure and f : E → R be bounded. Then∣∣∣∣∫E
f
∣∣∣∣ ≤ ∫

E
| f |

Proof. Obviously, we have −| f | ≤ f ≤ | f |, then, using monotonicity and linearity of integration, we have

−
∫

E
| f | ≤

∫
E

f ≤
∫

E
| f |

The conclusion is now obvious. ■

Proposition 3.10. Let E have finite measure and fn : E → R be a sequence of bounded measurable functions
that converges uniformly to f : E → R which is a bounded function. Then,

lim
n→∞

∫
E

fn =
∫

E
f

Proof. Let ε > 0 be given. Since the convergence is uniform, there is an index N ∈ N such that for all n ≥ N,
| fn − f | < ε/m(E). Using the above lemma, for all n ≥ N, we have∣∣∣∣∫E

( fn − f )
∣∣∣∣ ≤ ∫

E
| fn − f | ≤ ε

The conclusion is obvious. ■

Theorem 3.11 (Bounded Convergence Theorem). Let E have finite measure and fn : E → R be a sequence
of measurable functions. Suppose { fn} is uniformly pointwise bounded on E. If { fn} → f pointwise on E, then

lim
n→∞

∫
E

fn =
∫

E
f

Proof. First, since fn converge pointwise to f , the latter is measurable. There is some M > 0 such that for
all n ∈ N, | fn| ≤ M. As a result, f is also bounded and therefore, the integral is well defined. Let ε > 0
be given. Due to Theorem 2.21, there is a closed subset F of E with m(E\F) < ε/4M and fn ⇒ f on F.
Furthermore, due to uniform convergence, there is N ∈ N such that for all n ≥ N, | fn − f | < ε/2m(E). As
a result, for all n ≥ N, we have∣∣∣∣∫E

( fn − f )
∣∣∣∣ ≤

∣∣∣∣∣
∫

F
( fn − f ) +

∫
E\F

fn − f

∣∣∣∣∣ ≤
∫

F
| fn − f |+

∫
E\F

| fn − f | ≤
∫

F

ε

2m(E)
+
∫

E\F
2M ≤ ε

This completes the proof. ■

Note that dropping the uniform boundedness hypothesis will not work. Take for example the sequence
of functions fn : [0, 1] → R given by

fn(x) =


n2x 0 ≤ x < 1/n
2n − n2x 1/n ≤ x < 2/n
0 2/n ≤ x ≤ 1

It is not hard to see that fn converges to the zero function pointwise, but
∫
[0,1] fn = 1 for each n ∈ N,

and hence the sequence of integrals do not converge.
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Next, the Bounded Convergence Theorem does not hold for the Riemann Integral. To see this, let
{q1, q2, . . .} be the enumertion of rationals in [0, 1]. Define the sequence of Riemann Integrable functions
fn : [0, 1] → R as

fn(x) =

{
1 x = rk, 1 ≤ k ≤ n
0 otherwise

We see that | fn| ≤ 1 for all n ∈ N and fn converges pointwise to χQ∩[0,1] which is not Riemann inte-
grable.

3.2 Lebesgue Integral of Nonnegative Measurable Functions

In this section we study the integrals of measurable functions that are not necessarily bounded over do-
mains that are not necessarily having finite measure. This is of course an extension of the theory we have
built in the previous section.

Definition 3.12 (Support). Let f : E → [−∞, ∞] be a measurable function. The support of f , denoted
by Supp( f ) = {x ∈ E | f (x) ̸= 0}. The function h is said to have finite suppor if Supp( f ) has finite
measure.

If f : E → R is bounded, measurable and has finite support, we define∫
E

f =
∫

Supp( f )
f

which is well defined, since Supp(h) is a measurable subset of E and thus Lebesgue measurable, further,
since it has finite measure and f is bounded, the integral is as defined in the previous section.

Definition 3.13. Let E be a measurable subset of R and f : E → [0, ∞], a nonnegative measurable
function on E. We define the integral of f over E by

∫
E

f = sup


∫

E
h

∣∣∣∣∣ h bounded, measurable and of finite support 0 ≤ h ≤ f on E



Theorem 3.14 (Chebychev’s Inequality). Let E ⊆ R be measurable and f : E → [0, ∞] be a measurable
function. Then for any λ > 0,

m
(
{x ∈ E | f (x) ≥ λ}

)
≤ 1

λ

∫
E

f

Proof. Define Eλ = {x ∈ E | f (x) ≥ λ}. If m(Eλ) = ∞. Further, define E(n)
λ = [−n, n] ∩ Eλ. Due to

Theorem 1.29, lim
n→∞

E(n)
λ = ∞. Note that the function λχ

E(n)
λ

≤ f on E and is bounded, measurable with

finite support, and therefore,

λm(E(n)
λ ) ≤

∫
E

f

Taking supremum on both sides, we havethe desired conclusion. Next, suppose m(Eλ) < ∞. Then, the
function λχEλ

is bounded measurable with finite support and is ≤ f on E, whence the conclusion follows.
■
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Proposition 3.15. Let E ⊆ R be measurable and f : E → [0, ∞] be a measurable function. Then∫
E

f = 0 if and only if f = 0 a.e. on E

Proof. Define the set
En := {x ∈ E | f (x) ≥ 1/n}

Then, due to Theorem 3.14, m(En) ≤ 0 and thus m(En) = 0. Finally using the continuity of measure,

m({x ∈ E | f (x) > 0}) = m

 ∞⋃
n=1

En

 = lim
n→∞

m(En) = 0

The conclusion follows. ■

Theorem 3.16. Let E ⊆ R be measurable and f , g : E → [0, ∞] be measurable. Then for any α > 0 and β > 0,∫
E
(α f + βg) = α

∫
E

f + β
∫

E
g

Moreover, if f ≤ g on E, then
∫

E f ≤
∫

E g.

Proof. First, for any h, note that h ≤ f if and only if αh ≤ α f and it follows that
∫

E α f = α
∫

E f . We would
now show that

∫
E f + g =

∫
E f +

∫
E g. First, one direction of the inequality is trivial, since for every pair

(h, k) of nonnegative bounded measurable functions of finite support with h ≤ f and k ≤ g, we have
h + k ≤ f + g and hence, ∫

E
h +

∫
E

k =
∫

E
(h + k) ≤

∫
E
( f + g)

and taking the supremum on both sides, we have
∫

E f +
∫

E g ≤
∫

E( f + g). It suffices to show that other
direction of the inequality.

Let ℓ be a nonnegative bounded measurable function of finite support satisfying ℓ ≤ f + g. Let us
define h = min{ℓ, f } and k = ℓ− h. It is not hard to see that h, k are bounded measurable functions of finite
support on E satisfying h ≤ f and k ≤ g. As a result,∫

E
ℓ =

∫
E

h +
∫

E
k ≤

∫
E

f +
∫

E
g

and taking the supremum, the conclusion follows. The assertion about monotonicity follows from noting
that g − f is a nonnegative function on E and therefore has nonnegative integral and finally using linearity.

■

Lemma 3.17. Let E ⊆ R be measurable and f : E → [0, ∞] be measurable. Then, for a measurable subset E1 of
E, ∫

E1

f =
∫

E
f χE1

Proof. ■

Theorem 3.18 (Additivity over Domains). Let E ⊆ R be measurable and A, B ⊆ E be disjoint measurable.
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Then, ∫
A∪B

f =
∫

A
f +

∫
B

f

Proof. Follows from the previous lemma. ■

Corollary 3.19. Let E0 ⊆ E have measure 0. Then∫
E

f =
∫

E\E0

f

Lemma 3.20 (Fatou’s Lemma). Let E ⊆ R be measurable and { fn} be sequence of nonnegative measurable
functions on E that converge pointwise a.e. on E to f . Then∫

E
f ≤ lim inf

n→∞

∫
E

fn

Proof. First, we may suppose without loss of generality that the convergence is everywhere on E (this is
not hard to reason). Next, let h be a nonnegative bounded measurable function of finite support such that
0 ≤ h ≤ f . Define hn = min{ fn, h}. Then, hn → h on E. Further, each hn ≤ h and is therefore pointwise
uniformly bounded (since h is bounded).

Due to Theorem 3.11,
∫

E hn →
∫

E h. Furthermore, since hn ≤ fn, we have
∫

E hn ≤
∫

E fn for each n ∈ N.
Taking lim inf, we have ∫

E
h = lim

n→∞

∫
E

hn = lim inf
n→∞

∫
E

hn ≤ lim inf
n→∞

∫
E

fn

The conclusion follows. ■

Example 3.21. Let { fn} be a sequence of nonnegative measurable functions on E that converges point-
wise on E to f . Suppose fn ≤ f on E for each n. Show that

lim
n→∞

∫
E

fn =
∫

E
f

Proof. Due to Fatou’s Lemma and the fact that fn ≤ f , we have∫
E

f ≤ lim inf
n→∞

∫
E

fn ≤ lim sup
n→∞

∫
E

fn ≤
∫

E
f

The conclusion now follows. ■

Theorem 3.22 (Monotone Convergence Theorem). Let E ⊆ R be measurable and { fn} an increasing
sequence of nonnegative measurable functions on E. Let f : E → [0, ∞] be such that fn → f a.e. on E. Then

lim
n→∞

∫
E

fn =
∫

E
f

Proof. Since the sequence { fn} is increasing, so is the sequence
{∫

E fn

}
and therefore, converges to some

extended real number. Now, Lemma 3.20 gives us∫
E

f ≤ lim inf
n→∞

∫
E

fn ≤
∫

E
f

The conclusion follows. ■
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Corollary 3.23. Let {un} be a sequence of nonnegative measurable functions on E. If f = ∑∞
n=1 un

pointwise a.e. on E, then ∫
E

f =
∞

∑
n=1

∫
E

un

Proof. Trivial and omitted. ■

Note that the Monotone Convergence Theorem may not hold for decreasing sequences of positive mea-
surable functions, take for example the sequence { fn = χ(n,∞)}n∈N. The pointwise limit of this sequence is
the zero function but

∫
E fn = ∞ for each n ∈ N.

The following is a generalization of Lemma 3.20 but we shall use Theorem 3.22 to prove it which in turn
depends on Lemma 3.20.

Lemma 3.24 (Generalized Fatou’s Lemma). Let E ⊆ R be measurable and { fn} be a sequence of nonnegative
measurable functions. Then ∫

E
lim inf

n→∞
fn ≤ lim inf

n→∞

∫
E

fn

Proof. Define the function
gk = inf

i≥k
fi

Then, g1 ≤ g2 ≤ · · · and gn → lim inf
n→∞

fn. By definition, we also have

∫
E

gk ≤
∫

E
fk

Taking lim inf
n→∞

and using Theorem 3.22, we have

∫
E

lim inf
n→∞

fn = lim
n→∞

∫
E

gn = lim inf
n→∞

∫
E

gn ≤ lim inf
n→∞

∫
E

fn

This completes the proof. ■

Definition 3.25 (Integrable). A nonnegative measurable function f on a measurable set E is said to be
integrable on E provided ∫

E
f < ∞

Proposition 3.26. Let E ⊆ R be measurable and f be integrable over E. Then f is finite a.e. on E.

Proof. Due to Theorem 3.14, for each n ∈ N,

m({x ∈ E | f (x) ≥ n}) ≤ 1
n

∫
E

f

since
∫

E f is finite, the right hand side tends to 0 as n → ∞. The conclusion follows. ■
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Proposition 3.27. Let E ⊆ R be measurable and f : E → [0, ∞] be measurable. Then,

∫
E

f = sup


∫

E
φ

∣∣∣∣∣ φ simple of finite support and 0 ≤ φ ≤ f


Proof. We first show that there is an increasing sequence of nonnegative simple functions with finite support
that converges to f . Define En = E ∩ [−n, n]. Consider the simple function φn on {x ∈ En | f (x) ≤ n},
which is measurable and has finite measure since En has finite measure. On the remaining En, define φ = n.
We now have a sequence of measurable functions, each with finite support that converges to f . To make
sure this is increasing, write

ψn = max
1≤i≤n

φn

Finally, due to the Monotone Convergence Theorem, we have

lim
n→∞

∫
E

φn =
∫

E
f

and the conclusion follows. ■

This establishes that Rudin’s definition of the integral is equivalent to Royden’s definition of the inte-
geral, albeit the former does it in a more abstract sense.

3.3 General Lebesgue Integral

In this section we shall study the Lebesgue Integral of not necessarily nonnegative measurable functions
on a measurable set. This is the integral in its maximum generality. The highlight of this section is the
Dominated Convergence Theorem (Theorem 3.33).

Proposition 3.28. Let E ⊆ R be measurable and f be a measurable function on E. Then f+ and f− are
integrable over E if and only if | f | is integrable over E.

Proof. We have | f | = f+ + f− and f+ ≤ | f | and f− ≤ | f |. The conclusion follows from linearity and
monotonicity. ■

Definition 3.29 (Integrable). Let E ⊆ R be measurable. A measurable function f on E is said to be
integrable over E provided | f | is integrable over E. In this case, we define∫

E
f =

∫
E

f+ −
∫

E
f−

Proposition 3.30. Let E ⊆ R be measurable and let f be integrable over E. Then f is finite a.e. on E and∫
E

f =
∫

E\E0

f

if E0 ⊆ E and m(E0) = 0.
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Proof. Since | f | is integrable, it is finite a.e. on E, thus f is finite a.e. on E. We have∫
E\E0

f =
∫

E\E0

f+ −
∫

E\E0

f− =
∫

E
f+ −

∫
E

f− =
∫

E
f

■

Proposition 3.31 (Integral Comparison Test). Let E ⊆ R be measurable and f be a measurable function on
E. Suppose there is a nonnegative function g that is integrable over E and | f | ≤ g on E. Then f is integrable
over E and ∣∣∣∣∫E

f
∣∣∣∣ ≤ ∫

E
| f |

Proof. Trivial. ■

Theorem 3.32 (Linearity and Monotonicity). Let E ⊆ R be measurable and f , g be measurable functions on
E. Then, for any α, β ∈ R, the function α f + βg is integrable over E and∫

E
(α f + βg) = α

∫
E

f + β
∫

E
g

Further, if f ≤ g on E, then
∫

E f ≤
∫

E g.

Proof. First, suppose α > 0. Then [α f ]+ = α f+ and [α f ]− = α f−. Similarly, when α < 0, [α f ]+ = −α f−

and [α f ]− = −α f+. It is not hard to see from here that
∫

E α f = α
∫

E f .
Next, we establish that

∫
E( f + g) =

∫
E f +

∫
E g. Since | f + g| ≤ | f | + |g|, it is integrable due to the

Integral Comparison Test. Furthermore, since f and g are integrable, we may suppose without loss of
generality that they are finite on E (since they are required to be finite a.e. on E). We have

( f + g)+ − ( f + g)− = ( f+ − f−) + (g+ − g−)

rearranging, we obtain
( f + g)+ + f− + g− = ( f + g)− + f+ + g+

Since both sides are nonnegative integrable functions, we have, using the linearity of integration of non-
negative measurable functions,∫

E
( f + g)+ +

∫
E

f− +
∫

E
g− =

∫
E
( f + g)− +

∫
E

f+ +
∫

E
g+

Rearranging the terms, we have the desired conclusion.
Finally, we may suppose without loss of generality that f and g are finite on E, now if f ≤ g, then

g − f ≥ 0 on E, then

0 ≤
∫

E
(g − f ) =

∫
E

g −
∫

E
f

The conclusion follows. ■

Theorem 3.33 (Dominated Convergence Theorem). Let { fn} be a sequence of measurable functions on E.
Suppose there is a function g that is integrable over E and | fn| ≤ g on E for all n ∈ N. If { fn} → f pointwise
a.e. on E, then f is integrable over E and

lim
n→∞

∫
E

fn =
∫

E
f
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Proof. First, note that | f | ≤ g and therefore is integrable due to the Integral Comparison Test. Since each
fn, f and g are finite a.e. and the convergence is pointwise a.e., we may suppose without loss of generality
that all the fn, f and g are finite on E and the convergence is pointwise on all of E. Consider the sequence of
nonnegative integrable functions {g − fn} on E. It is not hard to see that this sequence converges pointwise
to the nonnegative function g − f on E. As a result, using Lemma 3.20,∫

E
(g − f ) ≤ lim inf

n→∞

∫
E
(g − fn) =

∫
E

g − lim sup
n→∞

∫
E

fn

and thus lim sup
n→∞

∫
E fn ≤

∫
E f .

Similarly, consider the sequence of nonnegative integrable functions {g + fn} that converges pointwise
to the nonnegative integrable function g + f on E. Using Lemma 3.20, we have∫

E
(g + f ) ≤ lim inf

n→∞

∫
E
(g + fn) =

∫
E

g + lim inf
n→∞

∫
E

fn

and thus
∫

E f ≤ lim inf
n→∞

∫
E fn. The conclusion follows. ■

3.4 Countable Additivity and Continuity of Integration

Theorem 3.34 (Countable Additivity). Let E ⊆ R and f : E → [−∞, ∞] be integrable. Let {En} be a
disjoint countable collection of measurable subsets of E whose union is E. Then∫

E
f =

∞

∑
n=1

∫
En

f

Proof. Define An =
⋃n

k=1 Ek and fn := f χAn . Then fn is measurable on E and | fn| ≤ | f | on E for all
n ∈ N. Further, note that fn → f pointwise on E. Since f is measurable, we may invoke the Dominated
Convergence Theorem to obtain

∫
E

f = lim
n→∞

∫
E

fn = lim
n→∞

∫
An

f = lim
n→∞

n

∑
k=1

∫
Ek

f

Since the right hand side is the definition of
∞
∑

n=1

∫
En

f , the proof is complete. ■

Theorem 3.35 (Continuity of Integration).

3.5 The Vitali Convergence Theorem

Theorem 3.36. Let f : E → [−∞, ∞] be measurable. If f is integrable over E, then for each ε > 0, there is
δ > 0 such that whenever A ⊆ E is measurable with m(A) < δ, then

∫
E | f | < ε.

Conversely, if m(E) < δ and for each ε > 0, there is δ > 0 such that whenever A ⊆ E with m(A) < δ,∫
A | f | < ε, then f is integrable on E.
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Proof. We shall show this for f+ and f− separately, which would immediately imply the result for f . There-
fore, we may suppose that f ≥ 0 on E. Then, by definition, there is a measurable bounded function of finite
support fε satisfying 0 ≤ fε ≤ f on E and

∫
E f − fε < ε/2.

Now, for any A ⊆ E, we have ∫
A
( f − fε) ≤

∫
E
( f − fε) < ε/2

And hence,
∫

A f <
∫

A fε + ε/2. Since fε is bounded, there is some M > 0 such that 0 ≤ fε ≤ M on E and
hence, when m(A) < ε/2M, we have ∫

A
f <

∫
A

fε + ε/2 ≤ ε

This proves the first assertion.
Conversely, suppose m(E) < ∞. Then, there is δ > 0 corresponding to ε = 1. Since we may construct

disjoint sets {Ei}N
i=1 such that E =

N⊔
i=1

Ei and m(Ei) < δ for each 1 ≤ i ≤ N, we have

∫
E

f =
N

∑
i=1

∫
Ei

f < N

which completes the proof. ■

Definition 3.37 (Uniformly Integrable). A family F of measurable functions on E is said to be uni-
formly integrable over E provided for each ε > 0, there is a δ > 0 such that for each f ∈ F , whenever
A ⊆ E is measurable and m(A) < δ, then

∫
A | f | < ε.

Proposition 3.38. Let E ⊆ R be measurable and F = { fi}n
i=1 be a finite collection of integrable functions on

E. Then F is uniformly integrable over E.

Proof. Let ε > 0 be given. Since every singleton is uniformly integrable, there is δi > 0 corresponding to ε
for { fi}. Now, just set δ = min1≤i≤n δi. ■

Theorem 3.39 (Vitali Convergence Theorem). Let E ⊆ R have finite measure. Suppose the sequence of
functions { fn}∞

n=1 is uniformly integrable over E. If fn → f pointwise a.e. on E, then f is integrable over E
and

lim
n→∞

∫
E

fn =
∫

E
f

Proof. We shall first show that f is integrable over E. Since the collection { fn} is uniformly integrable, there

is δ > 0 corresponding to ε = 1 in the definition of uniform integrability. We may write E =
N⊔

k=1
Ek where

m(Ek) < δ. Therefore, ∫
E
| fn| =

N

∑
k=1

∫
En

| fn| < N

Note that since fn → f pointwise a.e. on E, we must have that | fn| → | f | pointwise a.e. on E. Therefore,
due to Fatou’s Lemma, ∫

E
| f | ≤ lim inf

n→∞

∫
E
| fn| ≤ N

This shows that | f | and hence f is integrable. Therefore, f is finite a.e. on E, hence, we may suppose
without loss of generality that f is real valued on E and the convergence is pointwise on E.

39



Now, we have ∣∣∣∣∫E
f −

∫
E

fn

∣∣∣∣ = ∣∣∣∣∫E
( f − fn)

∣∣∣∣ ≤ ∫
E
| f − fn|

Let ε > 0 be given. Correspondingly, there is δ > 0 corresponding to ε/3 in the definition of uniform
integrability. Due to Egoroff’s Theorem (Theorem 2.21), there is a subset A ⊆ E with m(A) < δ such that
E\A is closed and the convergence fn → f is uniform on E.

Further, since m(A) < δ, we have
∫

A | fn| < ε/3 for each n ∈ N and due to Fatou’s Lemma, we have∫
A | f | ≤ ε/3. Finally, there is some N ∈ N such that for all n ≥ N, | fn − f | ≤ ε/3m(E\A). Putting all this

together, we have, for all n ≥ N that∣∣∣∣∫E
f −

∫
E

fn

∣∣∣∣ ≤ ∫
E
| f − fn| ≤

∫
E\A

| fn − f |+
∫

A
| fn|+

∫
A
| f | < ε

This completes the proof. ■
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Chapter 4

Differentiation

4.1 Vitali and Lebesgue’s Theorems

Definition 4.1 (Vitali Covering). A colection F of closed, bounded, nondegenerate intervals is said to
cover a set E in the sense of Vitali if for each x ∈ E and ε > 0, there is an interval I ∈ F containing x with
ℓ(I) < ε.

We introduce a bit of notation at this point. For an interval I and a positive real number r, let r ∗ I denote
the dialation of the interval I about the midpoint of I by a factor of r.

Lemma 4.2 (Vitali’s Covering Lemma). Let E ⊆ R have finite outer measure and F a collection of closed,
bounded intervals that covers E in the sense of Vitali. Then for each ε > 0, there is a finite disjoint subcollection
{Ik}n

k=1 of F for which

m∗

E\
n⋃

k=1

Ik

 < ε.

Proof. Since m∗(E) < ∞, there is an open set O containing E with m(O) < ∞. Consider

F̃ = {I ∈ F | I ⊆ O}.

It is not hard to argue that F̃ covers E in the sense of Vitali. Henceforth, let F = F̃ .
Pick some interval I1 ∈ F . We shall construct a sequence of disjoint intervals {In} inductively. Suppose

I1, . . . , In have been chosen for some positive integer n. Suppose E\⋃n
k=1 Ik ̸= ∅, for if not, then we are

done and the Lemma is proved. Define

Fn =

I ∈ F
∣∣∣∣∣I ∩ n⋃

k=1

Ik = ∅

 .

It is not hard to see that

E\
n⋃

k=1

Ik ⊆
⋃

I∈Fn

I

and thus the collection Fn is nonempty. Let

sn = sup
I∈Fn

ℓ(I).
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Note that sn ≤ m(O) < ∞. Choose an interval In+1 ∈ Fn such that sn/2 < ℓ(In+1) ≤ sn. This finishes the
inductive definition of the sequence {In}∞

n=1 which is a countable disjoint collection of F . Further, for each
positive integer n,

ℓ(In+1) > ℓ(I)/2 if I ∈ F and I ∩
n⋃

k=1

Ik = ∅.

We now contend that for every positive integer n,

E\
n⋃

k=1

Ek ⊆
∞⋃

k=n+1

5 ∗ Ik.

Let x ∈ E\⋃n
k=1 Ek and let I be an interval in Fn. First, note that I must have a nonempty intersection with

some Ik for if not, then for every positive integer k, I ∩ ⋃k
j=1 Ik = ∅ whence ℓ(Ik+1) > ℓ(I)/2. This is a

contradiction since

∞ > m(O) ≥ m

 ∞⋃
n=1

In

 =
∞

∑
n=1

ℓ(In).

Let N be the smallest positive integer such that I ∩ IN ̸= ∅. Obviously, N > n. Again, since I ∩⋃N−1
k=1 Ik = ∅,

we have ℓ(IN) > ℓ(I)/2. Hence, the distance from x to the midpoint of IN is at most

ℓ(I) +
1
2
ℓ(IN) <

5
2
ℓ(IN).

Consequently, x ∈ 5 ∗ IN ⊆ ⋃∞
k=n+1 5 ∗ Ik thereby proving our claim.

Finally, since the sum ∑∞
k=1 ℓ(Ik) converges, we may pick a positive ingeter n such that the sum

∞

∑
k=n+1

ℓ(Ik) < ε/5

and thus

m∗

E\
n⋃

k=1

Ik

 ≤ m

 ∞⋃
k=n+1

5 ∗ Ik

 = 5
∞

∑
k=n+1

ℓ(Ik) < ε. ■

Definition 4.3 (Lebesgue Derivative). Let f be a real valued function and x an interior point of its
domain. Define the upper and lower derivatives of f at x by

D f (x) := lim
h→0+

 sup
0<|t|≤h

f (x + t)− f (x)
t

 , D f (x) := lim
h→0+

(
inf

0<|t|≤h

f (x + t)− f (x)
t

)
.

If D f (x) = D f (x), we say that f is Lebesgue differentiable at x and denote by f ′(x) the common value o
the upper and lower derivatives.

Proposition 4.4. Let f : (a, b) → R be a real valued function. Then f is Lebesgue differentiable at x if and only
if it is differentiable at x.

Proof. ■
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Chapter 5

Lp Spaces

5.1 Introduction

Let E ⊆ R be measurable and F be the set of all extended real valued measurable functions defined on
E. We define the equivalence relation ∼ on F by f ∼ g if and only if f = g a.e. on E. That this is an
equivalence relation is trivial.

For 1 ≤ p < ∞, define Lp(E) to be the collection of equivalence classes [ f ] for which∫
E
| f |p < ∞

It is not hard to see that this property is well defined by taking any representative of an equivalence
class. Note that L1(E) is the collection of equivalence classes of integrable functions on E.

We contend that Lp(E) is an R-vector space. Indeed, note that for real numbers a, b we have

|a + b| ≤ |a|+ |b| ≤ 2 max{|a|, |b|}

and consequently,
|a + b|p ≤ 2p max{|a|p, |b|p}

This shows that if [ f ], [g] ∈ Lp(E), then so does [ f + g].
A function f ∈ F is said to be essentially bounded if there is M ≥ 0, called an essential upper bound for

f , for which | f (x)| ≤ M for almost all x ∈ E. It is not hard to show that L∞(E) is an R-vector space. In
conclusion, all the Lp spaces are R-vector spaces for 1 ≤ p < ∞.

5.1.1 L∞ Spaces

Let E ⊆ R be measurable. Define the function ∥ · ∥∞ : L∞(E) by

∥[ f ]∥∞ = inf{M | M is an essential upper bound for f }.

That this function is well defined on the equivalence classes is not hard to show. We now contend that
∥ · ∥∞ gives L∞(E) the structure of a normed vector space.

Lemma 5.1. ∥ f ∥∞ is an essential upper bound for f .

Proof. ■ Add in later

As a consequence∥ f ∥∞ + ∥g∥∞ is an essential upper bound for f + g on E whence ∥ f + g∥∞ ≤ ∥ f ∥∞ +
∥g∥∞. In conclusion, the pair (L∞(E), ∥ · ∥∞) forms a normed R-vector space.
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5.2 Some Inequalities

Theorem 5.2 (Young). Let p, q > 1 be such that 1
p + 1

q = 1. For nonnegative reale numbers a, b,

ab ≤ ap

p
+

bq

q

Proof. Consider the function f (x) = 1
p xp + 1

q − x. Note that f (1) = 0. Moreover, f ′(x) < 0 on (0, 1) and

f ′(x) > 0 on (1, ∞). As a result, f (x) ≥ 0 for each x ∈ [0, ∞). Substituting x = a/bq−1 we obtain the desired
inequality. ■

Note, if p, q > 1 are such that 1
p + 1

q = 1, then p and q are said to be conjugates of one another.

Theorem 5.3 (Hölder). Let E be a measurable set, 1 ≤ p < ∞ and q the conjugate of p. If f ∈ Lp(E) and
g ∈ Lq(E), then f g is integrable over E and ∫

E
| f g| ≤ ∥ f ∥p∥g∥q

Moreover, if f ̸= 0, the function f ∗ = ∥ f ∥1−p
p sgn( f )| f |p−1 belongs to Lq(E) and∫

E
f f ∗ = ∥ f ∥p

and ∥ f ∥q = 1.

Proof. First, we analyze the case p > 1. Upon replacing f by f /∥ f ∥p and g by g/∥g∥q, we need only show,
for ∥ f ∥p = 1 and ∥g∥q = 1 that

∫
E | f g| ≤ 1. First, since | f |p and |g|q are integrable over E, they are finite

a.e. on E. Hence, due to Young’s Inequality,

| f g| ≤ | f |p
p

+
|g|q

q
a.e. on E

Then, due to the Integral Comparison Test, | f g| is integrable on E, further,

∫
E
| f g| ≤

∫
E

(
| f |p

p
+

|g|q
q

)
= 1

Next, note that ∫
E

f f ∗ =
∫

E
∥ f ∥1−p

p | f |p = ∥ f ∥p

and

∥ f ∗∥q = ∥ f ∥1−p
p

(∫
E
| f |p

) 1
q
= ∥ f ∥1−p

p ∥ f ∥p/q
p = 1

We now prove the statement for p = 1. On E, we have | f g| ≤ | f |∥g∥∞, thus | f g| is integrable and∫
E
| f g| ≤

∫
E
| f |∥g∥∞ ≤ ∥ f ∥1∥g∥∞

The second part of the assertion is trivial for p = 1. ■
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Theorem 5.4 (Minkowski). Let E ⊆ R be measurable and 1 ≤ p ≤ ∞. If f , g ∈ Lp(E), then so does f + g
and

∥ f + g∥p ≤ ∥ f ∥p + ∥g∥p

Proof. We have

∥ f + g∥p =
∫

E
( f + g)( f + g)∗

=
∫

E
f ( f + g)∗ +

∫
E

g( f + g)∗

≤
(
∥ f ∥p + ∥g∥p

)
∥( f + g)∗∥p

= ∥ f ∥p + ∥g∥p

This completes the proof. ■

Theorem 5.5. For 1 ≤ p ≤ ∞,
(

Lp(E), ∥ · ∥p

)
forms a normed R-vector space.

Proof. That it forms an R-vector space has been established. Further, due to Minkowski’s Inequality, we
conclude that ∥ · ∥p is indeed a norm on Lp(E). ■

Proposition 5.6. Let E ⊆ R have finite measure and 1 ≤ p ≤ q ≤ ∞. Then, Lq(E) ⊆ Lp(E).

Proof. Let f ∈ Lq(E) and define

A = {x ∈ E : | f (x)| ≤ 1} B = {x ∈ E : | f (x)| > 1}.

Then,
∥ f ∥p

p

∫
E
| f |p =

∫
A
| f |p +

∫
B
| f |p ≤

∫
A

1 +
∫

B
| f |q ≤ m(A) + ∥ f ∥q

q < ∞

and the conclusion follows. ■

5.3 Riesz-Fischer Theorem

Definition 5.7 (Rapidly Cauchy Sequences). Let (V, ∥ · ∥) be a normed vector space. A sequence {vn}
in V is said to be rapidly Cauchy if there is a sequence {εn} of positive reals such that

∞
∑

n=1
εn converges

and ∥vn+1 − vn∥ ≤ ε2
n for each n ∈ N.

Obviously, every rapidly Cauchy sequence is Cauchy. The following proposition gives a partial con-
verse.

Proposition 5.8. Let (V, ∥ · ∥) be a normed vector space. Then every Cauchy sequence has a rapidly Cauchy
subsequence.

Proof. For each k ∈ N, there is Nk ∈ N such that for all m, n ≥ Nk, ∥vm − vn∥ < 1/2k. We may choose Nk
as an increasing sequence, whence it follows that {vNk} is a rapidly Cauchy sequence. ■
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Theorem 5.9. Let E be a measurable set and 1 ≤ p ≤ ∞. Then every rapidly Cauchy sequence in Lp(E)
converges both with respect to the Lp(E) norm and pointwise a.e. on E to a function in Lp(E).

Proof. First, by excising a suitable subset of measure 0 from E, we may suppose that all functions in the
rapidly Cauchy sequence are real valued. We divide the proof into two cases.

Case 1: 1 ≤ p < ∞. Let { fn} be a rapidly Cauchy sequence in Lp(E) and {εn} be the corresponding se-
quence such that ∥ fn+1 − fn∥p < ε2

n.

We now have

m
(
{x ∈ E : | fk+1(x)− fk(x)| ≥ εk}

)
= m

(
{x ∈ E : | fk+1(x)− fk(x)|p ≥ ε

p
k}
)

≤ 1
ε

p
k

∫
E
| fk+1 − fk|p

< ε
p
k

Since ∑∞
n=1 εn converges, so does ∑∞

n=1 ε
p
n. Then, due to Lemma 1.30, every x ∈ E belongs to at most

finitely many of the above sets. Therefore, there is E0 ⊆ E of measure 0 such that for each x ∈ E\E0,
there is K(x) ∈ N such that for all k ≥ K(x), | fk+1(x)− fk(x)| < εk.

From here, it is not hard to see that for each x ∈ E\E0, the sequence { fn(x)} is Cauchy and therefore,
converges in R. Let f (x) be the limit of { fn(x)}. Using the triangle inequality, we have

∫
E
| fn+k − fn|p <

n+k−1

∑
j=n

ε2
j

p

<

 ∞

∑
j=n

ε2
j

p

In the limit k → ∞, due to Fatou’s Lemma, we have

∫
E
| f − fn|p ≤

 ∞

∑
j=n

ε2
j

p

Now, due to the above inequality, we see that f − fn ∈ Lp(E), therefore, f ∈ Lp(E). Further, from the
inequality, we infer that fn → f under the Lp norm, completing the proof in this case.

■

Theorem 5.10 (Riesz-Fischer). Let E ⊆ R be measurable and 1 ≤ p ≤ ∞. Then Lp(E) is a Banach space.

Proof. We have shown that every Cauchy sequence in a normed vector space has a rapidly Cauchy sub-
sequence, and from the above result, that subsequence must converge. Hence, every Cauchy sequence in
Lp(E) has a convergent subsequence, consequently the Cauchy sequence must converge1. ■

5.4 Separability and Approximation

Proposition 5.11. Let E ⊆ R be measurable and 1 ≤ p ≤ ∞. Then the subspace of simple functions in Lp(E)
is dense in Lp(E).

1This is a well known result
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Proof. Case 1: 1 ≤ p < ∞. Let f ∈ Lp(E). Due to the Simple Approximation Theorem, there is a sequence
of simple functions {φn}∞

n=1 converging to f with |φn| ≤ f for all n ∈ N. We have

| f − φn|p ≤ 2p max{| f |p, |φn|p} = 2p| f |p.

Then, due to the Dominated Convergence Theorem, we have

lim
n→∞

∫
E
| f − φn|p = 0,

and the conclusion follows.

Case 2: p = ∞. ■

5.5 The Riemann Lebesgue Theorem

Lemma 5.12. Let I = [a, b] ⊆ R be a compact interval. Then, C(I) is dense in Lp(I) for 1 ≤ p ≤ ∞.

Note that on an interval I, an equivalence class in Lp(I) containing a continuous function is a singleton.

Proof. Case 1: p < ∞. Let f ∈ Lp(I). Define, for every positive integer n,

I ⊇ En = {x ∈ I : | f (x)| ≤ n}

and fn := f χEn . First, we have | fn| ≤ | f | on I whence fn ∈ Lp(I) for every positive integer n. Furthermore,

| f − fn|p ≤ 2p max{| f |p, | fn|p} ≤ 2p+1| f |p.

Whereby due to the Lebesgue Dominated Convergence Theorem,

lim
n→∞

∫
I
| f − fn|p = 0.

Let now ε > 0 be given. Choose a positive integer N such that ∥ f − fN∥p < ε/2 and let

δ =
εp

2p(2N)p .

Due to Theorem 2.24, there is a continuous function g : I → R that disagrees with fN on a subset say E ⊆ I
of measure less than δ. Apply the transformations:

g 7→ min{g, N} 7→ max{g,−N}.

Then,

∥ fN − g∥p
p =

∫
E
| fN − g|p ≤

∫
E
(2N)p ≤

(
ε

2

)p
.

Thus,
∥ f − g∥ ≤ ∥ f − fN∥p + ∥ fN − g∥p < ε.

Case 1: p = ∞. ■

Theorem 5.13 (Riemann-Lebesgue). Let I = [a, b] ⊆ R be a compact interval and f ∈ L1(I). Then,

lim
n→∞

∫
I

f (x) sin(nx) = 0 and lim
n→∞

∫
I

f (x) cos(nx) = 0
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Proof. The result is clear2 for monomials of the form xn and thus is true for polynomials. Let ε > 0 be given
and f ∈ L1(I). Due to Lemma 5.12, there is a continuous function g : I → R such that∫

I
| f (x)− g(x)| < ε

3
.

In accordance with the Weierstrass Approximation Theorem, there is a polynomial p(x) such that∣∣g(x)− P(x)
∣∣ < ε

3(b − a)
.

Then, we have ∣∣∣∣∫I
f (x) sin(nx)

∣∣∣∣ ≤ ∣∣∣∣∫I
( f (x)− P(x)) sin(nx)

∣∣∣∣+ ∣∣∣∣∫I
P(x) sin(nx)

∣∣∣∣
≤
∫

I
| f (x)− P(x)|| sin(nx)|+

∣∣∣∣∫I
P(x) sin(nx)

∣∣∣∣
≤
∫

I
| f (x)− P(x)|+

∣∣∣∣∫I
P(x) sin(nx)

∣∣∣∣
≤
∫

I
| f (x)− g(x)|+

∫
I
|g(x)− P(x)|+

∣∣∣∣∫I
P(x) sin(nx)

∣∣∣∣
We may now pick a positive integer N such that for all n ≥ N,∣∣∣∣∫I

P(x) sin(nx)
∣∣∣∣ < ε

3

and the conclusion follows. ■

2Straightforward computation
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Chapter 6

Abstract Measure Spaces

6.1 Measures and Measurable Sets

Definition 6.1 (Measurable Space). A measurable space is a pair (X,M) consisting of a set X and a
σ-algebra M of subsets of X. A subset E of X is said to be measurable if E ∈ M.

Proposition 6.2. Let (X,M) be a measurable space. Then, M cannot be countably infinite.

Proof. Suppose M were countably infinite. For each x ∈ X, define

Ax =
⋂

x∈A∈M
A

Then, Ax is measurable, since the intersection is over a countable set. We contend that the collection
{Ax}x∈X forms a partition of X. To see this, suppose x ̸= y and y ∈ Ax. If Ay ̸= Ax, then Ax\Ay is a
measurable set containing x and not y, a contradiction. Thus, Ax = Ay. On the other hand, if y /∈ Ax, then
X\Ax is a measurable set containing y, consequently, Ay ⊆ X\Ax, equivalently, Ax and Ay are disjoint.

Let A = {Ax | x ∈ X}. It is not hard to see that every element of M must be a disjoint union of elements
in A , consequently, the cardinality of M is 2|A |, whence the conclusion follows. ■

Definition 6.3 (Measure). A measure on a measurable space (X,M) is an extended real-valued non-
negative function µ : M → [0, ∞] such that µ(∅) = 0 and µ is countably additive. A measure space is a
triple (X,M, µ) where µ is a measure on the σ-algebra M on X.

The triple (R,L, m) is a measure space where L is the Lebesgue σ-algebra. Similarly, (R,B, m) is also a
measure space where B is the Borel σ-algebra.

A rather artificial measure space is constructed by defining the counting measure η on X which maps a
finite set to its cardinality and an infinite set to ∞. This makes the triple (X,P(X), η) a measure space.

Let X be a set and fix some x0 ∈ X. Define the measure δx0 on the power set P(X) by

δx0(A) =

{
1 x0 ∈ A
0 otherwise

That this is a valid measure is evident and is called the Dirac measure concentrated at x0.
Next, we define the co-countable measure. Let X be an uncountable set and

Σ = {E ⊆ X | E or Ec is countable}
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We shall first establish that Σ is indeed a σ-algebra. To do this, we need only show that the set is closed
under countable union. Let {En}∞

n=1 be a collection of sets in Σ. If any Ek is such that Ec
k is countable,

then

(
∞⋃

n=1
En

)c

⊆ Ec
k and is therefore countable. On the other hand, if none of the Ek have a countable

complement, then each Ek must be countable. Then,
∞⋃

n=1
En is a countable union of countable sets and is

therefore countable. Thus, Σ forms a σ-algebra. Define now the function µ : Σ → [0, ∞] by

µ(E) =

{
0 E is countable
1 Ec is countable

From our definition, we have µ(∅) = 0. To establish that µ is a valid measure, we need only verify that
it is countably additive. Let {En}∞

n=1 be a collection of disjoint measurable sets. If any one of the Ek’s have
a countable complement, then all the other Ej’s, being a subset of Ec

k must be countable and hence have
measure 0. Therefore,

1 = µ

 ∞⋃
n=1

En

 =
∞

∑
n=1

µ(En) = 1

On the other hand, if all the Ek’s are countable, there is nothing to prove.

Proposition 6.4. Let (X,M, µ) be a measure space. Then, the following hold:

Finite Additivity: For any finite disjoint collection {Ek}n
k=1 of measurable sets,

µ

 n⋃
k=1

Ek

 =
n

∑
k=1

µ(Ek)

Monotonicity: If A and B are measurable sets and A ⊆ B, then µ(A) ≤ µ(B).

Excision: If, moreover A ⊆ B and m(A) < ∞, then µ(B\A) = µ(B)− µ(A)

Countable Monotonicity: For any countable collection {Ek}∞
k=1 of measurable sets that covers a measurable

set E,

µ(E) ≤
∞

∑
k=1

µ(Ek)

Proof. Finite additivity follows from countable additivity by taking En+1 = · · · = ∅ whereas monotonicity
follows from the equality µ(B) = µ(B\A) + µ(A) and that µ(B\A) ≥ 0. Note that excision also follows
from the same equality.

Finally, for countable monotonicity, define the following sets:

Fn = En\
n−1⋃
k=1

Ek

It is obvious that the collection {Fk} is a collection of disjoint measurable sets. Furthermore,
∞⋃

n=1
Fn =

∞⋃
n=1

En

and hence,

µ

 ∞⋃
n=1

Fn

 =
∞

∑
n=1

µ(Fn) ≤
∞

∑
n=1

µ(En)

where the last inequality follows from the fact that Fn ⊆ En and hence, µ(Fn) ≤ µ(En). This completes the
proof. ■
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Proposition 6.5 (Continuity of Measure). Let (X,M, µ) be a measure space.

(a) If {Ak}∞
k=1 is an ascending sequence of measurable sets, then

µ

 ∞⋃
k=1

Ak

 = lim
k→∞

µ(Ak)

(b) If {Bk}∞
k=1 is a descending sequence of measurable sets with µ(B1) < ∞, then

µ

 ∞⋂
k=1

Bk

 = lim
k→∞

µ(Bk)

Proof.

(a) If there is an index k such that µ(Ak) = ∞, then µ(An) = ∞ for all n ≥ k and equality holds. Now
suppose µ(An) is finite for all n ∈ N.Let A0 = ∅. Next, define Cn = An\An−1 for all n ∈ N. Then,
the Cn’s are disjoint and

⊔∞
n=1 Cn =

⋃∞
n=1 An. Using countable additivity, we have

µ

 ∞⋃
n=1

An

 = µ

 ∞⊔
n=1

Cn

 =
∞

∑
n=1

µ(An)− µ(An−1) = lim
n→∞

µ(An)

(b)

■

A property P is said to hold almost everywhere on E if there is a measurable subset E0 of E with
µ(E0) = 0 such that P holds on E\E0.

Lemma 6.6 (Borel-Cantelli). Let (X,M, µ) be a measure space and {Ek}∞
k=1 a countable collection of measur-

able sets for which ∑∞
k=1 µ(Ek) < ∞. Then almost all x ∈ X belong to at most a finite number of the Ek’s.

Proof. It is not hard to see that the set of all x ∈ X that belong to infinitely many of the Ek’s is given by

S =
∞⋂

n=1

∞⋃
k=n

Ek

Since S is a countable intersection of a collection of measurable sets (each being a countable union of mea-
surable sets), is measurable. Note that the sequence of measurable sets {An}, given by

An =
∞⋃

k=n

Ek

is a descending chain such that

µ(A1) ≤
∞

∑
k=1

µ(Ek) < ∞

Thus, due to the continuity of measure,

µ(S) = lim
n→∞

µ(An) ≤ lim
n→∞

∞

∑
k=n

µ(Ek)

It is not obvious that µ(S) = 0. This completes the proof. ■
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Definition 6.7 (Finite, σ-finite). Let (X,M, µ) be a measure space. Then µ is said to be finite if µ(X) <
∞. Similarly, it is said to be σ-finite if X is the union of a countable collection of measurable sets, each
having finite measure.

From the definition, it is clear that every finite measure is σ-finite.
The restriction of the Lebesgue measure on [0, 1] is finite and thus, trivially σ-finite while the Lebesgue

measure on R is σ-finite.
On the other hand, the counting measure on R is not σ-finite and hence, not finite.

Definition 6.8 (Complete Measure Space). A measure space (X,M, µ) is said to be complete if for every
E ⊆ X with µ(E) = 0, every F ⊆ E is measurable.

The Lebesgue measure on R is complete while the restriction of the Lebesgue measure to the Borel σ-
algebra, B, while a valid measure space, is not complete, since the Cantor set, which is Borel, contains a
subset which is not Borel.

Theorem 6.9 (Completion). Let (X,M, µ) be a measure space. Define the collection M0 of subsets of X which
may be written in the form E = A ∪ B where B is a subset of some C ⊆ X with measure 0. Finally, define
µ0(E) = µ(A). Then (X,M0, µ0) is a measure space and extends (X,M, µ).

Proof. There are two parts to this proof. First, we show that M0 is a σ-algebra. Next, we show that µ0 is a
valid measure on M0 that extends µ.

Let E ∈ M0. Then there is A ∈ M and B ⊆ C with µ(C) = 0 such that E = A ∪ B. Now, let D = C\B.
We have

Ec = Ac ∩ Bc = Ac ∩ (Cc ∪ B) = (Ac ∩ Cc) ∪ (Ac ∩ B) ∈ M0

Next, let {En}∞
n=1 be a countable collection of sets in M0. Then there is a corresponding collection {An}∞

n=1
in M and {Bn} and {Cn} where the latter is a collection of sets with µ-measure 0. Then,

∞⋃
n=1

An =

 ∞⋃
n=1

An

 ∪

 ∞⋃
n=1

Bn


where

∞⋃
n=1

Bn ⊆
∞⋃

n=1
Cn and the set on the right hand side has measure 0. Hence, M0 is a σ-algebra.

Now, we must show that the function µ0 is well defined on M0. To do this, let A1 ∪ B1 = A2 ∪ B2 = E ∈
M0 where B1 ⊆ C1 and B2 ⊆ C2, both of which have µ-measure 0. Then, A1 ⊆ A1 ∪ B1 = A2 ∪ B2 ⊆ A2 ∪C2,
and hence, µ(A1) ≤ µ(A2). Similarly, the reverse direction is also seen to hold. Hence, µ(A1) = µ(A2) and
the function µ0 is well-defined.

Finally, we must show countable additivity. For this, let {En}∞
n=1 be a countable disjoint collection in

M0 and correspondingly, we have collections {An}, {Bn} and {Cn}. We have

µ0

(⋃
En

)
= µ0

(⋃
An ∪

⋃
Bn

)
= µ

(⋃
An

)
=

∞

∑
n=1

µ(An) =
∞

∑
n=1

µ0(En)

This completes the proof. ■

6.2 Carathéodory Measure Induced By Outer Measure
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Definition 6.10 (Countably Monotone, Outer Measure). Let X be a set and S ⊆ 2X . A set function
µ : S → [0, ∞] is said to be countably monotone if whenever a set E ∈ S is covered by a countable
collection {Ek}∞

k=1 then

µ(E) ≤
∞

∑
k=1

µ(Ek)

A set function µ∗ : 2X → [0, ∞] is said to be an outer measure if µ(∅) = 0 and µ∗ is countably monotone.

It is not hard to show that an outer measure is finitely monotone and therefore, monotone.

Definition 6.11 (Measurable). For an outer measure µ∗ : 2X → [0, ∞], a subset E of X is said to be
measurable with respect to µ∗ if for every A ⊆ X,

µ∗(A) = µ∗(A ∩ E) + µ∗(A\E)

From the definition of measurability, we see that E is measurable if and only if Ec is measurable.
From the finite monotonicity of µ∗, we obtain µ∗(A) ≤ µ∗(A ∩ E) + µ∗(A\E). Hence, to show E is

measurable, it suffices to sho µ∗(A) ≥ µ∗(A ∩ E) + µ∗(A\E). Since this inequality trivially holds when
µ∗(A) = ∞, we need only verify it in the case µ∗(A) < ∞.

Proposition 6.12. The union of a finite collection of measurable sets is measurable.

Proof. We shall show that the union of two measurable sets is measurable and finite union would follow
from induction. Let E1, E2 be measurable. Then, for any A ⊆ X,

µ∗(A) = µ∗(A ∩ E1) + µ∗(A ∩ Ec
1)

= µ∗(A ∩ E1) + µ∗(A ∩ Ec
1 ∩ E2) + µ∗(A ∩ Ec

1 ∩ Ec
2)

≥ µ∗(A ∩ (E1 ∪ E2)) + µ∗(A ∩ Ec
1 ∩ Ec

2)

where the last inequality follows from E1 ∪ (Ec
1 ∩ E2) = E1 ∪ E2. ■

Proposition 6.13. Let A ⊆ X and {Ek}∞
k=1 be a finite disjoint collection of measurable sets. Then

µ∗

A ∩

 n⋃
k=1

Ek


 =

n

∑
k=1

µ∗(A ∩ Ek)

Proof. For n = 1, there is nothing to prove. We shall prove the statement for n = 2 and the general case
would then follow from induction.

µ∗(A ∩ (E1 ∪ E2)) = µ∗(A)− µ∗(A ∩ Ec
1 ∩ Ec

2)

= µ∗(A)−
[
µ∗(A ∩ Ec

1)− µ∗(A ∩ Ec
1 ∩ E2)

]
= µ∗(A)− µ∗(A ∩ Ec

1) + µ∗(A ∩ E2)

= µ∗(A ∩ E1) + µ∗(A ∩ E2)

This completes the proof. ■
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Proposition 6.14. The union of a countable collection of measurable sets is measurable.

Proof. Let {En}∞
n=1 be a countable collection of measurable sets. Define E0 = ∅ and

Fn = En\

 n⋃
k=1

Ek


Then {Fn}∞

n=1 is a disjoint collection of measurable sets such that E =
⋃∞

n=1 En =
⋃∞

n=1 Fn. Let A ⊆ X.
Define Gn =

⋃n
k=1 Fk. We have

µ∗(A) = µ∗(A ∩ Gn) + µ∗(A\Gn) ≥ µ∗(A ∩ Gn) + µ∗(A\E) =
n

∑
k=1

µ∗(A ∩ Fk) + µ∗(A\E)

Taking n → ∞, we have the desired conclusion. ■

Proposition 6.15. Let {En}∞
n=1 be a disjoint collection of measurable sets. Then, for any A ⊆ X,

µ∗

A ∩

 ∞⋃
n=1

En


 =

∞

∑
n=1

µ∗(A ∩ En)

Proof. We have

µ∗

A ∩

 ∞⋃
k=1

Ek


 ≥ µ∗

A ∩

 n⋃
k=1

Ek


 =

n

∑
k=1

µ∗(A ∩ Ek)

Then, taking n → ∞, we have the desired conclusion. ■

Corollary 6.16. Let M be the collection of measurable sets. Then M is a σ-algebra. Further, the restric-
tion of µ∗ to M makes (X,M, µ) into a complete measure space.

Proof. We need only show that µ is a complete measure. Let E ⊆ X have measure 0. Then, for any F ⊆ E,
we have 0 ≤ µ∗(F) ≤ µ∗(E) = 0, as a result, µ∗(F) = 0. Finally, for any A ⊆ X,

µ∗(A ∩ F) + µ∗(A ∩ Fc) = µ∗(A ∩ Fc) ≤ µ∗(A)

and hence F is measurable. ■

6.3 Constructing Outer Measures

Theorem 6.17. Let S be a collection of subsets of a set X and µ : S → [0, ∞] a set function. Define µ∗(∅) = 0.
For ∅ ⊊ E ⊆ X, define

µ∗(E) = inf
∞

∑
k=1

µ(Ek)

where the infimum is taken over countable collections {Ek}∞
k=1 of sets in S that cover E with the convention that

µ∗(E) = ∞ if there is no cover of E by a countable collection in S .

55



Proof. It is not hard to see, from the definition that µ∗ is monotone. It now suffices to show countable
monotonicity. Let ε > 0 and {En}∞

n=1 be a countable collection of measurable sets. Let E =
⋃∞

n=1 En. If
µ∗(Ek) = ∞ for some k ∈ N, then µ∗(E) = ∞ due to monotonicity. Now suppose µ∗(En) < ∞ for each
n ∈ N. Then, for each n ∈ N, there is a countable cover {Enk}∞

k=1 of En such that

µ∗(En) <
∞

∑
k=1

µ∗(Enk) +
ε

2n

As a result,

µ∗(E) ≤
∞

∑
n=1

µ∗(En) <
∞

∑
n=1

∞

∑
k=1

µ∗(Enk) + ε

In the limit ε → 0, the conclusion follows. ■

Definition 6.18. Let S be a collection of subsets of X and µ : S → [0, ∞] be a set function. Let µ∗ : 2X →
[0, ∞] be the outer measure induced by µ. The measure µ obtained by restricting µ∗ to the σ-algebra of
µ∗-measurable sets is called the Carathéodory measure induced by µ.

6.4 Carathéodory Extension Theorem

Definition 6.19 (Semi-Algebra). Let X be a nonempty set. A collection C of subsets of X is said to be
a semi-algebra if

(a) ∅, X ∈ C

(b) If A, B ∈ C , then A ∩ B ∈ C

(c) For every A ∈ C , there is n ∈ N and disjoint C1, . . . , Cn ∈ C such that Ac =
n⋃

k=1
Ck

Definition 6.20 (Algebra). Let X be a nonempty set. A collection A of subsets of X is said to be an
algebra if

(a) X ∈ A

(b) A is closed under finite intersections

(c) A is closed under complements

Proposition 6.21. Let X be a nonempty set and C a semialgebra on X. Denote by A(C ), the minimal algebra
containing C . Then,

A(C ) = {E ⊆ X | E =
n⊔

k=1

Ck, Cj ∈ C }

Proof. Let S denote the set of all finite disjoint unions of elements of C . Obviously, any algebra containing
C must contain S . It now suffices to show that S is an algebra. We shall first show that S is closed under
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finite intersection. Indeed, let {Ek}n
k=1 be a collection of sets in S . Then, for each 1 ≤ k ≤ n, there is a

disjoint collection {Ck,i}
N(k)
i=1 such that Ek =

⋃N(k)
i=1 Ck,i. Then,

n⋂
k=1

Ek =
N(1)⋃
i1=1

· · ·
N(n)⋃
in=1

 n⋂
k=1

Ck,ik


It is not hard to see that this is a disjoint union of sets in C and thus, belongs to S .

We shall now show closure under complements. From the definition of a semi-algebra, we note that for

each A ∈ C , Ac ∈ S . Finally, for any E ∈ S , we may write it as a disjoint union
n⊔

k=1
Ck of sets in C . As a

result, Ec =
⋂n

k=1 Cc
k. Since Cc

k ∈ S for each 1 ≤ k ≤ n, and S is closed under intersections, we conclude
that Ec ∈ S . This completes the proof of the theorem. ■

Definition 6.22 (Measure on a Class). Let C be a collection of subsets of a nonempty set X. A set
function µ : C → [0, ∞] is said to be a measure on C if

(a) µ(∅) = 0

(b) whenever {An}∞
n=1 is a collection of disjoint sets in C with

∞⋃
n=1

An ∈ C,

µ

 ∞⋃
n=1

An

 =
∞

∑
n=1

µ(An)

Theorem 6.23. Let X be a nonempty set and µ a measure on a semi-algebra C on X, there is a unique measure
µ̃ on A(C ) which extends µ.

Proof. For ease of notation, denote A(C ) by A. Note that for each A ∈ A, there is a collection of disjoint

sets {C1, . . . , Cn} in C such that A =
n⊔

i=1
Ci. Define

µ̃(A) =
n

∑
i=1

µ(Ci)

We must first show that this is well defined. Indeed, let {Ci}n
i=1 and {Dj}m

j=1 be collections of disjoint sets

from C such that A =
n⊔

i=1
Ci =

m⊔
j=1

Dj.

Notice that for each 1 ≤ i ≤ n, the collection {Ci ∩ Dj}m
j=1 consists of disjoint sets whose union is Ci.

Then, using countable additivity of µ,

µ(Ci) =
m

∑
j=1

µ(Ci ∩ Dj)

and thus,
n

∑
i=1

µ(Ci) =
n

∑
i=1

m

∑
j=1

µ(Ci ∩ Dj) =
m

∑
j=1

n

∑
i=1

µ(Dj ∩ Ci) =
m

∑
j=1

µ(Dj)

This shows that µ̃ is well defined.

57



We must now show that µ̃ is a measure on A. To do so, it suffices to show countable additivity. Indeed,

let {An}∞
n=1 be a disjoint collection of sets in A such that A =

∞⊔
n=1

An ∈ A. There is a finite collection of

disjoint sets in C , {Ci}n
i=1 such that A =

n⊔
i=1

Ci.

For each Ak, there is a finite collection {D(k)
j }N(k)

j=1 of disjoint sets in C such that Ak =
⊔N(k)

j=1 D(k)
j . Since

the Ak’s are disjoint so are the D(k)
j ’s. As a result, for each i, {Ci ∩ D(k)

j } is a disjoint collection of sets in C

whose union is Ci. Thus,

n

∑
i=1

µ(Ci) =
n

∑
i=1

∞

∑
k=1

N(k)

∑
j=1

µ(Ci ∩ D(k)
j ) =

∞

∑
k=1

N(k)

∑
j=1

n

∑
i=1

µ(Ci ∩ D(k)
j ) =

∞

∑
k=1

N(k)

∑
j=1

µ(D(k)
j ) =

∞

∑
k=1

µ̃(Ak)

This shows that µ̃ is a valid extension of µ to A. Showing uniqueness is trivial and is left as an exercise to
whoever dared to read these notes. ■

Definition 6.24 (Monotone Class). Let X be a nonempty set and M a collection of subsets of X. We
say M is a monotone class if

(a)
∞⋃

n=1
An ∈ M if An ∈ M for each n ∈ N and {An}∞

n=1 is an ascending chain.

(b)
∞⋂

n=1
An ∈ M if An ∈ M for each n ∈ N and {An}∞

n=1 is a descending chain.

For a collection of subsets C of X, define M(C ) to be the smallest monotone class containing C , which
is just the intersection of all monotone classes containing C . Note that the intersection is over a nonempty
set, since the powerser of X is a monotone class containing C (trivially).

Proposition 6.25. Let µ1 and µ2 be measures on a measurable space (X,M). Define the collection

M = {E ∈ M | µ1(E) = µ2(E)}

(a) ∅ ∈ M

(b) If An ∈ M for all n ∈ N, and {An} is an ascending chain, then
∞⋃

n=1
An ∈ M.

(c) If µ1 and µ2 are finite. Then for An ∈ M for all n ∈ N and {An} being a descending chain, we have
∞⋂

n=1
An ∈ M.

Proof. Follows from the continuity of measure. ■

Definition 6.26. For a collection C of subsets of X, M(C ) is defined as the smallest σ-algebra containing
C , which is equal to the intersection of all the σ-algebras containing C .

Theorem 6.27 (Monotone Class Theorem). Let A be an algebra of sets. Then M(A) = M(A).
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Proof. We shall denote M(A) by M and M(A) by M. Since all σ-algebras are monotone classes, we have
M ⊆ M. We shall show the reverse inclusion. First, we shall show that M is an algebra.

For each M ∈ M, define

M(M) = {E ∈ M | E\M, M\E, E ∩ M ∈ M}

We contend that M(M) forms a monotone class. Indeed, suppose {En} is an ascending chain in M(M).
Then,  ∞⋃

n=1

En

 \M =
∞⋃

n=1

(En\M)

 ∞⋃
n=1

En

 ∩ M =
∞⋃

n=1

(En ∩ M)

And thus,
∞⋃

n=1
En ∈ M(M). Similarly, one can show this for descending chains.

Further, by symmetry, also note that if M ∈ M(N), then N ∈ M(M). Pick any A ∈ A. Since A is an
algebra, we must have A ⊆ M(A). Now, since M(A) is a monotone class and M is the minimal monotone
class containing A, we must have M ⊆ M(A) ⊆ M, as a result, M(A) = M. This means, M ∈ M(A)
and due to symmetry, A ∈ M(M).

Since the choice of A ∈ A was arbitrary, we have A ⊆ M(M). Again, using the minimality of M, we
have M = M(M) for each M ∈ M. From this, we infer that M is closed under finite intersection and
relative complements, and since X ∈ M (trivially), we see that M is an algebra.

Finally, we shall show that M is a σ-algebra. Indeed, let {En}∞
n=1 be a collection of sets in M. Then,

{⋃n
k=1 Ek} forms an ascending chain and since M is a monotone class,

∞⋃
n=1

En ∈ M. This completes the

proof. ■

Lemma 6.28. Let X be a set and A an algebra of subsets of X. Then, for any T ⊆ X,

M(A∩ T) = M(A) ∩ T

Proof. Define
S = {A ⊆ X | A ∩ T ∈ M(A∩ T)}

It is not hard to see that S is a σ-algebra and contains A. Therefore, M(A) ⊆ S . Consequently, M(A) ∩
T ⊆ M(A∩ T).

On the other hand, since M(A) ∩ T is a σ-algebra of subsets of T, containing A ∩ T, we must have
M(A∩ T) ⊆ M(A) ∩ T. This completes the proof. ■

Theorem 6.29. Let µ be a measure on an algebra A of subsets of a nonempty set X. If µ is σ-finite, then there is
a unique extension µ̃ of µ on M(A).

Proof. Since µ is a nonnegative set function, we may take the Carathéodory extension of µ to some σ-algebra.
Since that σ-algebra must contain M(A), we simply restrict it to M(A) to obtain an extension of µ to M(A).

We shall now show uniqueness. Let µ1 and µ2 be two measures which extend µ. Since µ is σ-finite, so are
µ1 and µ2. Further, there is a disjoint collection of sets {Xi}∞

i=1 in A such that X =
⊔∞

i=1 Xi and µ(Xi) < ∞.
Then for any E ∈ M(A), and i ∈ {1, 2},

µi(E) = µi

E ∩

 ∞⋃
j=1

Xj


 =

∞

∑
j=1

µi(E ∩ Xj)
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Moreover, M(A) ∩ Xi = M(A∩ Xi), since A∩ Xi is an algebra. Hence, if we show that µ1 and µ2 agree on
each Xi, then they would agree on X. As a result, we may suppose µ is finite and hence, so are µ1 and µ2.

Define now
M = {E ∈ M(A) | µ1(E) = µ2(E)}

We have shown already that M must form a monotone class and must contain A. Finally, using Theo-
rem 6.27, have that M(A) = M, which completes the proof. ■
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Chapter 7

Abstract Integration

7.1 Measurable Functions

Definition 7.1 (Measurable Function). Let (X,M) be a measurable space and f : X → [−∞, ∞] be
an extended real valued function. Then, f is said to be measurable if it satisfies one of the following
equivalent conditions for all c ∈ R

(a) {x ∈ X | f (x) < c} is measurable

(b) {x ∈ X | f (x) ≤ c} is measurable

(c) {x ∈ X | f (x) > c} is measurable

(d) {x ∈ X | f (x) ≥ c} is measurable

Proposition 7.2. Let (X,M, µ) be a complete measure space and X0 a measurable subset of X for which
µ(X\X0) = 0. Then a function f : X → [−∞, ∞] is measurable if and only if its restriction to X0 is
measurable.

Proof. We have

{x ∈ X0 | f (x) > c} ⊆ {x ∈ X | f (x) > c} ⊆ {x ∈ X0 | f (x) > c} ∪ (X\X0)

and the conclusion follows. ■

Corollary 7.3. Let (X,M, µ) be a complete measure space. If g, h : X → [−∞, ∞] are functions such
that g = h a.e. on X, then g is measurable if and only if h is measurable.

Proposition 7.4. Let (X,M, µ) be a complete measure space. Let f , g : X → [−∞, ∞] be measurable functions
that are finite a.e. on X. Let α, β ∈ R. Then,

(a) α f + βg is measurable

(b) f · g is measurable

(c) min{ f , g} and max{ f , g} are measurable

Proof. Same as that for Lebesgue measurable functions. ■
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Proposition 7.5. Let (X,M) be a measurable space and f a real valued measurable function on X. Let φ : R →
R be continuous. Then φ ◦ f is measurable.

Proof. Same as that for Lebesgue measurable functions. ■

Theorem 7.6. Let (X,M, µ) be a measure space and { fn} a sequence of measurable functions on X for which
{ fn} → f pointwise a.e. on X. If either the measure space (X,M, µ) is complete or the convergence is pointwise
on all of X, then f is measurable.

Proof. Again, by excising a suitable subset of measure 0, we may suppose that the convergence is every-
where. The remainder of the proof is the same as that for Lebesgue measurable functions. ■

Lemma 7.7 (Simple Approximation Lemma). Let (X,M) be a measurable space and f : X → R be bounded
and measurable. Then, for each ε > 0, there are simple functions φε, ψε such that φε ≤ f ≤ ψε and ψε − φε < ε
on X.

Proof. Same as that for Lebesgue measurable functions. ■

Theorem 7.8 (Simple Approximation Theorem). Let (X,M, µ) be a measure space and f a measurable
function on X. Then, there is a sequence of simple functions {ψn} on X that converges pointwise on X to f such
that |ψn| ≤ | f | on X for all n. Further,

(a) If X is σ-finite, then we may choose the sequence {ψn} so that each ψn vanishes outside a set of finite
measure

(b) If f is nonnegative, we may choose the sequence {ψn} to be increasing and each ψn ≥ 0 on X

Proof. We may write f = f+ − f− where f+ and f− are nonnegative measurable functions on X. First, we
shall suppose f is nonnegative. Define

En = {x ∈ X | f (x) ≤ n}

Then En is measurable and f is bounded over En. Therefore, due to Lemma 7.7, there is a simple function
ψn defined on En such that f − ψn < 1/n on En. Extend ψn to all of X by giving it the value n on X\En. It
is obvious that ψn → f pointwise on X.

Let us now return to the general case. From the previous paragraph, we infer that there are sequences
{ψ+

n } of nonnegative simple functions converging to f+ and similarly, {ψ−
n } converging to f−. Now, con-

sider the sequence {ψ+
n − ψ−

n }. It is not hard to show that it converges to f and satisfies the required
properties.

1. Now, if X is σ-finite, there is a countable collection of subsets {En} of X with finite measure such that

X =
∞⋃

n=1
En. Define Xn =

n⋃
k=1

Ek. Due to the above discussion, there is a sequence of simple functions

{ψn} that converge pointwise to f . Define now φn = ψnχXn . Then φn vanishes outside a set of finite
measure and converges pointwise to f on X.

2. If f were nonnegative, then we have a sequence of nonnegative measurable functions {ψn} con-
verging pointwise to f . Define φn = max1≤k≤n ψn. Then {φn} is an increasing sequence of simple
functions that converges pointwise to f on X.

■
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Theorem 7.9 (Egoroff). Let (X,M, µ) be a finite measure space and { fn} a sequence of measurable functions
on X that converges pointwise a.e. on X to a function f that is finite a.e. on X. Then for each ε > 0, there is a
measurable subset Xε of X for which µ(X\Xε) < ε and { fn} → f uniformly on Xε.

Proof. First, we shall excise suitable measure 0 sets and suppose the function f is real valued and conver-
gence is pointwise on X. Notice that this should not change our conclusion. Fix some N ∈ N. Define

An = {x ∈ X : | f (x)− fm(x)| < 1/N ∀m ≥ n}

It is not hard to see that A1 ⊆ A2 ⊆ · · · . Moreover, for all x ∈ X, there is n ∈ N such that x ∈ An. As a

result,
∞⋃

n=1
An = X. Using the continuity of measure, there is an index MN such that µ(X\AMN ) < ε/2N .

Finally, define Xε =
⋂∞

n=1 AMn . Then, µ(X\Xε) < ε. We contend that the convergence is uniform on Xε.
Let δ > 0 be given, then there is N ∈ N such that 1/N < δ. For all m ≥ MN and x ∈ Xε, we have x ∈ AMN ,
thus, | f (x)− fm(x)| < 1/N < δ, which completes the proof. ■

7.2 Integration of Nonnegative Measurable Functions

For a nonnegative simple function ψ on X with canonical representation ∑n
k=1 ckχEk , we define

∫
X

ψ =
n

∑
k=1

ckµ(Ek)

With the normal convention of arithmetic in [0, ∞]. For a measurable subset E ⊆ X, we define
∫

E ψ =∫
X ψχE.

For a nonnegative extended real valued measurable function f : X → [0, ∞], we define

∫
X

f = sup


∫

X
ψ

∣∣∣∣∣ 0 ≤ ψ ≤ f , ψ is simple


For a measurable subset E ⊆ X, define

∫
E f =

∫
X f χE.

Some Elementary Properties

TODO: Add when you feel the need to do so. This will probably be when a lab submission is an hour away
and your procrastination kicks in.

Theorem 7.10 (Chebyshev’s Inequality). Let (X,M, µ) be a measure space, f a nonnegative measurable
function on X, and λ a positive real number. Then

µ
(
{x ∈ X | f (x) ≥ λ}

)
≤ 1

λ

∫
X

f

Proof. Let Eλ = {x ∈ X | f (x) ≥ λ}. Then λχEλ
≤ f is a simple function and from the definition of the

integral,

λµ(Eλ) ≤
∫

X
f

and the conclusion follows. ■
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Proposition 7.11. Let (X,M, µ) be a measure space and f a nonnegative measurable function on X for which∫
X f < ∞. Then f is finite a.e. on X and {x ∈ X | f (x) > 0} is σ-finite.

Proof. Define En = {x ∈ X | f (x) ≥ n}. Then µ(En) ≤ 1/n
∫

X f and

{x ∈ X | f (x) = ∞} =
∞⋂

n=1

En

and using the continuity of measure, we see that the measure of the above set is 0.
Next, define An = {x ∈ X | f (x) ≥ 1/n}. µ(An) ≤ n

∫
X f < ∞ and

{x ∈ X | f (x) > 0} =
∞⋃

n=1

An

and is therefore σ-finite. ■

Lemma 7.12 (Fatou). Let (X,M, µ) be a measure space and { fn} a sequence of nonnegative measurable func-
tions on X for which { fn} → f pointwise a.e. on X. Assume f is measurable. Then∫

X
f ≤ lim inf

n→∞

∫
X

fn

Note that since the measure space may not be complete, it is not implicit that f is measurable from pointwise
a.e. convergence.

Proof. We may excise a suitable subset of X such that the convergence is pointwise on the rest of X. Let
φ ≤ f be a simple function. If

∫
X φ = 0, then obviously,

∫
X φ ≤ lim inf

n→∞

∫
X fn. We now consider two cases.

Case 1:
∫

X φ = ∞. Then there is some positive real number a and a measurable E ⊆ X such that µ(E) = ∞
and φ(x) = a for all x ∈ E. Define the (measurable) subsets

Xn := {x ∈ X | fk(x) ≥ a/2, ∀ k ≥ n}

Since fk converges pointwise to f and φ ≤ f ,
∞⋃

n=1
Xn ⊇ E, consequently, using the continuity of

measure, lim
n→∞

µ(Xn) = ∞. Next, using Chebyshev’s Inequality,

µ(Xn) ≤
2
a

∫
Xn

fn ≤ 2
a

∫
X

fn

and we conclude that lim inf
n→∞

∫
X fn = ∞.

Case 2: 0 <
∫

X φ < ∞. Then, φ is nonzero on a set of finite measure, say X0.

■

Theorem 7.13 (Monotone Convergence Theorem). Let (X,M, µ) be a measure space and { fn} an increas-
ing sequence of measurable functions converging pointwise a.e. to f , which is measurable on X. Then,

lim
n→∞

∫
X

fn =
∫

X
f
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Proof. Since the convergence is pointwise a.e., we may excise a suitable subset of measure 0 from X such
that the convergence is pointwise on the remaining set. Notice that this doesn’t change the value of any
integral. Therefore, we may suppose that the convergence is pointwise on X. Then, we woud have fn ≤ f
for all n ∈ N. As a result, ∫

X
fn ≤

∫
X

f

and consequently, ∫
X

f ≥ lim sup
n→∞

∫
X

fn ≥ lim inf
n→∞

∫
X

fn ≥
∫

X
f

where the last inequality is due to Lemma 7.12. This implies the desired conclusion. ■

Corollary 7.14. Let (X,M, µ) be a measurable space and f a nonnegative measurable function on X.
Then there is an increasing sequence {ψn} of simple functions on X that converges pointwise on X to
f and

lim
n→∞

∫
X

ψn =
∫

X
f

The proof is omitted due to obviousness.

Proposition 7.15 (Additivity of Integration). Let (X,M, µ) be a measure space and f , g nonnegative mea-
surable functions. Then for α, β ∈ R≥0,∫

X
(α f + βg) = α

∫
X

f + β
∫

X
g

Proof. From the simple approximation theorem, there are increasing sequences of simple functions {ψn}
and {φn} converging to f and g respectively. As a result, the increasing sequences of simple functions
{αψn} and {βφn} converge to α f and βg respectively. Then, the sequence {αψn + βφn} is an increasing
sequence of measurable functions converging to α f + βg, and thus,∫

X
(α f + βg) = lim

n→∞

∫
X
(αψn + βφn) = lim

n→∞

[
α
∫

X
ψn + β

∫
X

φn

]
= α

∫
X

f + β
∫

X
g

This completes the proof. ■

Definition 7.16 (Integrable). Let (X,M, µ) be a measure space. A nonnegative measurable function f
is said to be integrable if

∫
X f < ∞.

7.3 Integration of General Measurable Functions

Proposition 7.17. Let (X,M, µ) be a measure space and f ∈ L1(µ). Then, for every ε > 0, there is δ > 0 such

that whenever E ∈ M with µ(E) < δ,
∫

E
| f | < ε.

Proof. We may suppose without loss of generality that f ≥ 0 and f is integrable. Then, there is a simple
function 0 ≤ φε ≤ f such that ∫

X
f −

∫
X

φε < ε/2
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Since φε is a simple function, there is M > 0 such that φε < M on X. Then, for any E ⊆ X with µ(E) <
ε/2M, we have ∫

E
f =

∫
E
( f − φε) +

∫
E

φε < ε

This completes the proof. ■
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Chapter 8

New Measures from Old

8.1 Product Measures

Definition 8.1 (Measurable Rectangles, Product σ-algebra). Let (X, A , µ) and (Y, B, ν) be two mea-
sure spaces. Subsets of X × Y of the form A × B where A ∈ A and B ∈ B are called measurable
rectangles. Let R denote the collection of all measurable rectangles. The σ-algebra A ⊗B := M(R) is
called the product σ-algebra.

Theorem 8.2. Let η : R → [0, ∞] be defined by η(A × B) = µ(A)× ν(B) where A ∈ A and B ∈ B. Then,
η is a well defined measure on R. Further, if µ and ν are σ-finite, there is a unique measure η̃ on A ⊗ B that
extends η.

Proof. Obviously, η(∅) = 0. We shall now show that η is countably additive. Indeed, let {An} be a sequence
of sets in A and {Bn} a sequence of sets in B such that the sequence {An × Bn} is disjoint and there is

A ∈ A and B ∈ B such that A × B =
∞⋃

k=1
Ak × Bk.

Fix some x ∈ A and define Sx := {n ∈ N | x ∈ An}. Then, for every y ∈ B, x × y ∈ A × B and therefore,
there is an index n x × y ∈ An × Bn. Note that this index must be unique lest the collection {An × Bn} not
be disjoint. As a result, B =

⊔
n∈Sx Bn. Now, using countable additivity, we have

ν(B) = ∑
n∈Sx

ν(Bn)

for each x ∈ A. Then, we may write

χAν(B) =
∞

∑
n=1

χAn ν(Bn)

We have

µ(A)ν(B) =
∫

X
χAν(B) dµ =

∫
X

(
∞

∑
n=1

χAn ν(Bn)

)
dµ =

∞

∑
n=1

∫
X

χAn ν(Bn) dµ =
∞

∑
n=1

µ(An)ν(Bn)

Finally, we must show that R is a semi-algebra. Obviously, ∅, X × Y ∈ R and (A1 × B1) ∩ (A2 × B2) =
(A1 ∩ A2)× (B1 ∩ B2). Finally, for A × B ∈ R,

(X × Y)\(A × B) = A × (Y\B) ⊔ (X\A)× B ⊔ (X\A)× (Y\B)

The uniqueness now followes from Carathéodory Extension Theorem, since the measure η is σ-finite on R
and therefore σ-finite on the algebra generated by R. This completes the proof. ■
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Definition 8.3. Let E ⊆ X × Y, x ∈ X and y ∈ Y. Let

Ex := {y ∈ Y | x × y ∈ E} Ey := {x ∈ X | x × y ∈ E}

The set Ex is called the x-section of E and the set Ey is called the y-section of E.

Theorem 8.4. Let E ∈ A ⊗B. Then the following hold:

(a) Ex ∈ B and Ey ∈ A for every x ∈ X and y ∈ Y.

(b) The functions x 7→ ν(Ex) and y 7→ µ(Ey) are measurable functions on X and Y, respectively.

(c) ∫
X

ν(Ex) dµ(x) = (µ × ν)(E) =
∫

Y
µ(Ey) dν(y)

Proof. (a) Consider the set

M = {E ∈ A ⊗B | Ex ∈ B, Ey ∈ A , ∀x ∈ X, ∀y ∈ Y}

It is not hard to see that M is a σ-algebra. Moreover, A × B ⊆ M, consequently, A ⊗ B ⊆ M ⊆
A ⊗B, which completes the proof.

(b) Define the set

P = {E ∈ A ⊗B | for all x ∈ X and y ∈ Y, the maps x 7→ ν(Ex) and y 7→ µ(Ey) are measurable}

For E = A × B where A ∈ A , B ∈ B, we have

(x 7→ ν(Ex))(t) = χA(t)ν(B) (y 7→ µ(Ey))(t) = χB(t)µ(A)

and are both measurable. Thus, R ⊆ P . We shall now show that P is closed under disjoint union.
Let E1, E2 be disjoint sets in P . For any x ∈ X, we have

ν((E1 ⊔ E2)x) = ν((E1)x ⊔ (E2)x) = ν((E1)x) + ν((E2)x)

Thus, (x 7→ ν((E1 ∪ E2)x)) = (x 7→ ν((E1)x)) + (x 7→ ν((E2)x)), consequently, is measurable. A
similar result can be established for y-sections. Now, since P is closed under disjoint unions, A(R) ⊆
P , that is, the algebra generated by the semi-algebra R is contained in P .

Finally, we shall show that P is a monotone class. Let {En}∞
n=1 be an ascending chain of sets from

A ⊗B in P . Then, it is not hard to argue, using the continuity of measure, that the map (x 7→ ν(Ex))
is the pointwise limit of the sequence of maps {(x 7→ ν((En)x))}.

Since P is a monotone class containing A(R), it must contain the monotone class generated by A(R),
which due to the Monotone Class Theorem is the same as the σ-algebra generated by A(R), which is
precisely A ⊗B. This completes the proof.

(c) Define the set
P = {E ∈ A ⊗B | (c) holds}

Obviously, R ⊆ P . First, we shall show that P is closed under finite disjoint union. Indeed, let
E = E1 ⊔ E2. Then, for each x ∈ X, Ex = (E1)x ⊔ (E2)x, whence∫

X
ν(Ex) dµ =

∫
X

ν((E1)x ⊔ (E2)x) dµ =
∫

X
ν((E1)x) dµ+

∫
X

ν((E2)x) dµ = (µ× ν)(E1)+ (µ× ν)(E2)

Finally, we must show that P is a monotone class. Let {En}∞
n=1 be an ascending chain of sets in

A ⊗ B. As seen in part (b), the sequence {(En)x}∞
n=1 is increasing the sequence of functions {x 7→
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ν((En)x)}∞
n=1 converges pointwise to the function x 7→ ν(Ex). Then, using the Monotone Conver-

gence Theorem, ∫
X

ν(Ex) dµ = lim
n→∞

∫
X

ν((En)x) dµ = lim
n→∞

(µ × ν)(En) = (µ × ν)(E)

where the last equality follows from the continuity of measure.

The part for descending chains is a bit tricky since the continuity of measure does not apply readily.
Let {En}∞

n=1 be a descending chain of sets in P . When µ and ν are assumed to be finite, continuity
of measure readily applies and the pointwise limit of the sequence of functions {x 7→ ν((En)x)}∞

n=1
is the function x 7→ ν(Ex). The convergence of integrals would then follow from the Dominated
Convergence Theorem. Now, let us consider the case when µ and ν are σ-finite. In which case, there
are collections of disjoint sets {Ai}∞

i=1 and {Bj}∞
j=1 in A and B such that µ(Ai) < ∞, ν(Bj) < ∞,

∞⊔
i=1

Ai = X and
∞⊔

j=1
Bj = Y.

Then, due to the previous discussion, we would have

(µ × ν)(E ∩ (Ai × Bj)) =
∫

X
ν((E ∩ (Ai × Bj))x) dµ

Consequently, using countable additivity,

(µ × ν)(E) =
∞

∑
i=1

∞

∑
j=1

(µ × ν)(E ∩ (Ai × Bj))

=
∞

∑
i=1

∞

∑
j=1

∫
X

ν((E ∩ (Ai × Bj))x) dµ

=
∫

X

 ∞

∑
i=1

∞

∑
j=1

ν((E ∩ (Ai × Bj))x)

 dµ

=
∫

X
ν(Ex) dµ

where the second last equality follows from the Monotone Convergence Theorem.
This completes the proof. ■

8.2 Fubini’s Theorem

Throughout this section, let (X, A , µ) and (Y, B, ν) be σ-finite measure spaces.

Theorem 8.5 (Fubini). Let f : (X × Y, A ⊗B) → [0, ∞] be a nonnegative measurable function. Then,

(a) for x0 ∈ X and y0 ∈ Y, the maps x 7→ f (x, y0) and y 7→ f (x0, y) are measurable

(b) the maps x 7→
∫

Y f (x, y) dν(y) and y 7→
∫

X f (x, y) dµ(x) are measurable

(c) ∫
X

(∫
Y

f (x, y) dν(y)
)

dµ(x) =
∫

X×Y
f d(µ × ν) =

∫
Y

(∫
X

f (x, y) dµ(x)
)

dν(y)

Proof. Due to Theorem 7.8, there is an increasing sequence of measurable simple functions {φn}∞
n=1 con-

verging to f pointwise on X × Y. It follows from Theorem 8.4 that the section of a simple measurable
function is simple measurable.
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(a) It is not hard to argue that the sections {φn(x, y0)}∞
n=1 converges pointwise to f (x, y0). Consequently,

the map x 7→ f (x, y0) is measurable.

(b) Due to the Monotone Convergence Theorem,∫
Y

f (x, y) dν(y) = lim
n→∞

∫
Y

φn(x, y) dν(y)

We contend that whenever φ is a simple function, the map x 7→
∫

Y φ(x, y) dν(y) is a measurable
function with canonical representation ∑n

k=1 akχEk . Then, for each x ∈ X, the x-section of φ is given
by

φx =
n

∑
k=1

akχ(Ek)x

Consequently, ∫
Y

φx dν(y) =
n

∑
k=1

akν((Ek)x)

Due to Theorem 8.4, each map x 7→ ν((Ek)x) is measurable and therefore,
∫

Y φx dν(y) is a measurable
function of x.

This now implies that
∫

Y f (x, y) dν(y) is the pointwise limit of measurable functions and is therefore
measurable.

(c) We contend that for a simple measurable function φ,∫
X×Y

φ d(µ × ν) =
∫

X

(∫
Y

φ dν(y)
)

dµ(x)

Indeed, this follows from Theorem 8.4, since∫
X

(∫
Y

φx dν(y)
)

dµ(x) =
∫

X

(
n

∑
k=1

akν((Ek)x)

)
dµ(x) =

n

∑
k=1

ak(µ × ν)(Ek) =
∫

X×Y
φ d(µ × ν)

Finally, from the Monotone Convergence Theorem, we have∫
X×Y

f d(µ × ν) = lim
n→∞

∫
X×Y

φn d(µ × ν)

= lim
n→∞

∫
X

(∫
Y

φn dν(y)
)

dµ(x)

=
∫

X

(
lim

n→∞

∫
Y

φn dν(y)
)

dµ(x)

=
∫

X

(∫
Y

lim
n→∞

φn dν(y)
)

dµ(x)

=
∫

X

(∫
Y

f dν(y)
)

dµ(x)

This completes the proof. ■

Corollary 8.6. Let f : X × Y → [−∞, ∞] be measurable. Then, the following are equivalent:

(a) f is integrable

(b)
∫

X

(∫
Y
| f | dν(y)

)
dµ(x) < ∞
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(c)
∫

Y

(∫
X
| f | dµ(x)

)
dν(y) < ∞

Proof. That (a) =⇒ (b) ∧ (c) is trivial. To see that (b) =⇒ (a), note that | f | is nonnegative and due to
Theorem 8.5, we have ∫

X×Y
| f | d(µ × ν) =

∫
X

(∫
Y
| f | dν(y)

)
dµ(x) < ∞

and f is integrable. The proof of (c) =⇒ (a) is analogous. ■

Theorem 8.7. Let f : X × Y → [−∞, ∞] be integrable. Then,

(a) The functions x 7→ f (x, y) and y 7→ f (x, y) are integrable for almost all y ∈ Y and x ∈ X respectively

(b) The functions

y 7→
∫

X
f (x, y) dµ(x) and x 7→

∫
Y

f (x, y) dν(y)

are ν,µ-integrable respectively

(c) ∫
Y

(∫
X

f (x, y) dµ(x)
)

dν(y) =
∫

X

(∫
Y

f (x, y) dν(y)
)

dµ(x)

Proof. Since f is integrable, so are f+ and f−. Now, both f+ and f− are nonnegative functions and there-
fore, ∫

X

(∫
Y

f+ dν(y)
)

dµ(x) =
∫

X×Y
f+ d(µ × ν) < ∞

Consequently, the map x 7→
∫

Y f+ dν(y) is µ-integrable. Similarly, the map x 7→
∫

Y f− dν(y) is µ-integrable.
Therefore, the map x 7→

∫
Y f dν(y) is integrable, since it is their difference.

Further, in order to be integrable, they must be finite a.e., that is, x 7→
∫

Y f+ dν(y) and x 7→
∫

Y f− dν(y)
are finite a.e.. Hence, y 7→ f+ and y 7→ f− are integrable for almost all x ∈ X, which implies y 7→ f =
f+ − f− is integrable for almost all x ∈ X.

Now, we have∫
X×Y

f d(µ × ν) =
∫

X×Y
f+ d(µ × ν)−

∫
X×Y

f− d(µ × ν)

=
∫

X

(∫
Y

f+ dν(y)
)

dµ(x)−
∫

X

(∫
Y

f− dν(y)
)

dµ(x)

=
∫

X

(∫
Y

f dν(y)
)

dµ(x)

This completes the proof. ■

Putting Theorem 8.5 and Theorem 8.7 together, we have the following:

Theorem 8.8 (Fubini). Let (X, A , µ) and (Y, B, ν) be σ-finite measure spaces. Let f be an extended real
valued measurable function on X × Y and f satisfies any one of the following conditions:

(a) f is non-negative

(b) f is integrable

(c) ∫
X

(∫
Y
| f (x, y)| dν(y)

)
dµ(x) < ∞
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(d) ∫
Y

(∫
X
| f (x, y)| dµ(x)

)
dν(y) < ∞

Then, ∫
X×Y

f (x, y) d(µ × ν) =
∫

X

(∫
Y

f (x, y) dν(y)
)

dµ(x) =
∫

Y

(∫
X

f (x, y) dµ(x)
)

dν(y)

Examples of Fubini’s Theorem

Example 8.9. Let f be a non-negative measurable function on a σ-finite measure space (X,M, µ). Show
that ∫

X
f dµ =

∫ ∞

0
µ
(
{x ∈ X | 0 ≤ t ≤ f (x)}

)
dm(t)

where m is the Lebesgue Measure.

Proof. Define the region A ⊆ X × R as

A = {x × y ∈ X × R | 0 ≤ t ≤ f (x)}

Note that both µ and the Lebesgue measure are σ-finite and therefore, we may use Fubini’s Theorem. Then,
we have

(µ × m)(A) =
∫

X
χA d(µ × m)

=
∫

X

(∫
R

χA dm
)

dµ

=
∫

X
f dµ

and similarly,

(µ × m)(A) =
∫

X
χA d(µ × m)

=
∫

R

(∫
X

χA dµ

)
dm

=
∫

R
µ
(
{x ∈ X | 0 ≤ t ≤ f (x)}

)
dm(t)

=
∫ ∞

0
µ
(
{x ∈ X | 0 ≤ t ≤ f (x)}

)
dm(t)

The last equality is obvious. This completes the proof. ■

Example 8.10. Let f : R2 → R be defined by

f (x, y) = (sin x)χ{x×y|y<x<y+2π}

Then, the iterated integrals are not equal. One of them diverges while the other is equal to 0. The
reason being that the integrand is not integrable over R2 with the product measure.
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