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Abstract

This is meant to be a rapid introduction to Galois Theory. We shall not provide intuition or comment far
too much on any specific result. The main reference followed while making these notes is [ ]
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Chapter 1

Algebraic Extensions

Definition 1.1 (Extension, Degree). Let F be a field. If F is a subfield of another field E, then E is said
to be an extension field of F. The dimension of E when viewed as a vector space over F is said to be the
degree of the extension E /F and is denoted by [E : F].

Definition 1.2 (Algebraic Element).

Definition 1.3 (Distinguished Class). Let ¢ be a class of extension fields F C E. We say that ¢ is
distinguished if it satisfies the following conditions:

1. Letk C F C E be a tower of fields. The extension K C E is in ¥ if and only if k C F is in ¢ and
FCEisin%.

2. If k C Eisin ¢, if F is any extension of k, and E, F are both contained in some field, then F C EF
isin %.

3. If k C Fand k C E arein € and F, E are subfields of a common field, then k C FE isin %.

Lemma 1.4. Let E/k be algebraic and let o : E — E be an embedding of E over k. Then o is an automorphism.

Proof. Since o is known to be injective, it suffices to show that it is surjective. Pick some « € E and let
p(x) € k[x] be its minimal polynomial over k. Let K be the subfield of E generated by all the roots of p in E.
Obviously, [K : k] is finite. Since p remains unchanged under o, it is not hard to see that ¢ maps a root of p
in E to another root of p in E. Therefore, 0(K) C K. But since [¢(K) : k] = [K : k] due to obvious reasons,
we must have that ¢(K) = K, consequently, « € K = ¢(K). This shows surjectivity. ]



Chapter 2

Algebraic Closure

Theorem 2.1. Let k be a field. Then there is an algebraicaly closed field containing k.

Proof due to Artin. ]

Corollary 2.2. Let k be a field. Then there exists an extension k” which is algebraic over k and alge-
braically closed.

Proof. [ |

Lemma 2.3. Let k be a field and L and algebraically closed field with o : k — L an embedding. Let « be algebraic
over k in some extension of k. Then, the number of extensions of o to an embedding k(a) — L is precisely equal
to the number of distinct roots of the minimal polynomial of w over k.

Lemma 2.4. Suppose E and L are algebraically closed fields with E C L. If L/ E is algebraic, then E = L.

Proof. Let w € L. Let p(x) € E[x] be the minimal polynomial of « over E. Since E is algebraically closed,
p splits into linear factors over E, one of them being (x — «), implying that « € E. This completes the
proof. |

Theorem 2.5 (Extension Theorem). Let E /k be algebraic, L an algebraically closed field and o : k — L be an
embedding of k. Then there exists an extension of o to an embedding of E in L. If E is algebraically closed and L
is algebraic over ok, then any such extension of o is an isomorphism of E onto L.

Proof. Let .7 be the set of all pairs (F,7) where F C E and F/k is algebraic and 7 : F — L is an extension
of 0. Define a partial order < on . by (F;, 1) < (F, 1) if and only if F; C F, and 1 |, = 7;. Note that
. is nonempty since it contains (k,c). Let ¢ = {(Fy, )} be a chain in .. Define F = |J, F,. Now, for
any t € F, there is  such that t € Fg; using this, define 7(t) = 74(t). It is not hard to see that this is a valid
embedding.

Now, invoking Zorn’s Lemma, there is a maximal element, say (K, 7). We claim that K = E, for if not,
then we may choose some « € E and invoke Lemma 2.3.

Finally, if E is algebraically closed, so is ¢ E, consequently, we are done due to the preceeding lemma. W



Corollary 2.6. Let k be a field and E, E’ be algebraic extensions of k. Assume that E, E” are algebraically
closed. Then there exists an isomorphism 7 : E — E’ inducing the identity on k.

Proof. Consider the extension of ¢ : k — E’ where ¢ |,= id; whence the conclusion immediately follows.
|

Since an algebraically closed and algebraic extension of k is determined upto an isomorphism, we call
such an extension an algebraic closure of k and is denoted by k”.

Definition 2.7 (Conjugates). Let E/k be an algebraic extension contained in an algebraic closure k*.
Then, the distinct roots of the minimal polynomial of « over k are called the conjugates of «. In particu-
lar, two roots of the same minimal polynomial over k are said to be conjugate to one another.

Here’s a nice exercise from [ 1.

Example 2.8. A field is said to be formally real if —1 cannot be expressed as a sum of squares in it. Let k
be a formally real field with k* its algebraic closure. If & € k? with odd degree over k, then k[«] is also
formally real.

Proof. Suppose not. Let & € k? be such that k[a] is not formally real and [k[a] : k] is minimum, greater
than 1. Then, there are elements 71, ..., ym € k[a] such that it 71-2 = —1. We may choose polynomials
pi(x) € k[x] such that p;(a) = y; with deg p;(«) < [k[a] : k].

Let f(x) € k[x] be the irreducible polynomial of « over k. We have

pr(a)’ + -+ pm(a)® = —1

and thus, & is a root of the polynomial p1(x)% + - - - + py(x)? + 1. Thus, there is a polynomial g(x) € k[x]
such that

pr(x)? 4 p(x) +1 = f(x)g(x).

Notice that the degree of the left hand side is even and less than 2 deg f whence deg ¢ < deg f and is odd.
Further, note that g(x) may not have a root in k lest —1 be written as a sum of squares in k. Consider
now the factorization of g(x) as a product of irreducibles:

8(x) = M (x) - - hn(x).

Equating degrees, we see that there is an index j such that deg/; is odd. Let B be a root of h; in k”. Then,
[k[B] : k] = degh; < degg < deg f and

pi(B)° + -+ pu(B)*+1=f(B)3(B) =0
whence k[B] is not formally real and contradicts the choice of «. |

The proof of the next theorem requires some tools from later chapters.

Theorem 2.9. Let K/k be an algebraic extension such that every non-constant polynomial in k(x| has a root in
K. Then, K is algebraically closed.

Proof. Let « € k. We shall show that « € K which would imply the desired conclusion. Let f(x) € k[x] be
the minimal polynomial of « over k and F C k“ be the splitting field of f(x) over k, which is obviously a
finite extension.



Due to Lemma 5.8, there are subfields Fy and E of F such that F = FyE, E/k is purely inseparable and
Fy is the separable closure of k in F. Since Fy/k is a finite separable extension, due to Theorem 4.18, there is
some B € Fy such that Fy = k(B).

Let g(x) be the minimal polynomial of B over k and B’ € K be a root of g(x). Since g(x) is the minimal
polynomial of f’ and is separable since f is separable over k, we have that ' € Fy = k(p) and thus

= kB =kB) Ck
————

4
due to a dimension argument

Ti

E/k is finite, it has a basis, say 71, ..., Yn». The minimal polynomial of +; is of the form (x — 7;)?" and
thus has a single root, whence, ¢; € K. Thus E C K. As a result,
F=FRECK
and thus & € K thereby completing the proof. |



Chapter 3

Normal Extensions

Definition 3.1 (Splitting Field). Let k be a field and {f;};c; be a family of polynomials in k[x]. By a
splitting field for this family, we shall mean an extension K of k such that every f; splits in linear factors
in K[x] and K is generated by all the roots of all the polynomials f; for i € I in some algebraic closure
k.

In particular, if f € k[x] is a polynomial, then the splitting field of f over k is an extension K/k such that
splits into linear factors in K and K is generated by all the roots of f.
P & y

Definition 3.2 (Normal Extension). An algebraic extension K/k is said to be normal if whenever an
irreducible polynomial f(x) € k[x] has a root in K, it splits into linear factors over K.

Theorem 3.3 (Uniqueness of Splitting Fields). Let K be a splitting field of the polynomial f(x) € k[x]. If
E is another splitting field of f, then there exists an isomorphism o : E — K inducing the identity on k. If
k C K C k, where k is an algebraic closure of k, then any embedding of E in k inducing the identity on k must
be an isomorphism of E on K.

Proof. We prove both assertions together. Due to Theorem 2.5, there is an embedding ¢ : E — k such that
0 |x= idy. Therefore, it suffices to prove the second half of the theorem.
We have two factorizations

flx)=clx—ay) - (x —ay) over E
=c(x—PB1)- - (x—Bn) over K
Since ¢ induces the identity map on k, f must remain invariant under o. Further, we have
of(x) =c(x—0B1)---(x —0Bu)

Due to unique factorization, we must have that (¢4, ...,0B,) differs from (ay,...,a,) by a permutation.
Since 0E = k(0B1,...,0Bn), we immediately have the desired conclusion. [ |

Theorem 3.4. Let K/k be algebraic in some algebraic closure k of k. Then, the following are equivalent:
1. Every embedding o of K in k over k is an automorphism of K

2. Kis the splitting field of a family of polynomials in k|x]



3. K/k is normal

Proof.

(1) f:> (2) A (3): Foreach a € K, let m,(x) denote the minimal polynomial for a over k. We shall show that
K is the splitting field for {m, }4cx. Obviously, K is generated by {a },ck, hence, it suffices to show that 11,
splits into linear factors over K. Let B be a root of m, in k. Then, there is an isomorphism o : k(&) — k(B).
One may extend this to an embedding ¢ : K — k, which by our hypothesis, is an automorphism of K,
implying that f € K and giving us the desired conclusion.

(2) = (1): Let K be the splitting field for the family of polynomials { f; },c;. Let « € K and a be the root of
some polynomial f; and ¢ : K — k” be an embedding of fields. Since f; remains invariant under ¢, it must
map a root of f; to another toot of f;, that is, o« is a root of f;. Consequently, o maps K into K. Now, due to
Lemma 1.4, 0 is an automorphism and K/k is normal.

(3) = (1): Let ¢ : K — k be an embedding of fields. Let a € K and p(x) € k[x] be its irreducible
polynomial over k. Since p remains invariant under ¢, it must map a to a root f of p in k. But since p splits

into linear factors over K, g € K and thus ¢(K) C K, consequently, c(K) = K due to Lemma 1.4, therefore
completing the proof. ]

Corollary 3.5. The splitting field of a polynomial is a normal extension.

Theorem 3.6. Normal extensions remain normal under lifting. If k C E C K, and K is normal over k, then K
is normal over E. If Ky, Ky are normal over k and are contained in some field L, then K1 K3 is normal over k and
so is K1 N Ky.

Proof. Let K/k be normal and F/k be any extension with K and F contained in some larger extension. Let ¢
be an embedding of KF over F in F. The restriction of ¢ to K is an embedding of K over k and therefore, is
an automorphism of K. As a result, ¢ (KF) = (¢K)(cF) = KF and thus KF/F is normal.

Now, suppose k C E C K with K/k normal. Let ¢ be an embedding of K in k over E. Then, ¢ induces
the identity on k and is therefore an automorphism of K. This shows that K/E is normal.

Next, if K; and K; are normal over k and ¢ is an embedding of K;K; over k, then its restriction to K; and
Kjy respectively are also embeddings over k and consequently are automorphisms. This gives us

U(Kle) = (O'Kl)(UKz) = K1K2

Finally, since any embedding of K; N K, can be extended to that of K;K>, we have, due to a similar
argument, that Ky N Kj is normal over k. |



Chapter 4

Separable Extensions

Let E/k be a finite extension, and therefore, algebraic. Let L be an algebraically closed field along with an
embedding o : k — L. Define S, to be the set of extensions of o to o™ : E — L.

Definition 4.1 (Separable Degree). Given the above setup, the separable degree of the finite extension
E/k, denoted by [E : k] is defined to be the cardinality of S,.

Proposition 4.2. The separable degree is well defined. That is, if L is an algebraically closed field and T : k — L'
be an embedding, then the cardinality of St is equal to that of S

Definition 4.3 (Separable Extensign). Let E/k be a finite extension. Then it is said to be separable if
[E : k|]s = [E : k]. Similarly, let « € k. Then « is said to be separable over k if k(«) /k is separable.

Proposition 4.4. Let E/F and F / k be finite extensions. Then

[E : k]s = [E : F]s[F : ks

Proof. Let L be an algebraically closed field and o : k — L be an embedding. Let {0;};c; be the extensions
of o to an embedding F — L and {7;;} be the extensions of ¢ to an embedding E — L. We have indexed T
in such a way that the restriction 7; |[r= 0;. Using the definition of the separable degree, we have that for
each i there are precisely [E : Fs j’s such that T;; is a valid extension. This immediately implies the desired
conclusion. |

Corollary 4.5. Let E/k be finite. Then, [E : k|]s < [E : k.

Proof. Due to finitness, we have a tower of extensions
kCk(ag) - Ch(ag,...,an)

We may now finish using Lemma 2.3. n



Theorem 4.6. Let E/k be finite and char k = 0. Then E/k is separable.

Proof. Since E/k is finite, there is a tower of extensions as follows:
kCk(ag) - Chk(ag,..., an)

We shall show that the extension k(a)/k is separable for some a € k. Let p(x) = m,(x) be the minimal
polynomial over k[x]. We contend that p(x) does not have any multiple roots. Suppose not, then p(x) and
p'(x) share a root, say . But since p(x) is the minimal polynomial for B over k, it must divide p’(x) which
is impossible over a field of characteristic 0. Finally, due to Lemma 2.3, we must have k(«) /k is separable.

This immediately implies the desired conclusion, since

[E:k]s = [k(aq, ..., an) tk(aq, ..., 00_1] - [k(ay) : k] = [E : k]

|
Theorem 4.7. Let E/k be finite and chark = p > 0. Then, there is m € INg such that
[E: k] = p™[E : k]s
Proof. |
Remark 4.0.1. From the above proof we obtain that if « € E, then alE*li is separable over k.
Corollary 4.8. Let E/k be a finite extension. Then, [E : k|5 divides [E : k].
Proof. Follows from Theorem 4.6 and Theorem 4.7. |

Definition 4.9 (Inseparable Degree). Let E/k be finite. Then, we denote

[E : K]

B+ ki = 157,

as the inseparable degree.

Lemma 4.10. Let K/k be algebraic and o« € K is separable over k. Let k C F C K. Then, « is separable over F.

Proof. Let p(x) € k[x] and f(x) € F[x] be the minimal polynomial of « over k and F respectively. By
definition, f(x) | p(x) and therefore has distinct roots in the algebraic closure of k. Consequently, « is
separable over F. n

Proposition 4.11. Let E/k be finite. Then, it is separable if and only if each element of E is separable over k.



Proof. Suppose E/k is separable and & € E\k. Then, there is a tower of extensions
kCk(a) €+ Ck(ag,...,an) =E

with a; = a. Recall that [E : k|s < [E : k] with equality if and only if there is an equality at each step in the
tower. This implies the desired conclusion.

Conversely, suppose each element of E is separable over k. Then, each «; is separable over k(aq, ..., a;_1)
due to Lemma 4.10. Consequently, for each step in the tower,

[k(aq, ... o) s k(aq, ..., i 1)]s = [k(aq, ..., ) s k(aq, ..., i 1)]

implying the desired conclusion. n

Definition 4.12 (Infinite Separable Extensions). An algebraic extension E/k is said to be separable if
each finitely generated sub-extension is separable.

Theorem 4.13. Let E /k be algebraic and generated by a family {«;}c;. If each ; is separable over k, then E is
separable over k.

Proof. Letk(ay,...,an)/k be a finitely generated sub-extension of E/k. From our proof of Proposition 4.11,
we know that «; is separable over k(a,...,a;_1), and therefore, k(a1,...,a,) is separable over k and we
have the desired conclusion. [ |

Theorem 4.14. Let E /k be algebraic. Then, E/k is separable if and only if each element of E is separable over k.

Proof. Suppose E/k is separable, then for each a € E, k(«) is a finitely generated sub-extension of E, which
is separable by definition. This implies that « is separable over k, again by definition.

Conversely, suppose each element is separable over k. Let k(«y,...,a,) be a finitely generated sub-
extension of E. Then, we have the following tower

kCk(a) - Ck(ag,..., an)

From our proof of Proposition 4.11, we know that «; is separable over k(aq,...,a;_1), this immediately
implies that k(«ay,...,a,)/k is separable. [ |

Theorem 4.15. Separable extensions (not necessarily finite) form a distinguished class of extensions.

Proof. Suppose E/k is separable and F is an intermediate field. Since each element of F is an element of E,
we have that F must be separable over K, due to Theorem 4.14. Conversely, suppose both E/F and F/k are
separable. Now, if E/k is finite, so is F/k and we are done due to Proposition 4.4.

Now, suppose E/k is not finite. It suffices to show that for all « € E, « is separable over k. Let p(x) =
apx" + - - - + ag be the unique monic irreducible polynomial of a« over F. Then, p(x) is also the monic
irreducible polynomial of « over k(ay, ...,a,). Since « is separable over F, p(x) has no repeated roots and
therefore w is also separable over k(ay, ..., a,). We now have a finite tower

k C k(ag,...,a,) S k(ag, ..., a,)(a)

Furthermore, since each g; is separable over k for 0 < i < n, it must be the case that k(ay, .. ., a,) is separable
over k and finally so must «.

Next, suppose E/k is separable and F/k is an extension, where both E and F are contained in some
algebraically closed field L. Since every element of E is separable over k, it must be separable over F,
through a similar argument involving the minimal polynomial as carried out above. Since EF is generated
by all the elements of E, we may finish using Theorem 4.13. This completes the proof. n

10



Definition 4.16 (Separable Closure). Let k be a field and k” be an algebrai closure. We define the
separable closure k°°P as
k%P = {a € k* | a is separable over k}

If o, p € kP, then o, B € k(a, B), which by choice of a, B is separable over k. Therefore, af, a/p, a +
B,a — B € k(a, B) are separable over k, and lie in k%P, from which it follows that kP is a field extension of
k.

Primitive Element Theorem

Definition 4.17 (Primitive Element). Let E/k be a finite extension. Then « € E is said to be primitive if
E = k(a). In this case, the extension E/k is said to be simple.

Theorem 4.18 (Steinitz, 1910). Let E/k be a finite extension. Then, there exists a primitive element o € E if
and only if there exist only a finite number of fields F such that k C F C E. If E/k is separable, then there exists
a primitive element.

Proof. If k is finite, then so is E and it is known that the multiplicative group of finite fields are cyclic,
therefore generated by a single element, immediately implying the desired conclusion. Henceforth, we
shall suppose that k is infinite.

Suppose there are only a finite number of fields intermediate between k and E. Let a,f € E. We
shall show that k(«, 8)/k has a primitive element. Indeed, consider the intermediate fields k(a + cf) for
¢ € k, which are infinite in number. Therefore, there are distinct elements c1,¢; € k such that k(a + c18) =
k(a4 cpB). Consequently, (c; — c2)B € k(a + c1B), therefore, B € k(a + c1B) and thus a € k(a + c18).
This implies that & + ¢1 is a primitive element for k(«, B) /k. Now, since E/k is finite, it must be finitely
generated. We may now use induction to finish.

Conversely, suppose E/k has a primitive element, say « € E. Let f(x) be the monic irreducible poly-
nomial for a over k. Now, for each intermediate field k C F C E, let gr denote the monic irreducible
polynomial for a over F. Using the unique factorization over k[x], gr | f for each intermediate field F,
therefore, there may be only finitely many such gr and thus, only finitely many intermediate fields F.

Finally, suppose E/k is separable and therefore, finitely generated. Hence, it suffices to prove the state-
ment for k(x, 8)/k. Say n = [k(a,B) : k] and let 07, ...,0, be distinct embeddings of k(a, B) into k over
k

f)= TI (x¥(B=0iB)+ (o — ;)

1<i#£j<n

Since f is not identically zero, there is ¢ € k (due to the infiniteness of k), such that f(c) # 0 and thus,
the elements o;(« + ¢p) are distinct for 1 < i < n, and thus

n < [kl +cB) : Kl < [k(+cB) K] < [K(w,B) : K] =
Thus, a + cp is primitive for k(«, §) /k which completes the proof. |

Note that there are finite extension with infinitely many subfields. For example, consider the extension
IFp,(x,y)/Fp(xP,yP) which has degree p?. Letz € k = FF,(x”,y”) and w = x +zy € Fp(x,y). We have
wP = xP 4+ zFPy? € Fp(x¥,y”) and thus, k(w)/k has degree p. Furthermore, for z # z’ and w’' = x + 2y, it
is not hard to see that k(w, w’) contains both x and y, and is equal to IF,(x,y), from which it follows that
w # w'. Since we have infinitely many choices of z, there are infinitely many subfields of the extension

]Fp(x,y)/]Fp(xp,yp).

11



Lemma 4.19. Let E/k be an algebraic separable extension. Further, suppose that there is an integer n > 1 such
that for every element « € E, [k(«) : k| < n. Then E/k is finite and [E : k] < n.

Proof. Let « € E such that [k(a) : k| is maximal. We claim that E = k(«), for if not, there would be
B € E\k(x). Now, since k(«, B) is a separable extension and is finite, it must be primitve. Thus, there is

v € E such that k(a, ) = k() and [k(y) : k] = [k(«,B) : k] > [k(x) : k], contradicting the assumed
maximality. This completes the proof. [ ]

12



Chapter 5

Inseparable Extensions

Proposition 5.1. Let « € k* and f(x) € k(x| be the minimal polynomial of « over k. If chark = 0, then all the
roots of f have multiplicity 1. If chark = p > 0, then there is a non-negative integer m such that every root of
f has multiplicity p™. Consequently, we have

[k(a) : k] = p" [k(a) = K5

and a?" is separable over k.

Proof. u

Definition 5.2. Let chark = p > 0. An element a € k” is said to be purely inseparable over k if there is a
non-negative integer 1 > 0 such that a?" € k.

Theorem 5.3. Let chark = p > 0 and E/k be an algebraic extension. Then the following are equivalent:
(a) [E:k]s=1.
(b) Every element « € E is purely inseparable over k.
(c) For every a € E, the irreducible equation of a over k is of type XP" — a = 0 for some n > 0 and a € k.

(d) There is a set of generators {«;}cy of E over k such that each ; is purely inseparable over k.

Proof. (a) = (b). Leta € E. From the multiplicativity of the separable degree, we must have [k(«) :
k]s = 1. Let f(x) € k[x] be the minimal polynomial of « over k. Since [k(«) : k|5 is equal to the number of
distinct roots of f, we see that f(x) = (x — a)™ for some positive integer m. Let m = p"r such that p 1 r.
Then, we have

n n n r n n n
flx)=(x—a)f "= (x” —zx”) = xP"" — " P 4

Since the coefficients of f lie in k, we have ra?" € k whence a”" € k.

(b)) = (c). There is a minimal non-negative integer n such that a”" € k. Consider the polynomial
g(x) = 27" —aP" € k[x]. Note that g(x) = (x — a)?", whence the minimal polynomial for « over k divides
¢ and is thus of the form (x — a)™ for some positive integer m < p". Using a similar argument as in the
previous paragraph, we see that there is a non-negative integer r such that «?" € k. Due to the minimality
of n, we must have m = p” and g the minimal polynomial of « over k.

13



(c) = (d). Trivial.
(d) = (a). Any embedding of E in k” must be the identity on the «;'s whence the embedding must
be the identity on all of E which completes the proof. ]

Definition 5.4. An algebraic extension E/k is said to be purely inseparable if it satisfies the equivalent
conditions of Theorem 5.3.

Proposition 5.5. Purely inseparable extensions form a distinguished class of extensions.

Proof. Let chark = p > 0. The assertion about the tower of fields follows from the multiplicativity of
separable degree. Now, let E/k be purely inseparable. Then there is a set of generators {«; };c; generating
E over k. Then, {a;};c; generates EF over F. Since the minimal polynomial of «; over F must divide the
minimal polynomial of «; over k, which is of the form (x — a;)P" for some non-negative integer 71, we see
that a; is purely inseparable over F whence EF is purely inseparable over F.

Finally, let E/k and F/k be purely inseparable extensions. If {«; };c; and {B;};cj generate E and F over k
respectively such that each «; and B; is purely inseparable over k, then EF is generated by {«;}ic; U {B;}e;
over k whence is purely inseparable over k. |

Proposition 5.6. Let E /k be an algebraic extension and Eg the separable closure of k in E. Then, E/ Ey is purely
inseparable.

Proof. If chark = 0, then E/k is separable and Ey = E and the conclusion is obvious. On the other hand,
if chark = p > 0, then for every a € E, there is a non-negative integer m such that a”" is separable over k
whence an element of Ey. Thus, E/ Eg is purely inseparable. u

Proposition 5.7. Let K/k be normal and K the separable closure of k in K. Then K/ k is normal.

Proof. Let o : Ko — k* be an embedding of fields. This extends to an embedding of K and is thus an
automorphism of K. Note that 0(Ky) is separable over k and is thus contained in ky whence 0(Kj) = Ko
and ¢ is an automorphism. This completes the proof. u

Lemma 5.8. Let K/k be normal, G = Aut(K/k) and KC the fixed field of G. Then KC /k is purely inseparable
and K/KG is separable. If Ky is the separable closure of k in K, then K = K¢Kq and K& N Ko = 0.

Proof. Let « € K® and ¢ : k(a) — k® be an embedding over k. This can be extended to an embedding
0 : K — k% Since K is normal, this is an automorphism ¢ : K — K and thus an element of G. This must
leave « fixed whence ¢ is the identity map, consequently, « is purely inseparable over k and the conclusion
follows.

We shall now show that K/KC is separable. Pick some « € K and let 0y,...,0, € G such that the
elements o7 (), ...,0,(a) form a maximal set of pairwise distinct elements. Consider the polynomial f(x)
in K[x| given by

n
flx) = Il(x — i)
i=
It is not hard to see that for any o € G, (f) = f, whence f € K®[x] and « is separable over K°.
Note that any element of K¢ N K is both separable and purely inseparable over k whence an element of
k. Thus K N Ky = k.
Finally, since both purely inseparable and separable extensions form a distinguished class, we have
K/KoK® is both separable and purely inseparable whence K = KoK®. This completes the proof. |
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Chapter 6

Finite Fields

It is well known that every finite field must have prime characteristic. In fact, any integral domain with
nonzero characteristic must have prime characteristic.

Theorem 6.1. Let F be a finite field with characteristic p > 0. Then there is a positive integer n such that F has
cardinality p". Further, there is a unique field upto isomorphism of cardinality p™.

Proof. The prime subfield of F is the subfield generated by 1 and is isomorphic to IF,. Then [F : Fp] = n,
whence the conclusion follows. Now, we show that there is a field with cardinality p”. Consider the
polynomial f(x) = x?" — x € Fp[x]. First, note that Df(x) = —1, and thus f(x) has distinct roots in . It
is not hard to see that if «, § are roots of f(x) in Fp, then « — B and af are roots of f(x) in IF,,. Therefore, the
collection of roots of f(x) in F, form a field. The cardinality of this field is the number of distinct roots of
f(x) inF,, which is precisely p".

As for uniqueness, note that if F is a field of cardinality p", then every element of F is a root of f(x) =
xP" — x € F,[x] (this is because F contains a copy of F, in it). Therefore, F is the splitting field for f(x)
over [Fy[x] in some algebraic closure. But since all splitting fields are isomorphic, we have the desired
conclusion. n

Theorem 6.2 (Frobenius). The group of automorphisms of IFy where g = p" is cyclic of degree n, generated by
the Frobenius mapping, ¢ : By — T, given by ¢(x) = x*.

Proof. We first verify that ¢ is an automorphism. That ¢ is a ring homomorphism is easy to show, from
which it would follow that ¢ is injective. Surjectivity follows from here since IF; is finite. Next, note that ¢
leaves IF, fixed, thus, G = Aut(IF;) = Aut(IF;/F,). Furthermore, | Aut(F,;/Fp)| = [F; : F,ls < [F; : F)] =
n.

We now show that the order of ¢ in G is precisely 1, for if d were the order of ¢, then ¢ (x) = x for all

x € [F; and thus, x?" — x = 0forall x € IF,, from which it follows that pd > gand d > n and the conclusion
follows. u

Theorem 6.3. Let m,n € IN. Then in an algebraic closure F, of Fp, the subfield F yn is contained in Fym if and
only if n | m.

Proof. If IFyn is contained in IFm, then p™ = (p")4 where d = [IFym : IFpn]. The converse follows from noting
that x?" — x | " — x. [ ]
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Theorem 6.4. Let m,n € IN such that n | m. Then the extension IFym /T yn is finite Galois.

Proof. We have [Fpn : Fp] = m and [Fpn : Fp] = n, consequently, [Fyn : Fynls = m/n = [Fpm : Fpn]
and thus the extension is separable. To show that the extension F,n /IF,» is normal, it suffices to show
that the extension IF,n /IF, is normal but this trivially follows from the fact that IF, is the splitting field of

xP" — x € Fp[x]. This completes the proof. |
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Chapter 7

Galois Extensions

Definition 7.1 (Fixed Field). Let K be a field and G be a group of automorphisms of K. The fixed field
of K under G, denoted by K€ is the set of all elements x € K such that ox = x forall ¢ € G.

That the aforementioned set forms a field is trivial.

Definition 7.2 (Galois Extension, Group). An extension K/k is said to be Galois if it is normal and
separable. The group of automorphisms of K over k is known as the Galois Group of K/k and is denoted
by Gal(K/k).

Theorem 7.3. Let K be a Galois extension of k and G = Gal(K/k). Then k = KC. If F is an intermediate field,
k C F C K, then K is Galois over F and the map

F — Gal(K/F)

from the intermediate fields to subgroups of G is injective. Finiteness is not required in this case.

Proof. Leta € K¢ and ¢ : k(a) — K be an embedding over k. Due to Theorem 2.5, ¢ may be extended to an
embedding of K over k in K. Since K/k is normal, this is an automorphism and therefore, an element of G.
As a result, 0 sends « to itself, therefore, any embedding of k(«) over k is the identity map, implying that
[k(«) : k]s = 1, or equivalently, k(«) = k whence a € k.

Let F be an intermediate field. Due to Theorem 3.6 and Theorem 4.15, we have that K/ F is normal and
separable, therefore Galois.

Finally, if F and F’ map to the same subgroup H of G, then due to the first part, of this theorem, we must
have F = KH = F/, establishing injectivity. |

Lemma 7.4. Let E/k be algebraic and separable, further suppose that there is an integer n > 1 such that every
element « € E is of degree at most n over k. Then [E : k] < n.

Proof. Let a € E such that [k(«) : k] is maximized. We shall show that k(«) = E. Suppose not, then there is
B € E\k(«) and thus, we have a tower k C k(a) C k(a, B). Due to Theorem 4.18, there is ¢y € E such that

k(a, B) = k(y). But then,
[k(7) k] = [k(a, B) K] > [k(w) - K]

a contradiction to the maximality of a. Therefore, E = k(a) and we have the desired conclusion. [ |
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Theorem 7.5 (Artin). Let K be a field and let G be a finite group of automorphisms of K, of order n. Let k = KC.
Then K is a finite Galois extension of k, and its Galois group is G. Further, [K : k| = n.

Proof. Leta € K. We shall show that K is the splitting field of the family {m,(x)},cx and that a is separable
over k.
Let {1, ..., 0,0} be a maximal set of images of & under the elements of G. Define the polynomial:

m
flx) =T ](x —oia)
i=1
For any T € G, we note that {toa, ..., Toy,a} must be a permutation of {14, ..., o}, lest we contradict
maximality. As a result, « is a root of fT for all T € G and therefore, the coefficients of f lie in K¢ = k, i.e.
f(x) € k[x].

Since the oja’s are distinct, the minimal polynomial of a over k must be separable, and thus K/k is
separable. Next, we see that the minimal polynomial for « also splits in K and thus, K is the splitting field
for the family {m,(x)},ex. Consequently, K/k is normal and hence, Galois.

Finally, since the minimal polynomial for « divides f, we must have [k(a) : k] < degf < n whence
due to Lemma 7.4, [K : k] < n. Now, recall that n = |G| < [K : k] < [K : k] and we have the desired
conclusion. ]

Corollary 7.6. Let K/k be a finite Galois extension and G = Gal(K/k). Then, every subgroup of G
belongs to some subfield F such that k C F C K.

Lemma 7.7. Let K/k be Galois and F an intermediate field, k C F C K, and let A : F — k be an embedding.
Then,
Gal(K/AF) = AGal(K/F)A~!

Proof. The embedding A can be extended to an embedding of K due to Theorem 2.5 and since K/k is normal,
A is an automorphism. As a result, AF C K and thus, K/AF is Galois. Let ¢ € Gal(K/F). It is not hard
to see that AcA~! € Gal(K/AF) and conversely, for T € Gal(K/AF), A~'tA € Gal(K/F). This implies the
desired conclusion. |

Theorem 7.8. Let K/k be Galois with G = Gal(K/k). Let F be an intermediate field, k C F C K, and let
H = Gal(K/F). Then F is normal over k if and only if H is normal in G. If F / k is normal, then the restriction
map o — o | is a homomorphism of G onto Gal(F /k) whose kernel is H. This gives us Gal(F/k) = G/H.

Proof. Suppose F/k is normal. To see that the map o — ¢ | is surjective, simply recall Theorem 2.5. The
kernel of said mapping is obviously H and we have that H < G and due to the First Isomorphism Theorem,
G/H = Gal(F/k).

On the other hand, if F/k is not normal, then there is an embedding A : F — k such that F %+ AF.
Note that due to Theorem 2.5, AF C K. Then, we have Gal(K/F) # Gal(K/AF) = AGal(K/F)A~!, and
equivalently, Gal(K/F) is not normal in G. This completes the proof of the theorem. [ ]

Note that in the proof of the above theorem, while showing H is normal in G, we did not use that the
Galois extension is finite. We can now put together all the above results into one all-powerful theorem.

Theorem 7.9 (Fundamental Theorem of Galois Theory). Let K/k be a finite Galois extension with G =
Gal(K/k). There is a bijection between the set of subfields E of K containing k and the set of subgroups H of G
given by E = K. The field E is Galois over k if and only if H is normal in G, and if that is the case, then the
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restriction map o — o |g induces an isomorphism of G/ H onto Gal(E/k).

Definition 7.10. A Galois extension K/k is said to be abelian (resp. cyclic) if its Galois group is abelian
(resp. cyclic).

Theorem 7.11. Let K/k be finite Galois and F /k an arbitrary extension. Suppose K, F are subfields of some
larger field. Then KF is Galois over F, and K is Galois over KN F. Let H = Gal(KF/F) and G = Gal(K/k).
Forall o € H, the restriction of o to K is in G and the restriction map o — o |k gives an isomorphism of H on
Gal(K/K N F). Finally, if F /k is Galois, then so are KF /k and K N F / k.

Proof. That KF/F and K/K N F are Galois follow from Theorem 3.6 and Theorem 4.15. Let x : H — G
denote the restriction map. Note that ker x contains all ¢ € H such that ¢ fixes K. But since ¢ implicitly
fixes F, it must also fix KF and is therefore the unique identity automorphism. As a result, ker yx is trivial
and y is injective. Let H' = x(H) C G. We shall show that KH' = KN F. Indeed, if « € KH', then « is also
fixed by all elements of H, since x is only the restriction map. As a result, « € F, consequently « € KN F.
The conclusion follows from Theorem 7.9.

Now, suppose F/k is Galois. Then, due to Theorem 3.6, both KF and K N F are normal over k whence
are Galois. |

7.1 Normal Basis Theorem

Definition 7.12 (Normal Element). Let K/k be a finite Galois extension with Gal(K/k) = {0y, ...,0,}.
An element « € K is said to be a normal element if {oq(«), ..., 0,(«)} forms a k-basis of K.

Theorem 7.13 (Normal Basis Theorem). If K/k is a finite Galois extension, then it has a normal element.

Proof. Let G = Gal(K/k) = {01,...,04}. We shall divide the proof into two cases.

Case 1. G is cyclic.

Let G = (o) for some 0 € G. Let m,(x) € k[x] denote the minimal polynomial of ¢. Since ¢ is a root
of x" — 1 € k[x], we must have my(x) | x* — 1. If deg(m,) = m < n, then there are ay, ..., a, € ksuch
that

mg(x) = amx™ + - - + ag.

In particular, a,,0™ + - - - 4+ apid = 0, but this is a contradiction to Dedekind’s Lemma on the indepen-
dence of characters. Therefore, m,(x) = x" — 1, consequently, m,(x) must also be the characteristic
polynomial of ¢ due to a degree argument. Since the minimal polynomial and the characteristic poly-
nomial are the same, there is a o-cyclic vector for the extension K/k, which is the desired normal
element.

Case 2. kis infinite. Note that the previous case subsumes the case with k finite.

Due to Theorem 4.18, K = k() for some a € K. Suppose without loss of generality that o7 = id. Let
a; = 0;(a), which are all pairwise distinct, and define

o [Tizi(x —a)
silx) = [Tjzi(ai —aj)

Denote g1 by simply g, then, g; = 0;(g)-
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The polynomial

g1(x) + -+ gu(x)
attains the value 1 for a4, . .., &, but since it has degree at most n — 1, it must be identically equal to 1.
Further, fori # j, f | gigj and g7 — g; vanishes at a1, ..., a, whence f | g% — g;.

Define the matrix
o101(g) 0102(8) ... 010u(g)
A(x) = : : . :

0401(8) 0202(8) ... 0u0n(g)
We contend that det A(x) is a nonzero polynomial. Suppose not. Consider M(x) = A(x)T A(x). The
(i,j)-th entry is given by

) 00i(8)o0j(g) = ) o(8ig))-

ceG ceG

If i # j, note that f | o(g;g;) for all o € G. Therefore, f divides all non-diagonal entries of M(x) while
the diagonal entries of M(x) are given by

Z o(g)? = Z o(g;) (mod f) = Egl (mod f) =1 (mod f).

ceG ceG

Hence, det M(x) = 1in K[x]/(f(x)), in particular, it is nonzero in K[x], therefore, det A(x) # 0 in
K]x].

Since K is infinite, there is some 6 € K such that det A(6) # 0. Let ‘B ¢(0). We claim that B is the
desired normal element. To do so, it suffices to show that {7 (B),...,04(B)} is linearly independent
over k.

Indeed, suppose there is a linear combination
C10’1(,8) + -+ Cn(Tn(ﬁ) =0 < C10’1(g(9)) + - +Cn(7n(g(9)> =0.

Applying o; to the above equation for 1 < i < n, we obtain a system of linear equations given by

a
AB)| 1 | =0,
Cn
whence ¢; = - -+ = ¢, = 0, since A(6) is invertible. This completes the proof. |

Once we have a normal element, we can easily find the primitive (and sometimes normal) elements of
all intermediate fields.

Theorem 7.14. Let K/k be a finite Galois extension with G = Gal(K/k) and a € K be a normal element.
(a) If H < G, then By := TrﬁH (&) is a primitive element of KH /k.

(b) If H Q G, then By is a normal element of K™ /k.

Proof.  (a) Obviously, B € KH. We shall show that Gal(K/k(By)) C H, which would imply KX C k(By)
and the conclusion would follow.

Let T € G\H. Then,
T(Bu) = ) o(a).

cetH

Since TH is a coset distinct from H, they are disjoint and since the collection {c(«) | ¢ € G} is a
linearly independent set, we cannot have 7(fy) = Bu, consequently, Gal(K/k(By)) C H.
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(b) Let 7q,..., Ty be elements of G whose images under the canonical projection G - G/H are all the
elements of G/H. Note that this projection map is simply the restriction map from Gal(K/k) to
Gal(k(By)/k). Suppose

ClTl(;BH) + -+ Cme(ﬁH) =0,

then,

O—ici< ) U(uc)).

cet;H

By our choice of 7;’s, the cosets 7;H and 7;H are pairwise distinct, consequently, the sum written above
is essentially of linearly independent elements, o(a) where ¢ ranges over G. Therefore, ¢c; = -+ =
¢ = 0. This completes the proof. ]

7.2 Galois Groups of Polynomials

Definition 7.15. Let f(x) € k[x] be a polynomial and k? an algebraic closure containing k. Let f have
roots r1, ..., r, € k*. Define the discriminant of f as

2
disc(f) := (H(rl — r]-)> :
i<j

The Galois group of f, denoted Gy is defined as Gal(k(ry, ..., 74)/k).

The group Gy permutes {ry, ..., 7, } whence it can be embedded in &,. Henceforth, we shall identify G¢
with its image under this embedding.

Proposition 7.16. disc(f) € k.

Proof. Since the Galois group permutes {r; | 1 <i < n}, disc(f) is the fixed field of the action of the entire
Galois group on k(ry, ..., r,) which is k. [ ]

Theorem 7.17. Let chark # 2 and f(x) € k(x| a separable polynomial. Then, Gy C 2y, if and only if disc(f)
is a perfect square in k.

Proof. Let
o= H(T’i - 1’])
i<j
Then, for each o € Gy, 0(6) = sgn(c)d. Thus,
GrCy & 0(0)=0 VoeGf < €k

This completes the proof. ]
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Chapter 8

Cyclotomic Extensions

Definition 8.1 (Root of Unity). Let k be a field. A root of unity over k is an element { € k* such that
" =1 forsome n € IN.

Consider the polynomial x" — 1 with ged(chark, n) = 1. In this case, the polynomial is separable over
k and thus has distinct roots. Let Z,, = {z1,...,z,} denote the distinct roots. It is not hard to see that
Z, C k* forms a multiplicative group. Since every finite multiplicative subgroup of a field is cyclic, so
is Z,. A generator for the group Z, is called a primitive n-th root of unity. Obviously, there are ¢(n)
such primitive n-th roots of unity.

Consider now the case ged(chark,n) # 1. Let chark = p > 0. Then, there is a positive integer r
such that n = p"m with p { m. Then,

K —1=(x"—1)"

and thus every n-th root of unity is an m-th root of unity, whence it suffices to study polynomials of
the form (x" — 1) with ged(chark, n) = 1.

Proposition 8.2. Every root of unity is a primitive n-th root of unity for some positive integer n.

Proof. Let { be a root of unity and let n be the smallest positive integer such that {" = 1. Consider the
subgroup (g > < Zy. If the order of this subgroup is m, then (" = 1 whence m > n and thus m = n and the
conclusion follows. [ |

As a result, need only concern ourselves with primitive n-th roots of unity with ged(chark, n) = 1.

Proposition 8.3. Let k be a field and {,, € k" a primitive n-th root of unity such that ged(n, chark) = 1. Then,
k(Cn)/k is a Galois extension.

Proof. Since {, is a generator for Z,, k({,) is the splitting field of " — 1 over k and thus a normal extension of

k. Further, since x" — 1 is a separable polynomial over k, so is the extension k() /k whence it is Galois. W

Proposition 8.4. Let gcd(chark,n) = 1. If { is a primitive n-th root of unity, then k({)/k is an abelian
extension.

Proof. Define the map ¢ : Gal(k()/k) — Aut(u,) by o — 0], . Note that Aut(u,) = (Z/nZ)", further, it
is not hard to see that ¢ is injective and the conclusion follows. ]
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Note that although we have shown Gal(k({)/k) to be embeddable into (Z/nZ)*, the map may not be
a surjection take for example k = R and { = exp(27i/5). Then, k({) = C, and Gal(k({)/k) = {£1}.

Proposition 8.5. Let { be a primitive n-th root of unity over Q. Then,

[Q(2) : Q] = ¢(n)
and consequently, the map ¢ : Gal(Q()/Q) — (Z/nZ)* is an isomorphism.

Proof. u
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Chapter 9

Norm and Trace

Definition 9.1. Let E/k be a finite extension and [E : k]s = r and let 07, .. ., 0; be distinct embeddings
of E in an algebraic closure k” of k. We define the norm and trace of « € E as

. [E:k];
j=1
Tre i) = TeE(w) = [ K Y opa
j=1

Notice that if E/k were not separable, then char k > 0 and would be a prime, say p. Further, [E : k|; = p”
for some v > 1, consequently, Trf («) = 0 (since char E = chark = p).

Proposition 9.2. Let E /k be a finit extension such that E = k() for some a € E. If
p(x) = x" 4+ a,_1x" 1+ +ag
is the minimal polynomial of & over k, then

Nf(@) = (=1)"ag  Tef(a) = —ay1

Proof. This follows from the fact that the minimal polynomial splits as

p(x) = ((x —aq) - (x — “r))[E:kL-

whence the conclusion follows. [ |

Proposition 9.3. Let E/k be a finite extension. Then the norm NF : EX — k* is a multiplicative homomor-

phism and the trace Trf : E — k is an additive homomorphism. Further, if we have a tower of finit extensions
k C F CE, then
NE=NFoNE  Tof =Tef ok

Proof. First, we must show that Nf is a map EX — k* and Trf is a map E — k. Recall that for & € E,

B = alFHli is separable over k and thus NF, which is the product of all the conjugates of § is also separable
since all conjugates lie in k°P. Now, let 0 : k* — k* be a homomorphism fixing k. Then, it is not hard to see
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that c(B) = B and thus [k(B) : k]s = 1 but since B is separable, we have [k(B) : k] = 1 and B € k. A similar
argument can be applied to the trace.

Let {0;} be the set of distinct embeddings of E into k” fixing F and {7;} be the set of distinct embeddings
of F into k” fixing k. Extend each 7; to a homomorphism k* — k.

We contend that the set of all distinct embeddings of E into k” fixing k is precisely {7; o ;}. Obviously,
every element of the aforementioned family is distinct and is an embedding of E into k? fixing k. Now, let
o : E — k" be an embedding of E into k”. Then, the restriction ¢|r is equal to (the restriction of) some Tj,
whereby 1']710 fixes F whereby it is equal to some ¢;. Thus every embedding of E into k? over k is of the
form 7; 0 0;.

Finally, we have

i,j

[E:F);[F:k]; [E:F);
(H(T] oai)(oc)) = HT]- <H(Ti(a)> = N,ﬁt ONE(DC)
] 1

[E: FL[F ki) _tjooi(a) = [F:kli )T ([E : F]iZUi(ﬂ))

1] i
and the conclusion follows. |
Theorem 9.4. Let E/k be a finite extension and « € E. Let my : E — E be the linear transformation given by

my(x) = ax. Then,
NE(a) = det(m,) T () = tr(my)

Note that we may unambiguously write det(m,) and tr(m,) since both these quantities do not depend on
the choice of a basis, since similar matrices have the same determinant and trace.

Proof. [ |
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Chapter 10

Cyclic Extensions

10.1 Hilbert's Theorems

Definition 10.1. A Galois extension K/k is said to be cyclic if Gal(K/k) is a cyclic group. Similarly, it is
said to be abelian if Gal(K/k) is abelian.

Theorem 10.2 (Linear Independence of Characters). Let G be a group (monoid) and K a field. If oy, ..., 0y :
G — K* are distinct group homomorphisms. Then,

1o+ 4oy =0+<4+= cg=--=¢,=0

Corollary 10.3. Let K/k be a Galois extension. Then, there is & € K such that TrK () # 0.

Proof. Suppose not. If Gal(K/k) = {oy,...,04}, then
oo+--4+0,=0

on K, a contradiction to Theorem 10.2. [ ]

Theorem 10.4 (Hilbert’s Theorem 90). Let K/k be a cyclic degree n extension with galois group G. Leto € G
be a generator and B € K. The norm NX(B) = 1if and only if there is « € K* such that p = a /0 ()

Proof. = Suppose NX(B) = 1. We have a set of distinct characters {id,c,...,¢" '} from K* — K*.
Then, due to Theorem 10.2, the set map

T=id+po+ (Br(B))o? + -+ (Bo(B) - " *(B))o"
is nonzero, whereby, there is € K* such that « = 7(6) # 0. Notice that
o(a) = o(8) + (¢(B))e?(6) + - - + (c(B)o*(B) -+~ o1 (B))o" (6)
Since NX(B) = 1, we have
po(p)--o"H(p) =1

whence, we have (a) = a/B and the conclusion follows.
<= This is trivial enough. |
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Example 10.5. Find all rational points on the curve x> + > = 1.

Proof. This reduces to finding all elements « € Q[i] with Ng[i] («) = 1. Any element « of Q[i] may be written

as (a + bi)/c. Due to Theorem 10.4, there is an element & € Q[i], such that Ngm (a) = 1. Using the general
form of elements in Q[i], we have
W a+bi  (a®—b?)+ 2abi
a — bi a? + b?
this completes the proof. ]

Lemma 10.6. Let K/ k be a cyclic extension of degree n with Gal(K/k) = (o) and suppose k contains a primitive
n-th root of unity, ¢. Then, { is an eigenvalue of .

Proof. Note that Nf({™1) = 1. Due to Theorem 10.4 there is « € K such that a/c(a) = (! and the
conclusion follows. ]

Theorem 10.7 (Structure of Cyclic Extensions). Let K/k be a cyclic extension of degree n and suppose k
contains a primitive n-th root of unity. Then, K = k(«) for some a € K such that «™ € k.

Proof. Let Gal(K/k) = (). Due to Lemma 10.6, there is « € K such that o(a) = {a. Then, a has n-distinct

conjugates in K whence K = k(«). Now,
o(a") =o(a)" =a".

Thus, a” is fixed under the action of Gal(K/k), that is, a” € k. This completes the proof. [ |

Theorem 10.8 (Additive Hilbert’s Theorem 90). Let K/ k be a cyclic Galois extension with Gal(K/k) = (o)
and B € K. Then Trf (B) = 0 iff there is & € K such that p = a — o'(«).

Proof. Due to Corollary 10.3, there is some 8 € K with Trk (8) # 0. Consider a € K given by

v = gy (B4 BHoB)AO 44 (B4 B 0)
We have
o) = = . @ (e(B)2(0) + (0(B) + 2 (B))*(0) + -+ + (o(B) +- -+ 0" ()" (6) )
Tk
1
== Prxggy OO+ )
= — ﬁ
The converse is trivial. [ ]

Theorem 10.9 (Artin-Schreier). Let k be a field of characteristic p > 0.

(a) Let K/k be a cyclic extension of degree p. Then there is « € K such that K = k() and w is a root of
f(x) = xP — x — a for some a € k. Further, K is the splitting field of f(x) over k.
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(b) Conversely, if a # bP — b for some b € k, and K is the splitting field of f(x) = x¥ — x —a € k[x], then
f(x) is irreducible and K/ k is cyclic of degree p.

Proof. (a) Let Gal(K/k) = (o), since it is a group of prime order. We have Tri(—1) = p-(~1) =0
whence there is « € K such that —1 = & — 0(«), equivalently, c(«) = a + 1. Leta = a” — a. Then,

oa)=c(@? —a)=c(a)l —(a+1)=al +1—(a+1) =a.
Thus, 0" (a) = a for 1 < n < p, consequently, a € KGI(K/k) —
Note that for 1 < m # n < p, we have
o) =a+m#£a+n=0c"(a).
Thus, p < [k(«) : k]s < [k(a) : k] < [K: k] = p whence [k(«a) : k] = p and K = k(«).
(b) Leta € K be aroot of f(x). Then, sois « + 1. Hence, all the roots of f(x) in K are given by
{a,0a+1,...,0a+p—1},

whence K = k(«). Suppose f(x) = g1(x) - - - g+(x) where g1, ..., g € k[x] are irreducible polynomials.
If r is a root of some g;, then r is a root of f and thus K = k(r). In particular, degg; = [K : k]. This
gives us rdeg g1 = p and since f(x) does not have a root in k, we must have r = 1 and deg g1 = p.
That is, f(x) is irreducible.

Finally, Gal(K/k) = (o) where o(a) = a + 1. This completes the proof. ]

10.1.1 Lagrange Resolvents

Let p > 0 be a prime number and k a field such that chark = 0 or gcd(chark, p) = 1. Suppose further, that
Hp C k, that is, k contains a primitive p-th root of unity. Now let K/k be a cyclic extension of order p. Using
Theorem 10.7, there is some a € k such that K = k({/a). We shall explicitly find such an a € k.

Let « € K be primitive for the extension K/k and Gal(K/k) = (o). If m,(x) is the minimum polynomial
of & over k, then the roots of m, are given by {a,0(a),...,0P"1(a)} and of course, are distinct. Let i, =
{z1,...,2zp} C k. Define

p—1 )
(zi,a) =) (T](tx)zf.
=0

These are called the Lagrange Resolvents.

Then,
(z1,a) 1z ... z’ffl «
(zp, ) 1 zp ... z}}:*l o (a)
V(er Z,U)

The Vandermonde determinant, det V(zy, ..., z;) is nonzero and hence, the matrix is invertible. Note that

o((zi,) =z ' (zi,0),
whence (z;,«) is an eigenvector corresponding to the eigenvalue z;l.
under ¢ and thus lies in the base field k. This shows that K = k((z;,«)).

In particular, (z;,«)? is invariant

10.2 Solvability by Radicals
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Definition 10.10. An extension K/k is said to be radical if there is a tower
k=FhCHKC---CF =K

where F; 1/ F; is obtained by adjoining an 7;-th root of an element in F;. Each F; 1 /F; is called a simple
radical extension.

Definition 10.11. A polynomial f(x) € k[x] is said to be solvable by radicals if any splitting field K of f
over k is contained in a radical extension of k.

Lemma 10.12. Let E/k be a finite separable radical extension. Then, the normal closure, K of E is a radical
Galois extension.

Proof. Fix some algebraically closed field k” containing k and let
k=R ChC---CE,=E

be a tower of simple radical extensions. Let {id = 07,...,0,} be the distinct k-embeddings of E/k into
k?. Then, note that c;j(F;1)/0;j(F;) is also a simple radical extension. Thus, we have a tower of successive
simple radical extensions

k= 0'1(F0) Q e g 0'1(Pm) Q Ul(Fm)Ul(FQ) g cee g 0'1(Fm) ...Un(Fm> =K.

This completes the proof. |

Theorem 10.13 (Galois). Let chark = 0 and f(x) € k[x]. Then, f(x) is solvable by radicals over k if and
only if Gy is a solvable group.

Proof. = Let K be the splitting field of f over k, which is contained in a radical extension E. Due to
Lemma 10.12, we may suppose that E/k is Galois. There is a tower of extensions
k=FC---CF =E.

with F; 1 = F ( niﬂ/ai+1). Letn = ny ---n, and { a primitive n-th root of unity. Note that E({) = E - k({),

a compositium of two Galois extensions over k whence is a Galois extension of k. Denote by M; = F;({).
Then, we have
kS MyC--- CM,=E(Q).

Note that M; contains a primitive 1; 1-th root of unity (which is a suitable power of {) whence Gal(M; 1/ M;)
is cyclic. Consider the chain of subgroups

Gal(M,/k) 2 Gal(M,/My) 2 --- 2 Gal(M,/M,_1) D {1}.
Each successive quotient is
Gal(M,/M;)/ Gal(M,;/M;,1) = Gal(M;1/M;) and Gal(M,/k)/ Gal(M,/My) = Gal(My/k),
all of which are abelian. Thus, Gal(M, /k) is solvable, consequently,
Gy = Gal(K/k) = Gal(M, /k)/ Gal(M, /K),

is solvable.
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<= Let |G¢| = n and { a primitive n-th root of unity in k. Let L = K({) and E = k({). Then, L/E
is a Galois extension with Galois group isomorphic to a subgroup of Gal(K/k), in particular, Gal(L/E) is
solvable. Thus, there is a series

Gal(L/E) =Hy 2 Hy 2 -+ 2 Hy = {1}
with H;/H; 1 abelian. Let F; = LHi. This gives a filtration
E=RChC---CFH, =1L

wherein each extension F; 1/ F; is abelian with degree n; dividing n. Let Gal(F;1/F;) = P, an abelian group
whence, due to the structure theorem, admits a filtration

P=Q20Q12 - 2Q ={1}.
such that Q;/Q;1 is cyclic. Let S; = PRi. Then, we have a filtration
F=5C5C---CS =Fpn

where each extension S;,1/85; is cyclic with order dividing n. But since S; contains a primitive n-th root of
unity, the extension S;,1/S; must be a simple radical extension. In particular, F;,1/F; is a radical extension.
Consequently, L/E is a radical extension. Finally, E/k itself is a simple radical extension and hence, L/k is
a radical extension containing K/k. This completes the proof. |

10.3 Kummer Extensions

Definition 10.14. A finite algebraic extension K/k is said to be a Kummer extension if u, C F, there is
n € Nanda; € kfor1 <i < m such that K = k({/ay,..., /a,). A Kummer extension is said to be a
simle Kummer extension if m = 1.

Theorem 10.15. Let ji, C kand a € k*. Let b € k? such that b" = a. Then, Gal(k(b) /k) is cyclic of order |a|
where a is the coset of a in k* / (k™)™

Proof. |

Remark 10.3.1. Due to Theorem 10.7, every simple Kummer extension K/k with [K : k] = m can be obtained by
adjoining th m-th root of some element in k. This makes our analysis a lot easier.

Lemma 10.16. Let i, C kand a,b € k* such that [k({/a) : k] = [k(3/b) : k] = n. Then, these extensions are

k-isomorphic if and only if (a) = (b) in k* / (k™)™

Proof. |

Theorem 10.17. Let K/ k be a finite abelian extension and suppose that y, k. Then, Gal(K/k) has exponent
n if and only if there are by, ..., by, € k™ such that K = k({/by, ..., /by).
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Proof. = Due to the structure thoerem, Gal(K/k) = Z/mZ & - - - & Z/n,Z where n; | n. Let H; denote
the subgroup corresponding to

ZImZ& L2 &L/ nZ

and F; = KHi. Then, N/_; H; = {1} and Gal(F;/k) & Z/n,Z. Due to Theorem 10.7, there is some b; € k*
such that F; = k({/b;). Finally, since K = F; - - - F, the conclusion follows.

<= Let F; = k(3/b;). Then, Gal(F;/k) is cyclic of exponent n. Let p; : Gal(K/k) — Gal(F;/k)
denote the restriction map. It is not hard to see that the map & : Gal(K/k) — [T/, Gal(F;/k) given by
® = p; X - -+ X py is an injection and thus Gal(K/k) is abelian of exponent n. This completes the proof. MW
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Chapter 11

Infinite Galois Theory

11.1 Galois Groups as Inverse Limits

11.1.1 Inverse Limit of Topological Groups

Lemma 11.1. Let G be a compact topological group. Then, H < G is open if and only if it is closed with finite
index.

Proof. Since G is compact, the number of cosets of H in G must be finite else we would have an infinite
open cover of G with no finite subcover. Further, H is the complement of a disjoint union of cosets of H and
hence, is closed, since every coset of H in G is open.

Conversely, if H,01H, . ..,0,H are the distinct cosets of H in G, then H = G\(c9tHU - -- U 0,H), and
thus, is open. [ ]

11.1.2 Profinite Groups

Definition 11.2 (Profinite Group). A profinite group is a topological group that is isomorphic to an
inverse limit of finite topological groups with the discrete topology.

The profinite completion of a topological group G is defined as G = lim G/N where N ranges over
the set of all open normal subgroups of finite index in G. If no topology is specified on the group, then
G refers to the profinite completion of G with the discrete topology.

Remark 11.1.1. Note that if N is an open normal subgroup of a topological group G, then G/ N has the discrete
topology even if G is not Hausdorff.

Theorem 11.3. A profinite group is a compact Hausdorff topological group.

Proof. [ |

Theorem 11.4. Let G be a topological group. Let ¢ : G — G denote the natural map. Then, the image of ¢ is
dense in G. If G is a profinite group, then ¢ is an isomorphism of topological groups.

Proof. Let X = [] G/N, which is a compact topological group containing G. Let U be a basic open set in
X. |
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11.1.3 The Galois Group

We shall now show that every profinite group occurs as a Galois group. In order to do so, we shall require
the following analogue of Artin’s Theorem for profinite groups.

Theorem 11.5. Let G be a profinite group acting faithfully by automorphisms on a field K such that for each
x € K, stabg (x) is an open subgroup of G. Then, K/KC is Galois with group G.

Proof. |

Theorem 11.6 (Waterhouse). Let G be a profinite group. Then, it is the Galois group of some field extension.

Proof. Let H denote the set of all open subgroups of G. Define

X=|] G/H
HeH

and let G act on X through left multiplication on cosets. This action is faithful and every element of X has
an open stabilizer in G. Let K = Q(X) and extend the action of G on X to an action by field automorphisms
on K. Due to Theorem 11.5, G = Gal(K/K©). |

11.2 The Krull Topology

Definition 11.7. Let K/k be a Galois extension. For ¢ € Gal(K/k), a basic open set around o is a coset
o Gal(K/F) where F/k is a finite Galois extension.

Proposition 11.8. The collection of basic open sets as defined above form a basis for a topology on Gal(K/k).

Proof. Since Gal(K/F) contains the identity element for each F/k finite Galois, the union of all the basic
open sets is equal to Gal(K/k). Consider two basic open sets o; Gal(K/F;) and 0, Gal(K/F,) having a
nonempty intersection. Let ¢ be an automorphism in that intersection. We shall show that the basic open
set 0 Gal(K/F ) is contained in the intersection. Since o € o1 Gal(K/F,), there is « € Gal(K/F;) such that
o = 1. Let T € 0Gal(K/FF,), then there is B € Gal(K/FF,) such that T = ¢B. Now, 07 't = af €
Gal(K/Fy), whence T € 07 Gal(K/Fy). This completes the proof. ]

The topology defined above is known as the Krull Topology.

Theorem 11.9. The Krull Topology on Gal(K/k) makes it a topological group.

Proof. We must show that the multiplication map and the inversion map are continuous. Let G = Gal(K/k)
and ¢ : G x G — G be given by (x,y) ~ xy. Let U be an open set in G and (¢, T) € ¢! (U). Then there
is a basic open set of the form o7 Gal(K/F) for some finite Galois extension F/k. Consider the basic open
set 0 Gal(K/F) x T Gal(K/F) that contains (¢, T). I claim that the image of this basic open set lies inside
ot Gal(K/F). Indeed, for (ca, TB) in the basic open set, its image is catf = ota’/f = o1y for some
v € Gal(K/F). Where we used the normality of Gal(K/F) in G since the extension is normal. Thus ¢ is
continuous.

Let ¢ : G — G be the inversion map, that is, x — x~!. We use a similar strategy as above. Let U be an
open set containing ¢! for some ¢ € G. Then, there is a basic open set ¢! Gal(K/F) that is contained in
U. Thus, Gal(K/F) is normal in G. As a result, under ¢, o Gal(K/F) maps to c~! Gal(K/F). This completes
the proof. n
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Proposition 11.10. Gal(K/k) under the Krull Topology is Hausdorff.

Proof. Let 0,7 € Gal(K/k) be distinct elements. Then, there is & € K such that o(a) # T(«a). Let F be the
normal closure of k(«) in K, which is a finite Galois extension, and note that ¢ Gal(K/F) # T Gal(K/F) and
thus must be disjoint (since they are cosets). |

Proposition 11.11. Let K/k be a Galois extension and E an intermediate field. Then Gal(K/E) is a closed
subgroup of Gal(K/k).

Proof. Leto € G\ Gal(K/E). Then ¢ Gal(K/E) is a basic open set containing ¢ and disjoint from Gal(K/E)
(since it is a coset). This implies the desired conclusion. |

Proposition 11.12. Let H < G = Gal(K/k). Then Gal(K/KH) is the closure of H in G.

Proof. Obviously, H C Gal(K/ EH ). Further, since the latter is closed, H C Gal(K/ KH ). We shall show the
reverse inclusion. Let o € G\H. As we have - seen earlier, there is a finite Galois extension F/k such that
the basic open set o Gal(F/k) is disjoint from H. We claim that there is « € F such that « is fixed under H

but not under ¢. Suppose there is no such a. Then, o|r fixes FI!IF where H|r = {h|r : h € H}. From finite
Galois theory, we know that o|r € H|r. And thus, there is some i € H such that o|f = h|p, consequently,
o Gal(K/F) = hGal(K/F), a contradiction.

Since there is some « € F that is not fixed by ¢ but fixed under H, we must have that o ¢ Gal(K/ KH ).
This completes the proof. n

Theorem 11.13 (Krull). Let K/k be Galois and equip G = Gal(K/k) with the Krull topology. Then
(a) For all intermediate fields E, Gal(K/E) is a closed subgroup of G.
(b) Forall H < G, Gal(K/K™) is the closure of Hin G.

(c) (The Galois Correspondence) There is an inclusion reversing bijection between the intermediate fields of
K/k an closed subgroups of Gal(K/k).

(d) For an arbitrary subgroup H of G, KH = KH,

Proof. (a) and (b) follow from the previous two propositions. From this, the Galois correspondence is im-
mediate. Finally to see (d), suppose H < G. Then, Gal(K/ KH) = H, whence

KH — gGal(K/K") _ H

This completes the proof. ]

Theorem 11.14. Gal(K/k) in the Krull Topology is isomorphic, as topological groups to the inverse limit G =
lim Gal(E/k) as a subspace of X =[] Gal(E/k), each of which is given the discrete topology.
In particular, Gal(K/k) in the Krull Topology is a profinite group.
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Proof. Define the map ® : Gal(K/k) — X by ®(¢) = (o|g)g. This is obviously an injective map whose
image is G. To see that this is a continuous map, it suffices to check that each component of this map is
continuous. Let E/k be a finite Galois extension. The component of ® along E is given by ®r : Gal(K/k) —
Gal(E/k), which is the restriction map. A basic open set in Gal(E/k) is simply a point, say ¢ € Gal(E/k).
Then, ;' (¢) = T Gal(K/E) where T is a k-automorphism of K whose restriction to E is ¢. This is obviously
an open set in Gal(K/k) whence @ is continuous.

Lastly, we must show that ® is an open map with respect to G, for which, it suffices to show that the
image of a basic open set in Gal(K/k) is open in G. Consider the basic open set 0 Gal(K/E) where E/k is a
finite Galois extension. Then,

® (0 Gal(K/E)) = | {oe} x I Gal(F/k) | NG,
F#E
F/kis fir?iéte Galois

which is open in G. This completes the proof. u

Corollary 11.15. Gal(K/k) is compact in the Krull topology.
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Chapter 12

Transcendental Extensions

Definition 12.1 (Algebraically Independent). Let K/k be any extension. Elements ay,...,a, € K are
said to be algebraically independent over k if there is no non-zero polynomial f(x1,...,x,) € k[x1,..., %]
such that f(ay,...,a,) = 0. Aset A C K is said to be algebraically independent over k if every finite
subset of A is algebraically independent over k.

Lemma 12.2. Let K/k be any extension a € K and A C K. The following are equivalent:
(a) a € K is algebraic over k(A).
(b) Thereare By, ...,Bn_1 € K(A) such that a" + B,_1a" ' +--- + Bo = 0.
(c) Thereare By, ..., PBn € k[A] such that Bpa™ + - - -+ By = 0.

(d) There is a non-zero polynomial f(x1,...,%m,Yy) € k[X1,...,Xm, Y] such that there are by, ..., by, € A
with f(by, ..., bwm,y) # 0in K[y but f(by,...,by,a) = 0.

Proof. Trivial. ]

Lemma 12.3 (Exchange Lemma). Let K/ k be any extension and b € K be algebraically dependent on {ay, ..., an} C
K but not on {ay,...,ay_1}. Then, ay, is algebraically dependent on {ay, ..., a,_1,b}.

Proof. Since b is algebraically dependent on {4y, ..., 4y}, there is a non-zero polynomial f(x1,...,Xm,y) €
k[x] such that f(ay,...,am,b) = 0. Then, we may write

flxt, .o, Xm,y) = Zfi(xl, e X1, U)X,
1

Since b is not algebraically dependent on {aj, ...,a,,_1}, one of the f;’s must be non-zero, say f] Thus, a,,
is algebraically dependent over {ay,...,a,_1,b}.

Definition 12.4. Let K/k be any extension. An algebraically independent subset A C K is said to be a
transcendence basis if K/k(A) is algebraic.
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Theorem 12.5. Let K/k be any field extension and A, B C K be two transcendence bases. Then, |A| = |B].

Proof. First, suppose A is finite. Let A = {ay,...,a,}. Then, for every a; € A, there is a finite subset B; of
B such that 4; is algebraically dependent on k(B;). Therefore, K is algebraic over k(B; U - - - U By, ). Hence, B
must be finite. Say B = {by,..., by }.

Let! = |A N B| and withoutloss of generality, say ANB = {ay,...,a;},thus, B= {ay,...,a;,b;,1,...,bn}.
If | = n, then A C B and we have n < m. Suppose not, thatis, | < n.

Now, a;4 is algebraic over B but algebraic independent over {ay,...,a;}. Let j be the smallest index
such that a; 1 is algebraically dependent over {ay,...,a;,b;,1,..., bj}. Due to Lemma 12.3, we see that bj is
algebraically dependent over

Bl = {{Ill,. . .,al,al+1,bl+1,. ..,bj,l, b]‘+1,. . ,bm}

Note that B; is algebraically independent, for if not, then we must have a;, 1 algebraically dependent over
Bi\{a;,1}. But this would mean that B;\{a; 1} is a transcendence basis of K/k, which is absurd. Hence,
By is algebraically independent and thus, a transcendence basis of K/k. Now, |ANBy| =1+ 1.

We may continue this process and at each step increase the size of the intersection |A N B;|. The process
terminates when A\B; = @, in other words, A C B; whence n = |A| < |B;| = m. Arguing in the other
direction, one can show that m < n, whence m = n. This proves the theorem in the finite case.

Now, suppose both A and B are infinite. Then, for each a € A, there is a corresponding finite subset B, C
B such that 4 is algebraically dependent on B;. Therefore, every element of A is algebraically dependent
over C = Uzea Bs C B. This means that K is algebraic over k(C) and hence, C = B. Consequently,

Bl = |c| = |U Ba| < 14 x N = |A].
acA

A similar argument in the other direction would give |A| < |B|. This completes the proof. [ ]

Definition 12.6 (Transcendence Degree). Let K/k be any extension. The transcendence degree of K/k,
denoted trdeg(K/k) is the cardinality of a transcendence basis of K/k.

Remark 12.0.1. Let K/ k be any extension and A C K be an algebraically independent subset of K. Let L. be the poset
of all algebraically independent subsets of K that contain A. Using a standard Zorn arqument, one can show that %
contains a maximal element, which obviously must be a transcendence basis.

Theorem 12.7 (Additivity of trdeg). Let k C E C K be a tower of field extensions with trdeg(K/E) and
trdeg(E/k) finite. Then, trdeg(K/k) = trdeg(K/E) + trdeg(E/k).

Proof. |

12.1 Liiroth’s Theorem

Lemma 12.8. Let x be an indeterminate over a field k and r(x) € k(x). Then, [k(x) : k(r(x))] = deg(r(x)).

Proof. u
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Theorem 12.9. Aut(k(x)/k) = PGL; (k).

Proof. If 0 : k(x) — k(x) is a k-automorphism, then deg(6(x)) = 1 and hence, must be of the form ‘Ziﬁig

where (i g) € GL; (k). The conclusion now follows from an application of the First [somorphism Theo-

rem. |

Theorem 12.10 (Liiroth’s Theorem). Let k(t) / k be a purely transcendental extension. Then, any intermediate
field strictly containing k is of the form k(r(t)) where r(t) € k(t) is a rational function. Further, [k(t) :

k(r(£))] = deg(r(t)).

Proof. u

12.2 Linear Disjointness

Definition 12.11 (Linearly Disjoint). Let K and L be two field extensions of k contained in a larger field
Q). Then, K and L are said to be linearly disjoint if every k-linearly independent subset of K is L-linearly
independent as elements of ().

Proposition 12.12. K and L are linearly disjoint over k if and only if L and K are linearly disjoint over k.

Proof. Suppose K and L are linearly disjoint but not L and K. Then, there is a k-linearly independent sub-
set {y1,...,yn} of L that is not K-linearly independent. Hence, there are x; € K, not all zero, such that
Y1 xiy; = 0. The vector space generated by the x;’s is a finite dimensional one over k and admits a finite
basis, u1, ..., u,. We may write

m
X = Z ai]-uj
j=1

with a;; € k and hence,

n

n m m n
DTS 3D DTS ol oA 1
i= i=1

i=1j=1 j=1
Using the linear disjointness of K and L, we must have )3 ; a;;y; = 0 for all j. But since the y;’s are linearly
independent over k, we must have ajj = Oforalli,j. A contradiction. [ |

Henceforth, we shall tacitly assume that all pairs of field extensions are contained in a larger field exten-
sion Q)/k.

Proposition 12.13. Let k C R be a domain with K = Q(R) and {us} C R be a k-basis of R. If {uy} is
L-linearly independent, then K and L are linearly disjoint.

Proof. Suppose not, then there are x1,...,x, € K that are k-linearly independent but not L-linearly inde-
pendent. Hence, there is a linear combination Y} ; z;x; = 0 where z; € L. There is an r € R such that
rx; € R for each 1 < i < n. Note that the rx;’s still remain k-linearly independent. Thus, we may suppose
that every x; € R.
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The k-vector subspace of R generated by the x;’s is contained in a k-vector space V generated by finitely
many {u]-};”:1 C {uq}. Obviously, n < m. Hence, the set {x;} ; can be completed to a basis of V,
{%1, - X, Xpa1, oo X )

Let W denote the L-vector space generated by {u;}" ;. We have dim W = m and that {xq,..., x5} isa
generating set for W and hence, forms a basis. Consequently, x1, . .., x;, is linearly independent over L. This
completes the proof. [ ]

Theorem 12.14 (Transitivity of Linear Disjointness). Consider the following lattice of fields.

KL

AN

VN
N

Then, K, L are linearly disjoint over k if and only if K, E are linearly disjoint over k and KE, L are linearly
disjoint over E.

Proof. [ |

Proposition 12.15. Suppose K/k is separable and L/k is purely inseparable with chark = p > 0. Then, K
and L are linearly disjoint over k.

Proof. Suppose not, then there is a finite k-linearly independent subset X of K that is not L-linearly inde-
pendent. We may now replace K by K(X) and suppose that K/k is a finite separable extension and hence,
admits a primitive element, K = k(a). A basis for K/k is then given by {1,&,...,a" '}. Let f(x) be the
irreducible polynomial of « over k. We contend that f(x) is the irreducible polynomial of « over L.

Let g(x) € L[x] be the irreduible polynomial of k. Then, there is a non-negative integer m such that
g(x)P" € k[x]. Since a is a root of g(x) and f(x), there is a positive integer r such that f(x) = g(x)"h(x) for
some h(x) € L[x] such that gcd (g, h) = 1. Butsince f is separable, we musthave r = 1and f(x) = g(x)h(x).
Further, g(x)P" = f(x)q(x) for some g(x) € k[x] and hence, g(x)?"~1 = h(x)q(x). Since ged(g, h) = 1, we
must have h(x) = 1, consequently, g(x) = f(x).

This shows that {1, «,..., tx”_l} is linearly independent over L and hence, K and L are linearly disjoint.

]

Proposition 12.16. Let K/ k be purely transcendental and L /k purely inseparable with chark = p > 0. Then,
K and L are linearly disjoint.

Proof. Let K = k(X) where X is a set of k-algebraically independent elements. Let R = k[X] and note that the
monomials formed from X form a k-basis for R and it suffices to show that these are linearly independent
over L. Suppose there were a relation ) ; 2; X" = 0 where a; € L. Since this is a finite sum, there is a positive

integer m such thata! € k for all i.
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Raising the aforementioned relation to the power p™, we have

Yl X" =,
1
i

Thus, af " 0 for all i. And the conclusion follows. [ |

Definition 12.17 (Separably Generated). An extension K/k is said to be separably generated if it has
a transcendence bais S C K such that K/k(S) is separable. Such a transcendence basis is called a
separating transcendence basis.

Remark 12.2.1. If K/k is separably generated, it is not necessary that every transcendence basis is a separating
transcendence basis. For example, consider the extension Iy, (x)/IF,. This has a separating transcendence basis {x}.
Also, {xP} is a transcendence basis but F,(x) /T, (xP) is purely inseparable.

Theorem 12.18 (McLane). Let chark = p > 0and K/k any extension. Then, the following are equivalent:

(a) K is linearly disjoint from kP™" .

(b) K is linearly disjoint from kP~" for some positive integer n.

(c) K is linearly disjoint from kP ™.

(d) Any finitely generated subfield of K/k is separably generated.
Proof. (a) = (b) = (c) is clear.

(c) = (d)LetA = {ay,...,a,} € Kand E = k(A) C K. If A is algebraically independent over k,

then we are done by taking A to be a transcendence basis.

Suppose A is not algebraically independent and choose 0 # f € k[xy,...,x,] to be of smallest degree
such that f(ay,...,a,) = 0. Suppose that every monomial in f is a power of p. Then, there are monomials

My (x) € k[x1,...,xy] such that
f(X) = Zaama(X)p,

where not all 4,’s are zero. Hence, there is a g(X) € k! [x1,...,%,] such that f(X) = g(X)?. Denote
1 -
g(X) = Eaa/pmtx(”)'
4

The elements m,(d) are linearly dependent over kP~' and hence, are linearly dependent over k. Conse-
quently, there exist b, € k such that

Y bumy (@) = 0.

4

Set h(X) = Y, bamy(X) € k[X]. Then, h(@) = 0, which contradicts the minimality of the degree of f.
Hence, in f, there is a monomial that is not a power of p. Without loss of generality, suppose that
monomial contains x; whose exponent is not a power of p. Then, consider the polynomial fy(x1) €

klay, ..., an][x1] given by
fo(xl) = f(xl,az, .. .,ﬂn).

Note that fy(a1) = 0 and f}(x1) is a non-zero polynomial which cannot have a; as a root, lest we contradict
the minimality of the degree of f. Hence, a; is separable over k[ay, . .., a,]. Now, induct downwards.

(d) = (a) Letay,...,a, € Kbe k-linearly independent and set E = k(ay,...,a,). This is a finitely
generated subfield of K/k and hence, has a separating transcendence basis S C k(ay,...,a,). Since k(S) is
purely transcendental and kP~ is purely inseparable, they are linearly disjoint over k.
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p. ins

k(S) 1%

p. trans /
p. ins

Next, since k? ~ (S)/k(S) is purely inseparable and E/k(S) is separable, they are linearly disjoint over
k(S). Thus, due to Theorem 12.14, E and kP~ are linearly disjoint over k.

Since every finitely generated subfield of K is linearly disjoint from k” = over k, we must have that K is
linearly disjoint from kP~ over k. This completes the proof.

Definition 12.19 (Separable). An extension K/ k that satisfies the equivalent statements of Theorem 12.18
is said to be separable.

Theorem 12.20. Let chark = p and k C E C K be a tower of fields.
(a) If K/k is separable, then E/k is separable.
(b) If K/E and E/k are separable, then K/k is separable.
(c) If k is perfect, then any extension of k is separable.
(d) If K/k is separable and E / k is algebraic, then K/ E is separable.

Proof. (a) follows from the fact that any finitely generated subextension of E is a finitely generated subex-

tension of K.
(b) We have the following lattice of fields.

—00

K EP
E kP
k

According to the hypothesis, K and EP"" are linearly disjoint over E and E and k” " are linearly disjoint
over k. Note that the compositum EkP " is contained in E?~ whence K and Ek? "~ are linearly disjoint over
k. From Theorem 12.14, we have that K and k” ~ are linearly disjoint over k.

(¢) Clear.

(d) Let F = E(aq,...,a,) € K be a finitely generated subextension of K/E and set L = k(ay,...,a,).
This has a separating transcendence basis S C L. Then, F/E(S) is separable. Hence, it suffices to show that
S is algebraically independent over E.
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Since F/E(S) is algebraic and E(S)/k(S) is algebraic, we have trdeg(F/k) = |S|. Hence, trdeg(F/E) =
trdeg(F/k) — trdeg(E/k) = |S|. Hence, S must be a transcendence basis of F/E. This completes the proof.
]

Definition 12.21 (Free). The pair of extensions (K/k,L/k) is said to be free if every k-algebraically
independent subset of K is L-algebraically independent.

Proposition 12.22. If (K/k, L/k) is free, then so is (L/k,K/k).

Proof. ]

12.3 A Brief Treatment of Varieties

Throughout this section, k is an arbitrary field and K, an algebraic closure of k.
12.3.1 Parametrization

Definition 12.23. An irreducible k-variety V is called rational if the function field k(V) is a purely
transcendental extension of k.

Definition 12.24. A curve is an irreducible k-variety that has dimension 1. Equivalently, dimk[V] = 1.
We say that V can be parametrized by rational functions in k(t) if there are rational functions fi, ..., fy €

k(t) such that
{(frt),..., fu(t)) | t € K},

wherever defined, is a dense subset of V in the k-Zariski topology.

Theorem 12.25. Let V' be an irreducible curve defined over a field k. Then, V can be parametrized by rational
functions in k(t) if and only if there is an k-isomorphism k(V') = k(t).

Proof. ( = ) Suppose we have a parametrization given by (f1(t),..., fu(t)) where f;(t) € k(t). Let

U={(fi(a),..., fula)) [ a € K}.
Then, U = V in the k-Zariski topology. Consier the ring homomorphism ¢ : k[X| — k(t) given by ¢(X;) =

fi(t). Note that
Kerg = {h € KIX] | K(Ai(t), .., fult)) = O).

If h € kerg, then h(f1(a),..., fu(a)) = 0 foralla € K. Hence, U C Z(h), consequently, V. = U C
Z(h). In particular, h € #(V). Conversely, if g € .#(V), then for all but finitely many elements of K,
g(f1(a),..., fu(a)) = 0. Hence, g(f1(t),..., fu(t)) = 0, thatis, ¢ € ker ¢ and this gives, ker ¢ = .# (V). And
hence, ¢ induces a map ¢’ : k[V] — k(t), which in turn induces ¢ : k(V) — k(). Finally, from Liiroth’s
Theorem, k(V) = k().

(<= )Let¢:k(V)— k(t) be a k-automorphism. Let x; denote the image of X; in k[V]| C k(V) and let
fi(8) = p(xi) and g~ () = g(x1,...., %) /h(x1, ..., %) Note that x; = ¢~ (p(xs)) = ¢ (i(1)) = fi(g/h).

Now, given any p € V such that h(p) # 0, with p = (p1,...,pn), then p; = fi(g(p)/h(p)) and hence,
p=(fi(a),..., fu(a)) where a = g(p)/h(p). Hence, all but finitely many points in V can be expressed as
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(fi(a),..., fu(a)) for some a € K. On the other hand, if 2 € K such that each f;(a) is defined, then setting
p=(fi(a),..., fu(a)), wehave u(p) = 0 for every u € .# (V). Thismeans, p € Z(#(V)) = V.

In conclusion, we have that the set {(f1(a),..., fu(a)) | a € K} misses finitely many points of V and
hence, is dense in V. [ |
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