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Abstract

This is meant to be a rapid introduction to Galois Theory. We shall not provide intuition or comment far
too much on any specific result. The main reference followed while making these notes is [Lan02]
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Chapter 1

Algebraic Extensions

Definition 1.1 (Extension, Degree). Let F be a field. If F is a subfield of another field E, then E is said
to be an extension field of F. The dimension of E when viewed as a vector space over F is said to be the
degree of the extension E/F and is denoted by [E : F].

Definition 1.2 (Algebraic Element).

Definition 1.3 (Distinguished Class). Let C be a class of extension fields F ⊆ E. We say that C is
distinguished if it satisfies the following conditions:

1. Let k ⊆ F ⊆ E be a tower of fields. The extension K ⊆ E is in C if and only if k ⊆ F is in C and
F ⊆ E is in C .

2. If k ⊆ E is in C , if F is any extension of k, and E, F are both contained in some field, then F ⊆ EF
is in C .

3. If k ⊆ F and k ⊆ E are in C and F, E are subfields of a common field, then k ⊆ FE is in C .

Lemma 1.4. Let E/k be algebraic and let σ : E→ E be an embedding of E over k. Then σ is an automorphism.

Proof. Since σ is known to be injective, it suffices to show that it is surjective. Pick some α ∈ E and let
p(x) ∈ k[x] be its minimal polynomial over k. Let K be the subfield of E generated by all the roots of p in E.
Obviously, [K : k] is finite. Since p remains unchanged under σ, it is not hard to see that σ maps a root of p
in E to another root of p in E. Therefore, σ(K) ⊆ K. But since [σ(K) : k] = [K : k] due to obvious reasons,
we must have that σ(K) = K, consequently, α ∈ K = σ(K). This shows surjectivity. ■
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Chapter 2

Algebraic Closure

Theorem 2.1. Let k be a field. Then there is an algebraicaly closed field containing k.

Proof due to Artin. ■

Corollary 2.2. Let k be a field. Then there exists an extension ka which is algebraic over k and alge-
braically closed.

Proof. ■

Lemma 2.3. Let k be a field and L and algebraically closed field with σ : k→ L an embedding. Let α be algebraic
over k in some extension of k. Then, the number of extensions of σ to an embedding k(α)→ L is precisely equal
to the number of distinct roots of the minimal polynomial of α over k.

Lemma 2.4. Suppose E and L are algebraically closed fields with E ⊆ L. If L/E is algebraic, then E = L.

Proof. Let α ∈ L. Let p(x) ∈ E[x] be the minimal polynomial of α over E. Since E is algebraically closed,
p splits into linear factors over E, one of them being (x − α), implying that α ∈ E. This completes the
proof. ■

Theorem 2.5 (Extension Theorem). Let E/k be algebraic, L an algebraically closed field and σ : k→ L be an
embedding of k. Then there exists an extension of σ to an embedding of E in L. If E is algebraically closed and L
is algebraic over σk, then any such extension of σ is an isomorphism of E onto L.

Proof. Let S be the set of all pairs (F, τ) where F ⊆ E and F/k is algebraic and τ : F → L is an extension
of σ. Define a partial order ≦ on S by (F1, τ1) ≦ (F2, τ2) if and only if F1 ⊆ F2 and τ2 |F1≡ τ1. Note that
S is nonempty since it contains (k, σ). Let C = {(Fα, τα)} be a chain in S . Define F =

⋃
α Fα. Now, for

any t ∈ F, there is β such that t ∈ Fβ; using this, define τ(t) = τβ(t). It is not hard to see that this is a valid
embedding.

Now, invoking Zorn’s Lemma, there is a maximal element, say (K, τ). We claim that K = E, for if not,
then we may choose some α ∈ E and invoke Lemma 2.3.

Finally, if E is algebraically closed, so is σE, consequently, we are done due to the preceeding lemma. ■

3



Corollary 2.6. Let k be a field and E, E′ be algebraic extensions of k. Assume that E, E′ are algebraically
closed. Then there exists an isomorphism τ : E→ E′ inducing the identity on k.

Proof. Consider the extension of σ : k → E′ where σ |k= idk whence the conclusion immediately follows.
■

Since an algebraically closed and algebraic extension of k is determined upto an isomorphism, we call
such an extension an algebraic closure of k and is denoted by ka.

Definition 2.7 (Conjugates). Let E/k be an algebraic extension contained in an algebraic closure ka.
Then, the distinct roots of the minimal polynomial of α over k are called the conjugates of α. In particu-
lar, two roots of the same minimal polynomial over k are said to be conjugate to one another.

Here’s a nice exercise from [DF04].

Example 2.8. A field is said to be formally real if −1 cannot be expressed as a sum of squares in it. Let k
be a formally real field with ka its algebraic closure. If α ∈ ka with odd degree over k, then k[α] is also
formally real.

Proof. Suppose not. Let α ∈ ka be such that k[α] is not formally real and [k[α] : k] is minimum, greater
than 1. Then, there are elements γ1, . . . , γm ∈ k[α] such that ∑m

i=1 γ2
i = −1. We may choose polynomials

pi(x) ∈ k[x] such that pi(α) = γi with deg pi(α) < [k[α] : k].
Let f (x) ∈ k[x] be the irreducible polynomial of α over k. We have

p1(α)
2 + · · ·+ pm(α)

2 = −1

and thus, α is a root of the polynomial p1(x)2 + · · ·+ pm(x)2 + 1. Thus, there is a polynomial g(x) ∈ k[x]
such that

p1(x)2 + · · ·+ pm(x)2 + 1 = f (x)g(x).

Notice that the degree of the left hand side is even and less than 2 deg f whence deg g < deg f and is odd.
Further, note that g(x) may not have a root in k lest −1 be written as a sum of squares in k. Consider

now the factorization of g(x) as a product of irreducibles:

g(x) = h1(x) · · · hn(x).

Equating degrees, we see that there is an index j such that deg hj is odd. Let β be a root of hj in ka. Then,
[k[β] : k] = deg hj ≤ deg g < deg f and

p1(β)2 + · · ·+ pm(β)2 + 1 = f (β)g(β) = 0

whence k[β] is not formally real and contradicts the choice of α. ■

The proof of the next theorem requires some tools from later chapters.

Theorem 2.9. Let K/k be an algebraic extension such that every non-constant polynomial in k[x] has a root in
K. Then, K is algebraically closed.

Proof. Let α ∈ ka. We shall show that α ∈ K which would imply the desired conclusion. Let f (x) ∈ k[x] be
the minimal polynomial of α over k and F ⊆ ka be the splitting field of f (x) over k, which is obviously a
finite extension.
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Due to Lemma 5.8, there are subfields F0 and E of F such that F = F0E, E/k is purely inseparable and
F0 is the separable closure of k in F. Since F0/k is a finite separable extension, due to Theorem 4.18, there is
some β ∈ F0 such that F0 = k(β).

Let g(x) be the minimal polynomial of β over k and β′ ∈ K be a root of g(x). Since g(x) is the minimal
polynomial of β′ and is separable since β is separable over k, we have that β′ ∈ F0 = k(β) and thus

F0 = k(β) = k(β′)︸ ︷︷ ︸
due to a dimension argument

⊆ K.

E/k is finite, it has a basis, say γ1, . . . , γn. The minimal polynomial of γi is of the form (x − γi)
pri and

thus has a single root, whence, γi ∈ K. Thus E ⊆ K. As a result,

F = F0E ⊆ K

and thus α ∈ K thereby completing the proof. ■
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Chapter 3

Normal Extensions

Definition 3.1 (Splitting Field). Let k be a field and { fi}i∈I be a family of polynomials in k[x]. By a
splitting field for this family, we shall mean an extension K of k such that every fi splits in linear factors
in K[x] and K is generated by all the roots of all the polynomials fi for i ∈ I in some algebraic closure
k.

In particular, if f ∈ k[x] is a polynomial, then the splitting field of f over k is an extension K/k such that
f splits into linear factors in K and K is generated by all the roots of f .

Definition 3.2 (Normal Extension). An algebraic extension K/k is said to be normal if whenever an
irreducible polynomial f (x) ∈ k[x] has a root in K, it splits into linear factors over K.

Theorem 3.3 (Uniqueness of Splitting Fields). Let K be a splitting field of the polynomial f (x) ∈ k[x]. If
E is another splitting field of f , then there exists an isomorphism σ : E → K inducing the identity on k. If
k ⊆ K ⊆ k, where k is an algebraic closure of k, then any embedding of E in k inducing the identity on k must
be an isomorphism of E on K.

Proof. We prove both assertions together. Due to Theorem 2.5, there is an embedding σ : E → k such that
σ |k= idk. Therefore, it suffices to prove the second half of the theorem.

We have two factorizations

f (x) = c(x− α1) · · · (x− αn) over E
= c(x− β1) · · · (x− βn) over K

Since σ induces the identity map on k, f must remain invariant under σ. Further, we have

σ f (x) = c(x− σβ1) · · · (x− σβn)

Due to unique factorization, we must have that (σβ1, . . . , σβn) differs from (α1, . . . , αn) by a permutation.
Since σE = k(σβ1, . . . , σβn), we immediately have the desired conclusion. ■

Theorem 3.4. Let K/k be algebraic in some algebraic closure k of k. Then, the following are equivalent:

1. Every embedding σ of K in k over k is an automorphism of K

2. K is the splitting field of a family of polynomials in k[x]
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3. K/k is normal

Proof.
(1) =⇒ (2) ∧ (3): For each α ∈ K, let mα(x) denote the minimal polynomial for α over k. We shall show that
K is the splitting field for {mα}α∈K. Obviously, K is generated by {α}α∈K, hence, it suffices to show that mα

splits into linear factors over K. Let β be a root of mα in k. Then, there is an isomorphism σ : k(α) → k(β).
One may extend this to an embedding σ : K → k, which by our hypothesis, is an automorphism of K,
implying that β ∈ K and giving us the desired conclusion.
(2) =⇒ (1): Let K be the splitting field for the family of polynomials { fi}i∈I . Let α ∈ K and α be the root of
some polynomial fi and σ : K → ka be an embedding of fields. Since fi remains invariant under σ, it must
map a root of fi to another toot of fi, that is, σα is a root of fi. Consequently, σ maps K into K. Now, due to
Lemma 1.4, σ is an automorphism and K/k is normal.
(3) =⇒ (1): Let σ : K → k be an embedding of fields. Let α ∈ K and p(x) ∈ k[x] be its irreducible
polynomial over k. Since p remains invariant under σ, it must map α to a root β of p in k. But since p splits
into linear factors over K, β ∈ K and thus σ(K) ⊆ K, consequently, σ(K) = K due to Lemma 1.4, therefore
completing the proof. ■

Corollary 3.5. The splitting field of a polynomial is a normal extension.

Theorem 3.6. Normal extensions remain normal under lifting. If k ⊆ E ⊆ K, and K is normal over k, then K
is normal over E. If K1, K2 are normal over k and are contained in some field L, then K1K2 is normal over k and
so is K1 ∩ K2.

Proof. Let K/k be normal and F/k be any extension with K and F contained in some larger extension. Let σ
be an embedding of KF over F in F. The restriction of σ to K is an embedding of K over k and therefore, is
an automorphism of K. As a result, σ(KF) = (σK)(σF) = KF and thus KF/F is normal.

Now, suppose k ⊆ E ⊆ K with K/k normal. Let σ be an embedding of K in k over E. Then, σ induces
the identity on k and is therefore an automorphism of K. This shows that K/E is normal.

Next, if K1 and K2 are normal over k and σ is an embedding of K1K2 over k, then its restriction to K1 and
K2 respectively are also embeddings over k and consequently are automorphisms. This gives us

σ(K1K2) = (σK1)(σK2) = K1K2

Finally, since any embedding of K1 ∩ K2 can be extended to that of K1K2, we have, due to a similar
argument, that K1 ∩ K2 is normal over k. ■
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Chapter 4

Separable Extensions

Let E/k be a finite extension, and therefore, algebraic. Let L be an algebraically closed field along with an
embedding σ : k→ L. Define Sσ to be the set of extensions of σ to σ∗ : E→ L.

Definition 4.1 (Separable Degree). Given the above setup, the separable degree of the finite extension
E/k, denoted by [E : k]s is defined to be the cardinality of Sσ.

Proposition 4.2. The separable degree is well defined. That is, if L′ is an algebraically closed field and τ : k→ L′

be an embedding, then the cardinality of Sτ is equal to that of Sσ

Definition 4.3 (Separable Extension). Let E/k be a finite extension. Then it is said to be separable if
[E : k]s = [E : k]. Similarly, let α ∈ k. Then α is said to be separable over k if k(α)/k is separable.

Proposition 4.4. Let E/F and F/k be finite extensions. Then

[E : k]s = [E : F]s[F : k]s

Proof. Let L be an algebraically closed field and σ : k → L be an embedding. Let {σi}i∈I be the extensions
of σ to an embedding F → L and {τij} be the extensions of σ to an embedding E → L. We have indexed τ
in such a way that the restriction τi |E= σi. Using the definition of the separable degree, we have that for
each i there are precisely [E : F]s j’s such that τij is a valid extension. This immediately implies the desired
conclusion. ■

Corollary 4.5. Let E/k be finite. Then, [E : k]s ≤ [E : k].

Proof. Due to finitness, we have a tower of extensions

k ⊊ k(α1) ⊊ · · · ⊊ k(α1, . . . , αn)

We may now finish using Lemma 2.3. ■
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Theorem 4.6. Let E/k be finite and char k = 0. Then E/k is separable.

Proof. Since E/k is finite, there is a tower of extensions as follows:

k ⊊ k(α1) ⊊ · · · ⊊ k(α1, . . . , αn)

We shall show that the extension k(α)/k is separable for some α ∈ k. Let p(x) = mα(x) be the minimal
polynomial over k[x]. We contend that p(x) does not have any multiple roots. Suppose not, then p(x) and
p′(x) share a root, say β. But since p(x) is the minimal polynomial for β over k, it must divide p′(x) which
is impossible over a field of characteristic 0. Finally, due to Lemma 2.3, we must have k(α)/k is separable.

This immediately implies the desired conclusion, since

[E : k]s = [k(α1, . . . , αn) : k(α1, . . . , αn−1] · · · [k(α1) : k] = [E : k]

■

Theorem 4.7. Let E/k be finite and char k = p > 0. Then, there is m ∈N0 such that

[E : k] = pm[E : k]s

Proof. ■

Remark 4.0.1. From the above proof we obtain that if α ∈ E, then α[E:k]i is separable over k.

Corollary 4.8. Let E/k be a finite extension. Then, [E : k]s divides [E : k].

Proof. Follows from Theorem 4.6 and Theorem 4.7. ■

Definition 4.9 (Inseparable Degree). Let E/k be finite. Then, we denote

[E : k]i =
[E : k]
[E : k]s

as the inseparable degree.

Lemma 4.10. Let K/k be algebraic and α ∈ K is separable over k. Let k ⊆ F ⊆ K. Then, α is separable over F.

Proof. Let p(x) ∈ k[x] and f (x) ∈ F[x] be the minimal polynomial of α over k and F respectively. By
definition, f (x) | p(x) and therefore has distinct roots in the algebraic closure of k. Consequently, α is
separable over F. ■

Proposition 4.11. Let E/k be finite. Then, it is separable if and only if each element of E is separable over k.
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Proof. Suppose E/k is separable and α ∈ E\k. Then, there is a tower of extensions

k ⊊ k(α1) ⊊ · · · ⊊ k(α1, . . . , αn) = E

with α1 = α. Recall that [E : k]s ≤ [E : k] with equality if and only if there is an equality at each step in the
tower. This implies the desired conclusion.

Conversely, suppose each element of E is separable over k. Then, each αi is separable over k(α1, . . . , αi−1)
due to Lemma 4.10. Consequently, for each step in the tower,

[k(α1, . . . , αi) : k(α1, . . . , αi−1)]s = [k(α1, . . . , αi) : k(α1, . . . , αi−1)]

implying the desired conclusion. ■

Definition 4.12 (Infinite Separable Extensions). An algebraic extension E/k is said to be separable if
each finitely generated sub-extension is separable.

Theorem 4.13. Let E/k be algebraic and generated by a family {αi}i∈I . If each αi is separable over k, then E is
separable over k.

Proof. Let k(α1, . . . , αn)/k be a finitely generated sub-extension of E/k. From our proof of Proposition 4.11,
we know that αi is separable over k(α1, . . . , αi−1), and therefore, k(α1, . . . , αn) is separable over k and we
have the desired conclusion. ■

Theorem 4.14. Let E/k be algebraic. Then, E/k is separable if and only if each element of E is separable over k.

Proof. Suppose E/k is separable, then for each α ∈ E, k(α) is a finitely generated sub-extension of E, which
is separable by definition. This implies that α is separable over k, again by definition.

Conversely, suppose each element is separable over k. Let k(α1, . . . , αn) be a finitely generated sub-
extension of E. Then, we have the following tower

k ⊊ k(α1) ⊊ · · · ⊊ k(α1, . . . , αn)

From our proof of Proposition 4.11, we know that αi is separable over k(α1, . . . , αi−1), this immediately
implies that k(α1, . . . , αn)/k is separable. ■

Theorem 4.15. Separable extensions (not necessarily finite) form a distinguished class of extensions.

Proof. Suppose E/k is separable and F is an intermediate field. Since each element of F is an element of E,
we have that F must be separable over K, due to Theorem 4.14. Conversely, suppose both E/F and F/k are
separable. Now, if E/k is finite, so is F/k and we are done due to Proposition 4.4.

Now, suppose E/k is not finite. It suffices to show that for all α ∈ E, α is separable over k. Let p(x) =
anxn + · · · + a0 be the unique monic irreducible polynomial of α over F. Then, p(x) is also the monic
irreducible polynomial of α over k(a0, . . . , an). Since α is separable over F, p(x) has no repeated roots and
therefore α is also separable over k(a0, . . . , an). We now have a finite tower

k ⊊ k(a0, . . . , an) ⊊ k(a0, . . . , an)(α)

Furthermore, since each ai is separable over k for 0 ≤ i ≤ n, it must be the case that k(a0, . . . , an) is separable
over k and finally so must α.

Next, suppose E/k is separable and F/k is an extension, where both E and F are contained in some
algebraically closed field L. Since every element of E is separable over k, it must be separable over F,
through a similar argument involving the minimal polynomial as carried out above. Since EF is generated
by all the elements of E, we may finish using Theorem 4.13. This completes the proof. ■
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Definition 4.16 (Separable Closure). Let k be a field and ka be an algebrai closure. We define the
separable closure ksep as

ksep = {a ∈ ka | a is separable over k}

If α, β ∈ ksep, then α, β ∈ k(α, β), which by choice of α, β is separable over k. Therefore, αβ, α/β, α +
β, α− β ∈ k(α, β) are separable over k, and lie in ksep, from which it follows that ksep is a field extension of
k.

Primitive Element Theorem

Definition 4.17 (Primitive Element). Let E/k be a finite extension. Then α ∈ E is said to be primitive if
E = k(α). In this case, the extension E/k is said to be simple.

Theorem 4.18 (Steinitz, 1910). Let E/k be a finite extension. Then, there exists a primitive element α ∈ E if
and only if there exist only a finite number of fields F such that k ⊆ F ⊆ E. If E/k is separable, then there exists
a primitive element.

Proof. If k is finite, then so is E and it is known that the multiplicative group of finite fields are cyclic,
therefore generated by a single element, immediately implying the desired conclusion. Henceforth, we
shall suppose that k is infinite.

Suppose there are only a finite number of fields intermediate between k and E. Let α, β ∈ E. We
shall show that k(α, β)/k has a primitive element. Indeed, consider the intermediate fields k(α + cβ) for
c ∈ k, which are infinite in number. Therefore, there are distinct elements c1, c2 ∈ k such that k(α + c1β) =
k(α + c2β). Consequently, (c1 − c2)β ∈ k(α + c1β), therefore, β ∈ k(α + c1β) and thus α ∈ k(α + c1β).
This implies that α + c1β is a primitive element for k(α, β)/k. Now, since E/k is finite, it must be finitely
generated. We may now use induction to finish.

Conversely, suppose E/k has a primitive element, say α ∈ E. Let f (x) be the monic irreducible poly-
nomial for α over k. Now, for each intermediate field k ⊆ F ⊆ E, let gF denote the monic irreducible
polynomial for α over F. Using the unique factorization over k[x], gF | f for each intermediate field F,
therefore, there may be only finitely many such gF and thus, only finitely many intermediate fields F.

Finally, suppose E/k is separable and therefore, finitely generated. Hence, it suffices to prove the state-
ment for k(α, β)/k. Say n = [k(α, β) : k] and let σ1, . . . , σn be distinct embeddings of k(α, β) into k over
k

f (x) = ∏
1≤i ̸=j≤n

(
x(σiβ− σjβ) + (σiα− σjβ)

)
Since f is not identically zero, there is c ∈ k (due to the infiniteness of k), such that f (c) ̸= 0 and thus,

the elements σi(α + cβ) are distinct for 1 ≤ i ≤ n, and thus

n ≤ [k(α + cβ) : k]s ≤ [k(α + cβ) : k] ≤ [k(α, β) : k] = n

Thus, α + cβ is primitive for k(α, β)/k which completes the proof. ■

Note that there are finite extension with infinitely many subfields. For example, consider the extension
Fp(x, y)/Fp(xp, yp) which has degree p2. Let z ∈ k = Fp(xp, yp) and w = x + zy ∈ Fp(x, y). We have
wp = xp + zpyp ∈ Fp(xp, yp) and thus, k(w)/k has degree p. Furthermore, for z ̸= z′ and w′ = x + z′y, it
is not hard to see that k(w, w′) contains both x and y, and is equal to Fp(x, y), from which it follows that
w ̸= w′. Since we have infinitely many choices of z, there are infinitely many subfields of the extension
Fp(x, y)/Fp(xp, yp).
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Lemma 4.19. Let E/k be an algebraic separable extension. Further, suppose that there is an integer n ≥ 1 such
that for every element α ∈ E, [k(α) : k] ≤ n. Then E/k is finite and [E : k] ≤ n.

Proof. Let α ∈ E such that [k(α) : k] is maximal. We claim that E = k(α), for if not, there would be
β ∈ E\k(α). Now, since k(α, β) is a separable extension and is finite, it must be primitve. Thus, there is
γ ∈ E such that k(α, β) = k(γ) and [k(γ) : k] = [k(α, β) : k] > [k(α) : k], contradicting the assumed
maximality. This completes the proof. ■
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Chapter 5

Inseparable Extensions

Proposition 5.1. Let α ∈ ka and f (x) ∈ k[x] be the minimal polynomial of α over k. If char k = 0, then all the
roots of f have multiplicity 1. If char k = p > 0, then there is a non-negative integer m such that every root of
f has multiplicity pm. Consequently, we have

[k(α) : k] = pm[k(α) : k]s

and αpm
is separable over k.

Proof. ■

Definition 5.2. Let char k = p > 0. An element α ∈ ka is said to be purely inseparable over k if there is a
non-negative integer n ≥ 0 such that αpn ∈ k.

Theorem 5.3. Let char k = p > 0 and E/k be an algebraic extension. Then the following are equivalent:

(a) [E : k]s = 1.

(b) Every element α ∈ E is purely inseparable over k.

(c) For every α ∈ E, the irreducible equation of α over k is of type Xpn − a = 0 for some n ≥ 0 and a ∈ k.

(d) There is a set of generators {αi}i∈I of E over k such that each αi is purely inseparable over k.

Proof. (a) =⇒ (b). Let α ∈ E. From the multiplicativity of the separable degree, we must have [k(α) :
k]s = 1. Let f (x) ∈ k[x] be the minimal polynomial of α over k. Since [k(α) : k]s is equal to the number of
distinct roots of f , we see that f (x) = (x − α)m for some positive integer m. Let m = pnr such that p ∤ r.
Then, we have

f (x) = (x− α)pnr =
(

xpn − αpn
)r

= xpnr − rαpn
xpn(r−1) + · · ·

Since the coefficients of f lie in k, we have rαpn ∈ k whence αpn ∈ k.
(b) =⇒ (c). There is a minimal non-negative integer n such that αpn ∈ k. Consider the polynomial

g(x) = xpn − αpn ∈ k[x]. Note that g(x) = (x− α)pn
, whence the minimal polynomial for α over k divides

g and is thus of the form (x − α)m for some positive integer m ≤ pn. Using a similar argument as in the
previous paragraph, we see that there is a non-negative integer r such that αpr ∈ k. Due to the minimality
of n, we must have m = pn and g the minimal polynomial of α over k.
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(c) =⇒ (d). Trivial.
(d) =⇒ (a). Any embedding of E in ka must be the identity on the αi’s whence the embedding must

be the identity on all of E which completes the proof. ■

Definition 5.4. An algebraic extension E/k is said to be purely inseparable if it satisfies the equivalent
conditions of Theorem 5.3.

Proposition 5.5. Purely inseparable extensions form a distinguished class of extensions.

Proof. Let char k = p > 0. The assertion about the tower of fields follows from the multiplicativity of
separable degree. Now, let E/k be purely inseparable. Then there is a set of generators {αi}i∈I generating
E over k. Then, {αi}i∈I generates EF over F. Since the minimal polynomial of αi over F must divide the
minimal polynomial of αi over k, which is of the form (x − αi)

pni for some non-negative integer n, we see
that αi is purely inseparable over F whence EF is purely inseparable over F.

Finally, let E/k and F/k be purely inseparable extensions. If {αi}i∈I and {β j}j∈J generate E and F over k
respectively such that each αi and β j is purely inseparable over k, then EF is generated by {αi}i∈I ∪ {β j}j∈J
over k whence is purely inseparable over k. ■

Proposition 5.6. Let E/k be an algebraic extension and E0 the separable closure of k in E. Then, E/E0 is purely
inseparable.

Proof. If char k = 0, then E/k is separable and E0 = E and the conclusion is obvious. On the other hand,
if char k = p > 0, then for every α ∈ E, there is a non-negative integer m such that αpm

is separable over k
whence an element of E0. Thus, E/E0 is purely inseparable. ■

Proposition 5.7. Let K/k be normal and K0 the separable closure of k in K. Then K0/k is normal.

Proof. Let σ : K0 → ka be an embedding of fields. This extends to an embedding of K and is thus an
automorphism of K. Note that σ(K0) is separable over k and is thus contained in k0 whence σ(K0) = K0
and σ is an automorphism. This completes the proof. ■

Lemma 5.8. Let K/k be normal, G = Aut(K/k) and KG the fixed field of G. Then KG/k is purely inseparable
and K/KG is separable. If K0 is the separable closure of k in K, then K = KGK0 and KG ∩ K0 = 0.

Proof. Let α ∈ KG and σ : k(α) → ka be an embedding over k. This can be extended to an embedding
σ̃ : K → ka. Since K is normal, this is an automorphism σ̃ : K → K and thus an element of G. This must
leave α fixed whence σ is the identity map, consequently, α is purely inseparable over k and the conclusion
follows.

We shall now show that K/KG is separable. Pick some α ∈ K and let σ1, . . . , σn ∈ G such that the
elements σ1(α), . . . , σn(α) form a maximal set of pairwise distinct elements. Consider the polynomial f (x)
in K[x] given by

f (x) =
n

∏
i=1

(x− σi(α))

It is not hard to see that for any σ ∈ G, σ( f ) = f , whence f ∈ KG[x] and α is separable over KG.
Note that any element of KG ∩ K0 is both separable and purely inseparable over k whence an element of

k. Thus KG ∩ K0 = k.
Finally, since both purely inseparable and separable extensions form a distinguished class, we have

K/K0KG is both separable and purely inseparable whence K = K0KG. This completes the proof. ■
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Chapter 6

Finite Fields

It is well known that every finite field must have prime characteristic. In fact, any integral domain with
nonzero characteristic must have prime characteristic.

Theorem 6.1. Let F be a finite field with characteristic p > 0. Then there is a positive integer n such that F has
cardinality pn. Further, there is a unique field upto isomorphism of cardinality pn.

Proof. The prime subfield of F is the subfield generated by 1 and is isomorphic to Fp. Then [F : Fp] = n,
whence the conclusion follows. Now, we show that there is a field with cardinality pn. Consider the
polynomial f (x) = xpn − x ∈ Fp[x]. First, note that D f (x) = −1, and thus f (x) has distinct roots in Fp. It
is not hard to see that if α, β are roots of f (x) in Fp, then α− β and αβ are roots of f (x) in Fp. Therefore, the
collection of roots of f (x) in Fp form a field. The cardinality of this field is the number of distinct roots of
f (x) in Fp, which is precisely pn.

As for uniqueness, note that if F is a field of cardinality pn, then every element of F is a root of f (x) =
xpn − x ∈ Fp[x] (this is because F contains a copy of Fp in it). Therefore, F is the splitting field for f (x)
over Fp[x] in some algebraic closure. But since all splitting fields are isomorphic, we have the desired
conclusion. ■

Theorem 6.2 (Frobenius). The group of automorphisms of Fq where q = pn is cyclic of degree n, generated by
the Frobenius mapping, φ : Fq → Fq given by φ(x) = xp.

Proof. We first verify that φ is an automorphism. That φ is a ring homomorphism is easy to show, from
which it would follow that φ is injective. Surjectivity follows from here since Fq is finite. Next, note that φ
leaves Fp fixed, thus, G = Aut(Fq) = Aut(Fq/Fp). Furthermore, |Aut(Fq/Fp)| = [Fq : Fp]s ≤ [Fq : Fp] =
n.

We now show that the order of φ in G is precisely n, for if d were the order of φ, then φd(x) = x for all
x ∈ Fq and thus, xpd − x = 0 for all x ∈ Fq, from which it follows that pd ≥ q and d ≥ n and the conclusion
follows. ■

Theorem 6.3. Let m, n ∈N. Then in an algebraic closure Fp of Fp, the subfield Fpn is contained in Fpm if and
only if n | m.

Proof. If Fpn is contained in Fpm , then pm = (pn)d where d = [Fpm : Fpn ]. The converse follows from noting
that xpn − x | xpm − x. ■
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Theorem 6.4. Let m, n ∈N such that n | m. Then the extension Fpm /Fpn is finite Galois.

Proof. We have [Fpm : Fp] = m and [Fpn : Fp] = n, consequently, [Fpm : Fpn ]s = m/n = [Fpm : Fpn ]
and thus the extension is separable. To show that the extension Fpm /Fpn is normal, it suffices to show
that the extension Fpm /Fp is normal but this trivially follows from the fact that Fpm is the splitting field of
xpm − x ∈ Fp[x]. This completes the proof. ■
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Chapter 7

Galois Extensions

Definition 7.1 (Fixed Field). Let K be a field and G be a group of automorphisms of K. The fixed field
of K under G, denoted by KG is the set of all elements x ∈ K such that σx = x for all σ ∈ G.

That the aforementioned set forms a field is trivial.

Definition 7.2 (Galois Extension, Group). An extension K/k is said to be Galois if it is normal and
separable. The group of automorphisms of K over k is known as the Galois Group of K/k and is denoted
by Gal(K/k).

Theorem 7.3. Let K be a Galois extension of k and G = Gal(K/k). Then k = KG. If F is an intermediate field,
k ⊆ F ⊆ K, then K is Galois over F and the map

F 7→ Gal(K/F)

from the intermediate fields to subgroups of G is injective. Finiteness is not required in this case.

Proof. Let α ∈ KG and σ : k(α)→ K be an embedding over k. Due to Theorem 2.5, σ may be extended to an
embedding of K over k in K. Since K/k is normal, this is an automorphism and therefore, an element of G.
As a result, σ sends α to itself, therefore, any embedding of k(α) over k is the identity map, implying that
[k(α) : k]s = 1, or equivalently, k(α) = k whence α ∈ k.

Let F be an intermediate field. Due to Theorem 3.6 and Theorem 4.15, we have that K/F is normal and
separable, therefore Galois.

Finally, if F and F′ map to the same subgroup H of G, then due to the first part, of this theorem, we must
have F = KH = F′, establishing injectivity. ■

Lemma 7.4. Let E/k be algebraic and separable, further suppose that there is an integer n ≥ 1 such that every
element α ∈ E is of degree at most n over k. Then [E : k] ≤ n.

Proof. Let α ∈ E such that [k(α) : k] is maximized. We shall show that k(α) = E. Suppose not, then there is
β ∈ E\k(α) and thus, we have a tower k ⊆ k(α) ⊊ k(α, β). Due to Theorem 4.18, there is γ ∈ E such that
k(α, β) = k(γ). But then,

[k(γ) : k] = [k(α, β) : k] > [k(α) : k]

a contradiction to the maximality of α. Therefore, E = k(α) and we have the desired conclusion. ■
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Theorem 7.5 (Artin). Let K be a field and let G be a finite group of automorphisms of K, of order n. Let k = KG.
Then K is a finite Galois extension of k, and its Galois group is G. Further, [K : k] = n.

Proof. Let α ∈ K. We shall show that K is the splitting field of the family {mα(x)}α∈K and that α is separable
over k.

Let {σ1α, . . . , σmα} be a maximal set of images of α under the elements of G. Define the polynomial:

f (x) =
m

∏
i=1

(x− σiα)

For any τ ∈ G, we note that {τσ1α, . . . , τσmα} must be a permutation of {σ1α, . . . , σmα}, lest we contradict
maximality. As a result, α is a root of f τ for all τ ∈ G and therefore, the coefficients of f lie in KG = k, i.e.
f (x) ∈ k[x].

Since the σiα’s are distinct, the minimal polynomial of α over k must be separable, and thus K/k is
separable. Next, we see that the minimal polynomial for α also splits in K and thus, K is the splitting field
for the family {mα(x)}α∈K. Consequently, K/k is normal and hence, Galois.

Finally, since the minimal polynomial for α divides f , we must have [k(α) : k] ≤ deg f ≤ n whence
due to Lemma 7.4, [K : k] ≤ n. Now, recall that n = |G| ≤ [K : k]s ≤ [K : k] and we have the desired
conclusion. ■

Corollary 7.6. Let K/k be a finite Galois extension and G = Gal(K/k). Then, every subgroup of G
belongs to some subfield F such that k ⊆ F ⊆ K.

Lemma 7.7. Let K/k be Galois and F an intermediate field, k ⊆ F ⊆ K, and let λ : F → k be an embedding.
Then,

Gal(K/λF) = λ Gal(K/F)λ−1

Proof. The embedding λ can be extended to an embedding of K due to Theorem 2.5 and since K/k is normal,
λ is an automorphism. As a result, λF ⊆ K and thus, K/λF is Galois. Let σ ∈ Gal(K/F). It is not hard
to see that λσλ−1 ∈ Gal(K/λF) and conversely, for τ ∈ Gal(K/λF), λ−1τλ ∈ Gal(K/F). This implies the
desired conclusion. ■

Theorem 7.8. Let K/k be Galois with G = Gal(K/k). Let F be an intermediate field, k ⊆ F ⊆ K, and let
H = Gal(K/F). Then F is normal over k if and only if H is normal in G. If F/k is normal, then the restriction
map σ 7→ σ |F is a homomorphism of G onto Gal(F/k) whose kernel is H. This gives us Gal(F/k) ∼= G/H.

Proof. Suppose F/k is normal. To see that the map σ → σ |F is surjective, simply recall Theorem 2.5. The
kernel of said mapping is obviously H and we have that H�G and due to the First Isomorphism Theorem,
G/H ∼= Gal(F/k).

On the other hand, if F/k is not normal, then there is an embedding λ : F → k such that F ̸= λF.
Note that due to Theorem 2.5, λF ⊆ K. Then, we have Gal(K/F) ̸= Gal(K/λF) = λ Gal(K/F)λ−1, and
equivalently, Gal(K/F) is not normal in G. This completes the proof of the theorem. ■

Note that in the proof of the above theorem, while showing H is normal in G, we did not use that the
Galois extension is finite. We can now put together all the above results into one all-powerful theorem.

Theorem 7.9 (Fundamental Theorem of Galois Theory). Let K/k be a finite Galois extension with G =
Gal(K/k). There is a bijection between the set of subfields E of K containing k and the set of subgroups H of G
given by E = KH . The field E is Galois over k if and only if H is normal in G, and if that is the case, then the
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restriction map σ 7→ σ |E induces an isomorphism of G/H onto Gal(E/k).

Definition 7.10. A Galois extension K/k is said to be abelian (resp. cyclic) if its Galois group is abelian
(resp. cyclic).

Theorem 7.11. Let K/k be finite Galois and F/k an arbitrary extension. Suppose K, F are subfields of some
larger field. Then KF is Galois over F, and K is Galois over K ∩ F. Let H = Gal(KF/F) and G = Gal(K/k).
For all σ ∈ H, the restriction of σ to K is in G and the restriction map σ 7→ σ |K gives an isomorphism of H on
Gal(K/K ∩ F). Finally, if F/k is Galois, then so are KF/k and K ∩ F/k.

Proof. That KF/F and K/K ∩ F are Galois follow from Theorem 3.6 and Theorem 4.15. Let χ : H → G
denote the restriction map. Note that ker χ contains all σ ∈ H such that σ fixes K. But since σ implicitly
fixes F, it must also fix KF and is therefore the unique identity automorphism. As a result, ker χ is trivial
and χ is injective. Let H′ = χ(H) ⊆ G. We shall show that KH′ = K ∩ F. Indeed, if α ∈ KH′ , then α is also
fixed by all elements of H, since χ is only the restriction map. As a result, α ∈ F, consequently α ∈ K ∩ F.
The conclusion follows from Theorem 7.9.

Now, suppose F/k is Galois. Then, due to Theorem 3.6, both KF and K ∩ F are normal over k whence
are Galois. ■

7.1 Normal Basis Theorem

Definition 7.12 (Normal Element). Let K/k be a finite Galois extension with Gal(K/k) = {σ1, . . . , σn}.
An element α ∈ K is said to be a normal element if {σ1(α), . . . , σn(α)} forms a k-basis of K.

Theorem 7.13 (Normal Basis Theorem). If K/k is a finite Galois extension, then it has a normal element.

Proof. Let G = Gal(K/k) = {σ1, . . . , σn}. We shall divide the proof into two cases.

Case 1. G is cyclic.

Let G = ⟨σ⟩ for some σ ∈ G. Let mσ(x) ∈ k[x] denote the minimal polynomial of σ. Since σ is a root
of xn − 1 ∈ k[x], we must have mσ(x) | xn − 1. If deg(mσ) = m < n, then there are a0, . . . , am ∈ k such
that

mσ(x) = amxm + · · ·+ a0.

In particular, amσm + · · ·+ a0id = 0, but this is a contradiction to Dedekind’s Lemma on the indepen-
dence of characters. Therefore, mσ(x) = xn − 1, consequently, mσ(x) must also be the characteristic
polynomial of σ due to a degree argument. Since the minimal polynomial and the characteristic poly-
nomial are the same, there is a σ-cyclic vector for the extension K/k, which is the desired normal
element.

Case 2. k is infinite. Note that the previous case subsumes the case with k finite.

Due to Theorem 4.18, K = k(α) for some α ∈ K. Suppose without loss of generality that σ1 = id. Let
αi = σi(α), which are all pairwise distinct, and define

gi(x) =
∏j ̸=i(x− αj)

∏j ̸=i(αi − αj)
.

Denote g1 by simply g, then, gi = σi(g).
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The polynomial
g1(x) + · · ·+ gn(x)

attains the value 1 for α1, . . . , αn but since it has degree at most n− 1, it must be identically equal to 1.
Further, for i ̸= j, f | gigj and g2

i − gi vanishes at α1, . . . , αn whence f | g2
i − gi.

Define the matrix

A(x) =


σ1σ1(g) σ1σ2(g) . . . σ1σn(g)

...
...

. . .
...

σnσ1(g) σnσ2(g) . . . σnσn(g)

 .

We contend that det A(x) is a nonzero polynomial. Suppose not. Consider M(x) = A(x)T A(x). The
(i, j)-th entry is given by

∑
σ∈G

σσi(g)σσj(g) = ∑
σ∈G

σ(gigj).

If i ̸= j, note that f | σ(gigj) for all σ ∈ G. Therefore, f divides all non-diagonal entries of M(x) while
the diagonal entries of M(x) are given by

∑
σ∈G

σ(gi)
2 ≡ ∑

σ∈G
σ(gi) (mod f ) ≡

n

∑
i=1

gi (mod f ) ≡ 1 (mod f ).

Hence, det M(x) = 1 in K[x]/( f (x)), in particular, it is nonzero in K[x], therefore, det A(x) ̸= 0 in
K[x].

Since K is infinite, there is some θ ∈ K such that det A(θ) ̸= 0. Let β = g(θ). We claim that β is the
desired normal element. To do so, it suffices to show that {σ1(β), . . . , σn(β)} is linearly independent
over k.

Indeed, suppose there is a linear combination

c1σ1(β) + · · ·+ cnσn(β) = 0 ⇐⇒ c1σ1(g(θ)) + · · ·+ cnσn(g(θ)) = 0.

Applying σi to the above equation for 1 ≤ i ≤ n, we obtain a system of linear equations given by

A(θ)


c1
...

cn

 = 0,

whence c1 = · · · = cn = 0, since A(θ) is invertible. This completes the proof. ■

Once we have a normal element, we can easily find the primitive (and sometimes normal) elements of
all intermediate fields.

Theorem 7.14. Let K/k be a finite Galois extension with G = Gal(K/k) and α ∈ K be a normal element.

(a) If H ≤ G, then βH := TrK
KH (α) is a primitive element of KH/k.

(b) If H � G, then βH is a normal element of KH/k.

Proof. (a) Obviously, βH ∈ KH . We shall show that Gal(K/k(βH)) ⊆ H, which would imply KH ⊆ k(βH)
and the conclusion would follow.

Let τ ∈ G\H. Then,
τ(βH) = ∑

σ∈τH
σ(α).

Since τH is a coset distinct from H, they are disjoint and since the collection {σ(α) | σ ∈ G} is a
linearly independent set, we cannot have τ(βH) = βH , consequently, Gal(K/k(βH)) ⊆ H.
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(b) Let τ1, . . . , τm be elements of G whose images under the canonical projection G ↠ G/H are all the
elements of G/H. Note that this projection map is simply the restriction map from Gal(K/k) to
Gal(k(βH)/k). Suppose

c1τ1(βH) + · · ·+ cmτm(βH) = 0,

then,

0 =
m

∑
i=1

ci

 ∑
σ∈τi H

σ(α)

 .

By our choice of τi’s, the cosets τi H and τjH are pairwise distinct, consequently, the sum written above
is essentially of linearly independent elements, σ(α) where σ ranges over G. Therefore, c1 = · · · =
cm = 0. This completes the proof. ■

7.2 Galois Groups of Polynomials

Definition 7.15. Let f (x) ∈ k[x] be a polynomial and ka an algebraic closure containing k. Let f have
roots r1, . . . , rn ∈ ka. Define the discriminant of f as

disc( f ) :=

∏
i<j

(ri − rj)

2

.

The Galois group of f , denoted G f is defined as Gal(k(r1, . . . , rn)/k).

The group G f permutes {r1, . . . , rn}whence it can be embedded in Sn. Henceforth, we shall identify G f
with its image under this embedding.

Proposition 7.16. disc( f ) ∈ k.

Proof. Since the Galois group permutes {ri | 1 ≤ i ≤ n}, disc( f ) is the fixed field of the action of the entire
Galois group on k(r1, . . . , rn) which is k. ■

Theorem 7.17. Let char k ̸= 2 and f (x) ∈ k[x] a separable polynomial. Then, G f ⊆ An if and only if disc( f )
is a perfect square in k.

Proof. Let
δ = ∏

i<j
(ri − rj).

Then, for each σ ∈ G f , σ(δ) = sgn(σ)δ. Thus,

G f ⊆ An ⇐⇒ σ(δ) = δ ∀σ ∈ G f ⇐⇒ δ ∈ k.

This completes the proof. ■
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Chapter 8

Cyclotomic Extensions

Definition 8.1 (Root of Unity). Let k be a field. A root of unity over k is an element ζ ∈ ka such that
ζn = 1 for some n ∈N.

Consider the polynomial xn − 1 with gcd(char k, n) = 1. In this case, the polynomial is separable over
k and thus has distinct roots. Let Zn = {z1, . . . , zn} denote the distinct roots. It is not hard to see that
Zn ⊆ k× forms a multiplicative group. Since every finite multiplicative subgroup of a field is cyclic, so
is Zn. A generator for the group Zn is called a primitive n-th root of unity. Obviously, there are φ(n)
such primitive n-th roots of unity.

Consider now the case gcd(char k, n) ̸= 1. Let char k = p > 0. Then, there is a positive integer r
such that n = prm with p ∤ m. Then,

xn − 1 =
(
xm − 1

)pr

and thus every n-th root of unity is an m-th root of unity, whence it suffices to study polynomials of
the form (xn − 1) with gcd(char k, n) = 1.

Proposition 8.2. Every root of unity is a primitive n-th root of unity for some positive integer n.

Proof. Let ζ be a root of unity and let n be the smallest positive integer such that ζn = 1. Consider the
subgroup ⟨ζ⟩ ≤ Zn. If the order of this subgroup is m, then ζm = 1 whence m ≥ n and thus m = n and the
conclusion follows. ■

As a result, need only concern ourselves with primitive n-th roots of unity with gcd(char k, n) = 1.

Proposition 8.3. Let k be a field and ζn ∈ ka a primitive n-th root of unity such that gcd(n, char k) = 1. Then,
k(ζn)/k is a Galois extension.

Proof. Since ζn is a generator for Zn, k(ζn) is the splitting field of xn− 1 over k and thus a normal extension of
k. Further, since xn − 1 is a separable polynomial over k, so is the extension k(ζn)/k whence it is Galois. ■

Proposition 8.4. Let gcd(char k, n) = 1. If ζ is a primitive n-th root of unity, then k(ζ)/k is an abelian
extension.

Proof. Define the map ψ : Gal(k(ζ)/k)→ Aut(µn) by σ 7→ σ|µn
. Note that Aut(µn)

∼= (Z/nZ)×, further, it
is not hard to see that ψ is injective and the conclusion follows. ■
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Note that although we have shown Gal(k(ζ)/k) to be embeddable into (Z/nZ)×, the map may not be
a surjection take for example k = R and ζ = exp(2πi/5). Then, k(ζ) = C, and Gal(k(ζ)/k) ∼= {±1}.

Proposition 8.5. Let ζ be a primitive n-th root of unity over Q. Then,

[Q(ζ) : Q] = φ(n)

and consequently, the map ψ : Gal(Q(ζ)/Q)→ (Z/nZ)× is an isomorphism.

Proof. ■
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Chapter 9

Norm and Trace

Rewrite this
chapter
following
what JKV
taught

Definition 9.1. Let E/k be a finite extension and [E : k]s = r and let σ1, . . . , σr be distinct embeddings
of E in an algebraic closure ka of k. We define the norm and trace of α ∈ E as

NE/k(α) = NE
k (α) =

 r

∏
j=1

σjα

[E:k]i

TrE/k(α) = TrE
k (α) = [E : k]i

r

∑
j=1

σjα

Notice that if E/k were not separable, then char k > 0 and would be a prime, say p. Further, [E : k]i = pν

for some ν ≥ 1, consequently, TrE
k (α) = 0 (since char E = char k = p).

Proposition 9.2. Let E/k be a finit extension such that E = k(α) for some α ∈ E. If

p(x) = xn + an−1xn−1 + · · ·+ a0

is the minimal polynomial of α over k, then

NE
k (α) = (−1)na0 TrE

k (α) = −an−1

Proof. This follows from the fact that the minimal polynomial splits as

p(x) =
(
(x− α1) · · · (x− αr)

)[E:k]i

whence the conclusion follows. ■

Proposition 9.3. Let E/k be a finite extension. Then the norm NE
k : E× → k× is a multiplicative homomor-

phism and the trace TrE
k : E → k is an additive homomorphism. Further, if we have a tower of finit extensions

k ⊆ F ⊆ E, then
NE

k = NF
k ◦ NE

F TrE
k = TrF

k ◦TrE
F

Proof. First, we must show that NE
k is a map E× → k× and TrE

k is a map E → k. Recall that for α ∈ E,
β = α[E:k]i is separable over k and thus NE

k , which is the product of all the conjugates of β is also separable
since all conjugates lie in ksep. Now, let σ : ka → ka be a homomorphism fixing k. Then, it is not hard to see
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that σ(β) = β and thus [k(β) : k]s = 1 but since β is separable, we have [k(β) : k] = 1 and β ∈ k. A similar
argument can be applied to the trace.

Let {σi} be the set of distinct embeddings of E into ka fixing F and {τj} be the set of distinct embeddings
of F into ka fixing k. Extend each τj to a homomorphism ka → ka.

We contend that the set of all distinct embeddings of E into ka fixing k is precisely {τj ◦ σi}. Obviously,
every element of the aforementioned family is distinct and is an embedding of E into ka fixing k. Now, let
σ : E → ka be an embedding of E into ka. Then, the restriction σ|F is equal to (the restriction of) some τj,
whereby τ−1

j σ fixes F whereby it is equal to some σi. Thus every embedding of E into ka over k is of the
form τj ◦ σi.

Finally, we have

∏
i,j
(τj ◦ σi)(α)

[E:F]i [F:k]i

=

∏
j

τj

(
∏

i
σi(α)

)[E:F]i


[F:k]i

= NF
k ◦ NE

F (α)

[E : F]i[F : k]i ∑
i,j

τj ◦ σi(α) = [F : k]i ∑
j

τj

(
[E : F]i ∑

i
σi(α)

)

and the conclusion follows. ■

Theorem 9.4. Let E/k be a finite extension and α ∈ E. Let mα : E → E be the linear transformation given by
mα(x) = αx. Then,

NE
k (α) = det(mα) TrE

k (α) = tr(mα)

Note that we may unambiguously write det(mα) and tr(mα) since both these quantities do not depend on
the choice of a basis, since similar matrices have the same determinant and trace.

Proof. ■
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Chapter 10

Cyclic Extensions

10.1 Hilbert’s Theorems

Definition 10.1. A Galois extension K/k is said to be cyclic if Gal(K/k) is a cyclic group. Similarly, it is
said to be abelian if Gal(K/k) is abelian.

Theorem 10.2 (Linear Independence of Characters). Let G be a group (monoid) and K a field. If σ1, . . . , σn :
G → K× are distinct group homomorphisms. Then,

c1σ1 + · · ·+ cnσn = 0 ⇐⇒ c1 = · · · = cn = 0

Corollary 10.3. Let K/k be a Galois extension. Then, there is α ∈ K such that TrK
k (α) ̸= 0.

Proof. Suppose not. If Gal(K/k) = {σ1, . . . , σn}, then

σ1 + · · ·+ σn = 0

on K, a contradiction to Theorem 10.2. ■

Theorem 10.4 (Hilbert’s Theorem 90). Let K/k be a cyclic degree n extension with galois group G. Let σ ∈ G
be a generator and β ∈ K. The norm NK

k (β) = 1 if and only if there is α ∈ K× such that β = α/σ(α)

Proof. =⇒ Suppose NK
k (β) = 1. We have a set of distinct characters {id, σ, . . . , σn−1} from K× → K×.

Then, due to Theorem 10.2, the set map

τ = id + βσ + (βσ(β))σ2 + · · ·+ (βσ(β) · · · σn−2(β))σn−1

is nonzero, whereby, there is θ ∈ K× such that α = τ(θ) ̸= 0. Notice that

σ(α) = σ(θ) + (σ(β))σ2(θ) + · · ·+ (σ(β)σ2(β) · · · σn−1(β))σn(θ)

Since NK
k (β) = 1, we have

βσ(β) · · · σn−1(β) = 1

whence, we have σ(α) = α/β and the conclusion follows.
⇐= This is trivial enough. ■
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Example 10.5. Find all rational points on the curve x2 + y2 = 1.

Proof. This reduces to finding all elements α ∈ Q[i] with NQ[i]
Q

(α) = 1. Any element α of Q[i] may be written

as (a + bi)/c. Due to Theorem 10.4, there is an element α ∈ Q[i], such that NQ[i]
Q

(α) = 1. Using the general
form of elements in Q[i], we have

α =
a + bi
a− bi

=
(a2 − b2) + 2abi

a2 + b2

this completes the proof. ■

Lemma 10.6. Let K/k be a cyclic extension of degree n with Gal(K/k) = ⟨σ⟩ and suppose k contains a primitive
n-th root of unity, ζ. Then, ζ is an eigenvalue of σ.

Proof. Note that NK
k (ζ

−1) = 1. Due to Theorem 10.4 there is α ∈ K such that α/σ(α) = ζ−1 and the
conclusion follows. ■

Theorem 10.7 (Structure of Cyclic Extensions). Let K/k be a cyclic extension of degree n and suppose k
contains a primitive n-th root of unity. Then, K = k(α) for some α ∈ K such that αn ∈ k.

Proof. Let Gal(K/k) = ⟨σ⟩. Due to Lemma 10.6, there is α ∈ K such that σ(α) = ζα. Then, α has n-distinct
conjugates in K whence K = k(α). Now,

σ(αn) = σ(α)n = αn.

Thus, αn is fixed under the action of Gal(K/k), that is, αn ∈ k. This completes the proof. ■

Theorem 10.8 (Additive Hilbert’s Theorem 90). Let K/k be a cyclic Galois extension with Gal(K/k) = ⟨σ⟩
and β ∈ K. Then TrK

k (β) = 0 iff there is α ∈ K such that β = α− σ(α).

Proof. Due to Corollary 10.3, there is some θ ∈ K with TrK
k (θ) ̸= 0. Consider α ∈ K given by

α =
1

TrK
k (θ)

(
βσ(θ) + (β + σ(β))σ2(θ) + · · ·+ (β + · · ·+ σn−2(β))σn−1(θ)

)
.

We have

σ(α) =
1

TrK
k (θ)

(
σ(β)σ2(θ) + (σ(β) + σ2(β))σ3(θ) + · · ·+ (σ(β) + · · ·+ σn−1(β))σn(θ)

)
= α− β

1
TrK

k (θ)

(
σ(θ) + · · ·+ σn(θ)

)
= α− β

The converse is trivial. ■

Theorem 10.9 (Artin-Schreier). Let k be a field of characteristic p > 0.

(a) Let K/k be a cyclic extension of degree p. Then there is α ∈ K such that K = k(α) and α is a root of
f (x) = xp − x− a for some a ∈ k. Further, K is the splitting field of f (x) over k.
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(b) Conversely, if a ̸= bp − b for some b ∈ k, and K is the splitting field of f (x) = xp − x− a ∈ k[x], then
f (x) is irreducible and K/k is cyclic of degree p.

Proof. (a) Let Gal(K/k) = ⟨σ⟩, since it is a group of prime order. We have TrK
k (−1) = p · (−1) = 0

whence there is α ∈ K such that −1 = α− σ(α), equivalently, σ(α) = α + 1. Let a = αp − α. Then,

σ(a) = σ(αp − α) = σ(α)p − (α + 1) = αp + 1− (α + 1) = a.

Thus, σn(a) = a for 1 ≤ n ≤ p, consequently, a ∈ KGal(K/k) = k.

Note that for 1 ≤ m ̸= n ≤ p, we have

σm(α) = α + m ̸= α + n = σn(α).

Thus, p ≤ [k(α) : k]s ≤ [k(α) : k] ≤ [K : k] = p whence [k(α) : k] = p and K = k(α).

(b) Let α ∈ K be a root of f (x). Then, so is α + 1. Hence, all the roots of f (x) in K are given by

{α, α + 1, . . . , α + p− 1},

whence K = k(α). Suppose f (x) = g1(x) · · · gr(x) where g1, . . . , gr ∈ k[x] are irreducible polynomials.
If r is a root of some gi, then r is a root of f and thus K = k(r). In particular, deg gi = [K : k]. This
gives us r deg g1 = p and since f (x) does not have a root in k, we must have r = 1 and deg g1 = p.
That is, f (x) is irreducible.

Finally, Gal(K/k) = ⟨σ⟩ where σ(α) = α + 1. This completes the proof. ■

10.1.1 Lagrange Resolvents

Let p > 0 be a prime number and k a field such that char k = 0 or gcd(char k, p) = 1. Suppose further, that
µp ⊆ k, that is, k contains a primitive p-th root of unity. Now let K/k be a cyclic extension of order p. Using
Theorem 10.7, there is some a ∈ k such that K = k( p

√
a). We shall explicitly find such an a ∈ k.

Let α ∈ K be primitive for the extension K/k and Gal(K/k) = ⟨σ⟩. If mα(x) is the minimum polynomial
of α over k, then the roots of mα are given by {α, σ(α), . . . , σp−1(α)} and of course, are distinct. Let µp =
{z1, . . . , zp} ⊆ k. Define

(zi, α) :=
p−1

∑
j=0

σj(α)zj
i .

These are called the Lagrange Resolvents.
Then, 

(z1, α)
...

(zp, α)

 =


1 z1 . . . zp−1

1
...

...
. . .

...
1 zp . . . zp−1

p


︸ ︷︷ ︸

V(z1,...,zp)


α
...

σp−1(α)

 .

The Vandermonde determinant, det V(z1, . . . , zp) is nonzero and hence, the matrix is invertible. Note that

σ((zi, α)) = z−1
i (zi, α),

whence (zi, α) is an eigenvector corresponding to the eigenvalue z−1
i . In particular, (zi, α)p is invariant

under σ and thus lies in the base field k. This shows that K = k((zi, α)).

10.2 Solvability by Radicals
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Definition 10.10. An extension K/k is said to be radical if there is a tower

k = F0 ⊆ F1 ⊆ · · · ⊆ Fn = K

where Fi+1/Fi is obtained by adjoining an ni-th root of an element in Fi. Each Fi+1/Fi is called a simple
radical extension.

Definition 10.11. A polynomial f (x) ∈ k[x] is said to be solvable by radicals if any splitting field K of f
over k is contained in a radical extension of k.

Lemma 10.12. Let E/k be a finite separable radical extension. Then, the normal closure, K of E is a radical
Galois extension.

Proof. Fix some algebraically closed field ka containing k and let

k = F0 ⊆ F1 ⊆ · · · ⊆ Fm = E

be a tower of simple radical extensions. Let {id = σ1, . . . , σn} be the distinct k-embeddings of E/k into
ka. Then, note that σj(Fi+1)/σj(Fi) is also a simple radical extension. Thus, we have a tower of successive
simple radical extensions

k = σ1(F0) ⊆ · · · ⊆ σ1(Fm) ⊆ σ1(Fm)σ1(F0) ⊆ · · · ⊆ σ1(Fm) . . . σn(Fm) = K.

This completes the proof. ■

Theorem 10.13 (Galois). Let char k = 0 and f (x) ∈ k[x]. Then, f (x) is solvable by radicals over k if and
only if G f is a solvable group.

Proof. =⇒ Let K be the splitting field of f over k, which is contained in a radical extension E. Due to
Lemma 10.12, we may suppose that E/k is Galois. There is a tower of extensions

k = F0 ⊆ · · · ⊆ Fr = E.

with Fi+1 = Fi

(
ni+1
√

ai+1

)
. Let n = n1 · · · nr and ζ a primitive n-th root of unity. Note that E(ζ) = E · k(ζ),

a compositium of two Galois extensions over k whence is a Galois extension of k. Denote by Mi = Fi(ζ).
Then, we have

k ⊆ M0 ⊆ · · · ⊆ Mr = E(ζ).

Note that Mi contains a primitive ni+1-th root of unity (which is a suitable power of ζ) whence Gal(Mi+1/Mi)
is cyclic. Consider the chain of subgroups

Gal(Mr/k) ⊇ Gal(Mr/M0) ⊇ · · · ⊇ Gal(Mr/Mr−1) ⊇ {1}.

Each successive quotient is

Gal(Mr/Mi)/ Gal(Mr/Mi+1) ∼= Gal(Mi+1/Mi) and Gal(Mr/k)/ Gal(Mr/M0) ∼= Gal(M0/k),

all of which are abelian. Thus, Gal(Mr/k) is solvable, consequently,

G f = Gal(K/k) ∼= Gal(Mr/k)/ Gal(Mr/K),

is solvable.
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⇐= Let |G f | = n and ζ a primitive n-th root of unity in ka. Let L = K(ζ) and E = k(ζ). Then, L/E
is a Galois extension with Galois group isomorphic to a subgroup of Gal(K/k), in particular, Gal(L/E) is
solvable. Thus, there is a series

Gal(L/E) = H0 ⊇ H1 ⊇ · · · ⊇ Hm = {1}

with Hi/Hi+1 abelian. Let Fi = LHi . This gives a filtration

E = F0 ⊆ F1 ⊆ · · · ⊆ Fm = L

wherein each extension Fi+1/Fi is abelian with degree ni dividing n. Let Gal(Fi+1/Fi) = P, an abelian group
whence, due to the structure theorem, admits a filtration

P = Q0 ⊇ Q1 ⊇ · · · ⊇ Qr = {1}.

such that Qi/Qi+1 is cyclic. Let Si = PQi . Then, we have a filtration

Fi = S0 ⊆ S1 ⊆ · · · ⊆ Sr = Fi+1

where each extension Sj+1/Sj is cyclic with order dividing n. But since Sj contains a primitive n-th root of
unity, the extension Sj+1/Sj must be a simple radical extension. In particular, Fi+1/Fi is a radical extension.
Consequently, L/E is a radical extension. Finally, E/k itself is a simple radical extension and hence, L/k is
a radical extension containing K/k. This completes the proof. ■

10.3 Kummer Extensions

Definition 10.14. A finite algebraic extension K/k is said to be a Kummer extension if µn ⊆ F, there is
n ∈ N and ai ∈ k for 1 ≤ i ≤ m such that K = k( n

√
a1, . . . , n

√
am). A Kummer extension is said to be a

simle Kummer extension if m = 1.

Theorem 10.15. Let µn ⊆ k and a ∈ k×. Let b ∈ ka such that bn = a. Then, Gal(k(b)/k) is cyclic of order |a|
where a is the coset of a in k×/(k×)n.

Proof. ■

Remark 10.3.1. Due to Theorem 10.7, every simple Kummer extension K/k with [K : k] = m can be obtained by
adjoining th m-th root of some element in k. This makes our analysis a lot easier.

Lemma 10.16. Let µn ⊆ k and a, b ∈ k× such that [k( n
√

a) : k] = [k( n
√

b) : k] = n. Then, these extensions are
k-isomorphic if and only if ⟨a⟩ = ⟨b⟩ in k×/(k×)n.

Proof. ■

Theorem 10.17. Let K/k be a finite abelian extension and suppose that µn ⊆ k. Then, Gal(K/k) has exponent
n if and only if there are b1, . . . , bm ∈ k× such that K = k( n

√
b1, . . . , n

√
bm).
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Proof. =⇒ Due to the structure thoerem, Gal(K/k) ∼= Z/n1Z⊕ · · · ⊕Z/nrZ where ni | n. Let Hi denote
the subgroup corresponding to

Z/n1Z⊕ · · · ⊕ Ẑ/niZ⊕ · · · ⊕Z/nrZ

and Fi = KHi . Then,
⋂r

i=1 Hi = {1} and Gal(Fi/k) ∼= Z/niZ. Due to Theorem 10.7, there is some bi ∈ k×

such that Fi = k( n
√

bi). Finally, since K = F1 · · · Fr, the conclusion follows.
⇐= Let Fi = k( n

√
bi). Then, Gal(Fi/k) is cyclic of exponent n. Let ρi : Gal(K/k) ↠ Gal(Fi/k)

denote the restriction map. It is not hard to see that the map Φ : Gal(K/k) → ∏m
i=1 Gal(Fi/k) given by

Φ = ρ1 × · · · × ρm is an injection and thus Gal(K/k) is abelian of exponent n. This completes the proof. ■
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Chapter 11

Infinite Galois Theory

11.1 Galois Groups as Inverse Limits

11.1.1 Inverse Limit of Topological Groups

Lemma 11.1. Let G be a compact topological group. Then, H ≤ G is open if and only if it is closed with finite
index.

Proof. Since G is compact, the number of cosets of H in G must be finite else we would have an infinite
open cover of G with no finite subcover. Further, H is the complement of a disjoint union of cosets of H and
hence, is closed, since every coset of H in G is open.

Conversely, if H, σ1H, . . . , σn H are the distinct cosets of H in G, then H = G\(σ1H ∪ · · · ∪ σn H), and
thus, is open. ■

11.1.2 Profinite Groups

Definition 11.2 (Profinite Group). A profinite group is a topological group that is isomorphic to an
inverse limit of finite topological groups with the discrete topology.

The profinite completion of a topological group G is defined as Ĝ = lim←−G/N where N ranges over
the set of all open normal subgroups of finite index in G. If no topology is specified on the group, then
Ĝ refers to the profinite completion of G with the discrete topology.

Remark 11.1.1. Note that if N is an open normal subgroup of a topological group G, then G/N has the discrete
topology even if G is not Hausdorff.

Theorem 11.3. A profinite group is a compact Hausdorff topological group.

Proof. ■

Theorem 11.4. Let G be a topological group. Let ϕ : G → Ĝ denote the natural map. Then, the image of ϕ is
dense in Ĝ. If G is a profinite group, then ϕ is an isomorphism of topological groups.

Proof. Let X = ∏ G/N, which is a compact topological group containing Ĝ. Let U be a basic open set in
X. ■
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11.1.3 The Galois Group

We shall now show that every profinite group occurs as a Galois group. In order to do so, we shall require
the following analogue of Artin’s Theorem for profinite groups.

Theorem 11.5. Let G be a profinite group acting faithfully by automorphisms on a field K such that for each
x ∈ K, stabG(x) is an open subgroup of G. Then, K/KG is Galois with group G.

Proof. ■

Theorem 11.6 (Waterhouse). Let G be a profinite group. Then, it is the Galois group of some field extension.

Proof. LetH denote the set of all open subgroups of G. Define

X =
⊔

H∈H
G/H

and let G act on X through left multiplication on cosets. This action is faithful and every element of X has
an open stabilizer in G. Let K = Q(X) and extend the action of G on X to an action by field automorphisms
on K. Due to Theorem 11.5, G ∼= Gal(K/KG). ■

11.2 The Krull Topology

Definition 11.7. Let K/k be a Galois extension. For σ ∈ Gal(K/k), a basic open set around σ is a coset
σ Gal(K/F) where F/k is a finite Galois extension.

Proposition 11.8. The collection of basic open sets as defined above form a basis for a topology on Gal(K/k).

Proof. Since Gal(K/F) contains the identity element for each F/k finite Galois, the union of all the basic
open sets is equal to Gal(K/k). Consider two basic open sets σ1 Gal(K/F1) and σ2 Gal(K/F2) having a
nonempty intersection. Let σ be an automorphism in that intersection. We shall show that the basic open
set σ Gal(K/F1F2) is contained in the intersection. Since σ ∈ σ1 Gal(K/F1), there is α ∈ Gal(K/F1) such that
σ = σ1α. Let τ ∈ σ Gal(K/F1F2), then there is β ∈ Gal(K/F1F2) such that τ = σβ. Now, σ−1

1 τ = αβ ∈
Gal(K/F1), whence τ ∈ σ1 Gal(K/F1). This completes the proof. ■

The topology defined above is known as the Krull Topology.

Theorem 11.9. The Krull Topology on Gal(K/k) makes it a topological group.

Proof. We must show that the multiplication map and the inversion map are continuous. Let G = Gal(K/k)
and φ : G× G → G be given by (x, y) 7→ xy. Let U be an open set in G and (σ, τ) ∈ φ−1(U). Then there
is a basic open set of the form στ Gal(K/F) for some finite Galois extension F/k. Consider the basic open
set σ Gal(K/F)× τ Gal(K/F) that contains (σ, τ). I claim that the image of this basic open set lies inside
στ Gal(K/F). Indeed, for (σα, τβ) in the basic open set, its image is σατβ = στα′β = στγ for some
γ ∈ Gal(K/F). Where we used the normality of Gal(K/F) in G since the extension is normal. Thus φ is
continuous.

Let ψ : G → G be the inversion map, that is, x 7→ x−1. We use a similar strategy as above. Let U be an
open set containing σ−1 for some σ ∈ G. Then, there is a basic open set σ−1 Gal(K/F) that is contained in
U. Thus, Gal(K/F) is normal in G. As a result, under ψ, σ Gal(K/F) maps to σ−1 Gal(K/F). This completes
the proof. ■
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Proposition 11.10. Gal(K/k) under the Krull Topology is Hausdorff.

Proof. Let σ, τ ∈ Gal(K/k) be distinct elements. Then, there is α ∈ K such that σ(α) ̸= τ(α). Let F be the
normal closure of k(α) in K, which is a finite Galois extension, and note that σ Gal(K/F) ̸= τ Gal(K/F) and
thus must be disjoint (since they are cosets). ■

Proposition 11.11. Let K/k be a Galois extension and E an intermediate field. Then Gal(K/E) is a closed
subgroup of Gal(K/k).

Proof. Let σ ∈ G\Gal(K/E). Then σ Gal(K/E) is a basic open set containing σ and disjoint from Gal(K/E)
(since it is a coset). This implies the desired conclusion. ■

Proposition 11.12. Let H ≤ G = Gal(K/k). Then Gal(K/KH) is the closure of H in G.

Proof. Obviously, H ⊆ Gal(K/KH). Further, since the latter is closed, H ⊆ Gal(K/KH). We shall show the
reverse inclusion. Let σ ∈ G\H. As we have seen earlier, there is a finite Galois extension F/k such that
the basic open set σ Gal(F/k) is disjoint from H. We claim that there is α ∈ F such that α is fixed under H
but not under σ. Suppose there is no such α. Then, σ|F fixes FH|F where H|F = {h|F : h ∈ H}. From finite
Galois theory, we know that σ|F ∈ H|F. And thus, there is some h ∈ H such that σ|F = h|F, consequently,
σ Gal(K/F) = h Gal(K/F), a contradiction.

Since there is some α ∈ F that is not fixed by σ but fixed under H, we must have that σ /∈ Gal(K/KH).
This completes the proof. ■

Theorem 11.13 (Krull). Let K/k be Galois and equip G = Gal(K/k) with the Krull topology. Then

(a) For all intermediate fields E, Gal(K/E) is a closed subgroup of G.

(b) For all H ≤ G, Gal(K/KH) is the closure of H in G.

(c) (The Galois Correspondence) There is an inclusion reversing bijection between the intermediate fields of
K/k an closed subgroups of Gal(K/k).

(d) For an arbitrary subgroup H of G, KH = KH .

Proof. (a) and (b) follow from the previous two propositions. From this, the Galois correspondence is im-
mediate. Finally to see (d), suppose H ≤ G. Then, Gal(K/KH) = H, whence

KH = KGal(K/KH) = KH .

This completes the proof. ■

Theorem 11.14. Gal(K/k) in the Krull Topology is isomorphic, as topological groups to the inverse limit G =
lim←−Gal(E/k) as a subspace of X = ∏ Gal(E/k), each of which is given the discrete topology.

In particular, Gal(K/k) in the Krull Topology is a profinite group.
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Proof. Define the map Φ : Gal(K/k) → X by Φ(σ) = (σ|E)E. This is obviously an injective map whose
image is G. To see that this is a continuous map, it suffices to check that each component of this map is
continuous. Let E/k be a finite Galois extension. The component of Φ along E is given by ΦE : Gal(K/k)→
Gal(E/k), which is the restriction map. A basic open set in Gal(E/k) is simply a point, say σ ∈ Gal(E/k).
Then, Φ−1

E (σ) = τ Gal(K/E) where τ is a k-automorphism of K whose restriction to E is σ. This is obviously
an open set in Gal(K/k) whence Φ is continuous.

Lastly, we must show that Φ is an open map with respect to G, for which, it suffices to show that the
image of a basic open set in Gal(K/k) is open in G. Consider the basic open set σ Gal(K/E) where E/k is a
finite Galois extension. Then,

Φ
(
σ Gal(K/E)

)
=

{σE} × ∏
F ̸=E

F/k is finite Galois

Gal(F/k)

 ∩ G,

which is open in G. This completes the proof. ■

Corollary 11.15. Gal(K/k) is compact in the Krull topology.
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Chapter 12

Transcendental Extensions

Definition 12.1 (Algebraically Independent). Let K/k be any extension. Elements a1, . . . , an ∈ K are
said to be algebraically independent over k if there is no non-zero polynomial f (x1, . . . , xn) ∈ k[x1, . . . , xn]
such that f (a1, . . . , an) = 0. A set A ⊆ K is said to be algebraically independent over k if every finite
subset of A is algebraically independent over k.

Lemma 12.2. Let K/k be any extension a ∈ K and A ⊆ K. The following are equivalent:

(a) a ∈ K is algebraic over k(A).

(b) There are β0, . . . , βn−1 ∈ K(A) such that an + βn−1an−1 + · · ·+ β0 = 0.

(c) There are β0, . . . , βn ∈ k[A] such that βnan + · · ·+ β0 = 0.

(d) There is a non-zero polynomial f (x1, . . . , xm, y) ∈ k[x1, . . . , xm, y] such that there are b1, . . . , bm ∈ A
with f (b1, . . . , bm, y) ̸= 0 in K[y] but f (b1, . . . , bm, a) = 0.

Proof. Trivial. ■

Lemma 12.3 (Exchange Lemma). Let K/k be any extension and b ∈ K be algebraically dependent on {a1, . . . , am} ⊆
K but not on {a1, . . . , am−1}. Then, am is algebraically dependent on {a1, . . . , am−1, b}.

Proof. Since b is algebraically dependent on {a1, . . . , am}, there is a non-zero polynomial f (x1, . . . , xm, y) ∈
k[x] such that f (a1, . . . , am, b) = 0. Then, we may write

f (x1, . . . , xm, y) = ∑
i

fi(x1, . . . , xm−1, y)xi
m.

Since b is not algebraically dependent on {a1, . . . , am−1}, one of the fi’s must be non-zero, say f j. Thus, am
is algebraically dependent over {a1, . . . , am−1, b}. ■

Definition 12.4. Let K/k be any extension. An algebraically independent subset A ⊆ K is said to be a
transcendence basis if K/k(A) is algebraic.
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Theorem 12.5. Let K/k be any field extension and A, B ⊆ K be two transcendence bases. Then, |A| = |B|.

Proof. First, suppose A is finite. Let A = {a1, . . . , an}. Then, for every ai ∈ A, there is a finite subset Bi of
B such that ai is algebraically dependent on k(Bi). Therefore, K is algebraic over k(B1 ∪ · · · ∪ Bn). Hence, B
must be finite. Say B = {b1, . . . , bm}.

Let l = |A∩B| and without loss of generality, say A∩B = {a1, . . . , al}, thus, B = {a1, . . . , al , bl+1, . . . , bn}.
If l = n, then A ⊆ B and we have n ≤ m. Suppose not, that is, l < n.

Now, al+1 is algebraic over B but algebraic independent over {a1, . . . , al}. Let j be the smallest index
such that al+1 is algebraically dependent over {a1, . . . , al , bl+1, . . . , bj}. Due to Lemma 12.3, we see that bj is
algebraically dependent over

B1 = {a1, . . . , al , al+1, bl+1, . . . , bj−1, bj+1, . . . , bm}.

Note that B1 is algebraically independent, for if not, then we must have al+1 algebraically dependent over
B1\{al+1}. But this would mean that B1\{al+1} is a transcendence basis of K/k, which is absurd. Hence,
B1 is algebraically independent and thus, a transcendence basis of K/k. Now, |A ∩ B1| = l + 1.

We may continue this process and at each step increase the size of the intersection |A ∩ Bi|. The process
terminates when A\Bi = ∅, in other words, A ⊆ Bi whence n = |A| ≤ |Bi| = m. Arguing in the other
direction, one can show that m ≤ n, whence m = n. This proves the theorem in the finite case.

Now, suppose both A and B are infinite. Then, for each a ∈ A, there is a corresponding finite subset Ba ⊆
B such that a is algebraically dependent on Ba. Therefore, every element of A is algebraically dependent
over C =

⋃
a∈A Ba ⊆ B. This means that K is algebraic over k(C) and hence, C = B. Consequently,

|B| = |C| =

∣∣∣∣∣∣⋃a∈A
Ba

∣∣∣∣∣∣ ≤ |A×N| = |A|.

A similar argument in the other direction would give |A| ≤ |B|. This completes the proof. ■

Definition 12.6 (Transcendence Degree). Let K/k be any extension. The transcendence degree of K/k,
denoted trdeg(K/k) is the cardinality of a transcendence basis of K/k.

Remark 12.0.1. Let K/k be any extension and A ⊆ K be an algebraically independent subset of K. Let Σ be the poset
of all algebraically independent subsets of K that contain A. Using a standard Zorn argument, one can show that Σ
contains a maximal element, which obviously must be a transcendence basis.

Theorem 12.7 (Additivity of trdeg). Let k ⊆ E ⊆ K be a tower of field extensions with trdeg(K/E) and
trdeg(E/k) finite. Then, trdeg(K/k) = trdeg(K/E) + trdeg(E/k).

Proof. ■

12.1 Lüroth’s Theorem

Lemma 12.8. Let x be an indeterminate over a field k and r(x) ∈ k(x). Then, [k(x) : k(r(x))] = deg(r(x)).

Proof. ■
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Theorem 12.9. Aut(k(x)/k) ∼= PGL2(k).

Proof. If θ : k(x) → k(x) is a k-automorphism, then deg(θ(x)) = 1 and hence, must be of the form ax+b
cx+d

where

(
a b
c d

)
∈ GL2(k). The conclusion now follows from an application of the First Isomorphism Theo-

rem. ■

Theorem 12.10 (Lüroth’s Theorem). Let k(t)/k be a purely transcendental extension. Then, any intermediate
field strictly containing k is of the form k(r(t)) where r(t) ∈ k(t) is a rational function. Further, [k(t) :
k(r(t))] = deg(r(t)).

Proof. ■

12.2 Linear Disjointness

Definition 12.11 (Linearly Disjoint). Let K and L be two field extensions of k contained in a larger field
Ω. Then, K and L are said to be linearly disjoint if every k-linearly independent subset of K is L-linearly
independent as elements of Ω.

Proposition 12.12. K and L are linearly disjoint over k if and only if L and K are linearly disjoint over k.

Proof. Suppose K and L are linearly disjoint but not L and K. Then, there is a k-linearly independent sub-
set {y1, . . . , yn} of L that is not K-linearly independent. Hence, there are xi ∈ K, not all zero, such that
∑n

i=1 xiyi = 0. The vector space generated by the xi’s is a finite dimensional one over k and admits a finite
basis, u1, . . . , um. We may write

xi =
m

∑
j=1

aijuj

with aij ∈ k and hence,

0 =
n

∑
i=1

xiyi =
n

∑
i=1

m

∑
j=1

aijyiuj =
m

∑
j=1

(
n

∑
i=1

aijyi

)
uj.

Using the linear disjointness of K and L, we must have ∑n
i=1 aijyi = 0 for all j. But since the yi’s are linearly

independent over k, we must have aij = 0 for all i, j. A contradiction. ■

Henceforth, we shall tacitly assume that all pairs of field extensions are contained in a larger field exten-
sion Ω/k.

Proposition 12.13. Let k ⊆ R be a domain with K = Q(R) and {uα} ⊆ R be a k-basis of R. If {uα} is
L-linearly independent, then K and L are linearly disjoint.

Proof. Suppose not, then there are x1, . . . , xn ∈ K that are k-linearly independent but not L-linearly inde-
pendent. Hence, there is a linear combination ∑n

i=1 zixi = 0 where zi ∈ L. There is an r ∈ R such that
rxi ∈ R for each 1 ≤ i ≤ n. Note that the rxi’s still remain k-linearly independent. Thus, we may suppose
that every xi ∈ R.
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The k-vector subspace of R generated by the xi’s is contained in a k-vector space V generated by finitely
many {uj}m

j=1 ⊆ {uα}. Obviously, n < m. Hence, the set {xi}n
i=1 can be completed to a basis of V,

{x1, . . . , xn, xn+1, . . . , xm}.
Let W denote the L-vector space generated by {ui}m

i=1. We have dim W = m and that {x1, . . . , xm} is a
generating set for W and hence, forms a basis. Consequently, x1, . . . , xn is linearly independent over L. This
completes the proof. ■

Theorem 12.14 (Transitivity of Linear Disjointness). Consider the following lattice of fields.

KL

KE L

K E

k

Then, K, L are linearly disjoint over k if and only if K, E are linearly disjoint over k and KE, L are linearly
disjoint over E.

Proof. ■

Proposition 12.15. Suppose K/k is separable and L/k is purely inseparable with char k = p > 0. Then, K
and L are linearly disjoint over k.

Proof. Suppose not, then there is a finite k-linearly independent subset X of K that is not L-linearly inde-
pendent. We may now replace K by K(X) and suppose that K/k is a finite separable extension and hence,
admits a primitive element, K = k(α). A basis for K/k is then given by {1, α, . . . , αn−1}. Let f (x) be the
irreducible polynomial of α over k. We contend that f (x) is the irreducible polynomial of α over L.

Let g(x) ∈ L[x] be the irreduible polynomial of k. Then, there is a non-negative integer m such that
g(x)pm ∈ k[x]. Since α is a root of g(x) and f (x), there is a positive integer r such that f (x) = g(x)rh(x) for
some h(x) ∈ L[x] such that gcd(g, h) = 1. But since f is separable, we must have r = 1 and f (x) = g(x)h(x).
Further, g(x)pm

= f (x)q(x) for some q(x) ∈ k[x] and hence, g(x)pm−1 = h(x)q(x). Since gcd(g, h) = 1, we
must have h(x) = 1, consequently, g(x) = f (x).

This shows that {1, α, . . . , αn−1} is linearly independent over L and hence, K and L are linearly disjoint.
■

Proposition 12.16. Let K/k be purely transcendental and L/k purely inseparable with char k = p > 0. Then,
K and L are linearly disjoint.

Proof. Let K = k(X) where X is a set of k-algebraically independent elements. Let R = k[X] and note that the
monomials formed from X form a k-basis for R and it suffices to show that these are linearly independent
over L. Suppose there were a relation ∑i aiXαi = 0 where ai ∈ L. Since this is a finite sum, there is a positive
integer m such that apm

i ∈ k for all i.
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Raising the aforementioned relation to the power pm, we have

∑
i

apm

i Xpm ·αi = 0.

Thus, apm

i = 0 for all i. And the conclusion follows. ■

Definition 12.17 (Separably Generated). An extension K/k is said to be separably generated if it has
a transcendence bais S ⊆ K such that K/k(S) is separable. Such a transcendence basis is called a
separating transcendence basis.

Remark 12.2.1. If K/k is separably generated, it is not necessary that every transcendence basis is a separating
transcendence basis. For example, consider the extension Fp(x)/Fp. This has a separating transcendence basis {x}.
Also, {xp} is a transcendence basis but Fp(x)/Fp(xp) is purely inseparable.

Theorem 12.18 (McLane). Let char k = p > 0 and K/k any extension. Then, the following are equivalent:

(a) K is linearly disjoint from kp−∞
.

(b) K is linearly disjoint from kp−n
for some positive integer n.

(c) K is linearly disjoint from kp−1
.

(d) Any finitely generated subfield of K/k is separably generated.

Proof. (a) =⇒ (b) =⇒ (c) is clear.
(c) =⇒ (d) Let A = {a1, . . . , an} ⊆ K and E = k(A) ⊆ K. If A is algebraically independent over k,

then we are done by taking A to be a transcendence basis.
Suppose A is not algebraically independent and choose 0 ̸= f ∈ k[x1, . . . , xn] to be of smallest degree

such that f (a1, . . . , an) = 0. Suppose that every monomial in f is a power of p. Then, there are monomials
mα(x) ∈ k[x1, . . . , xn] such that

f (X) = ∑
α

aαmα(X)p,

where not all aα’s are zero. Hence, there is a g(X) ∈ kp−1
[x1, . . . , xn] such that f (X) = g(X)p. Denote

g(X) = ∑
α

a1/p
α mα (⃗a).

The elements mα (⃗a) are linearly dependent over kp−1
and hence, are linearly dependent over k. Conse-

quently, there exist bα ∈ k such that
∑
α

bαmα (⃗a) = 0.

Set h(X) = ∑α bαmα(X) ∈ k[X]. Then, h(⃗a) = 0, which contradicts the minimality of the degree of f .
Hence, in f , there is a monomial that is not a power of p. Without loss of generality, suppose that

monomial contains x1 whose exponent is not a power of p. Then, consider the polynomial f0(x1) ∈
k[a2, . . . , an][x1] given by

f0(x1) = f (x1, a2, . . . , an).

Note that f0(a1) = 0 and f ′0(x1) is a non-zero polynomial which cannot have a1 as a root, lest we contradict
the minimality of the degree of f . Hence, a1 is separable over k[a2, . . . , an]. Now, induct downwards.

(d) =⇒ (a) Let a1, . . . , an ∈ K be k-linearly independent and set E = k(a1, . . . , an). This is a finitely
generated subfield of K/k and hence, has a separating transcendence basis S ⊆ k(a1, . . . , an). Since k(S) is
purely transcendental and kp−∞

is purely inseparable, they are linearly disjoint over k.
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K

E

sep

kp−∞
(S)

k(S)

p. trans

p. ins

kp−∞

k
p. ins

Next, since kp−∞
(S)/k(S) is purely inseparable and E/k(S) is separable, they are linearly disjoint over

k(S). Thus, due to Theorem 12.14, E and kp−∞
are linearly disjoint over k.

Since every finitely generated subfield of K is linearly disjoint from kp−∞
over k, we must have that K is

linearly disjoint from kp−∞
over k. This completes the proof.

■

Definition 12.19 (Separable). An extension K/k that satisfies the equivalent statements of Theorem 12.18
is said to be separable.

Theorem 12.20. Let char k = p and k ⊆ E ⊆ K be a tower of fields.

(a) If K/k is separable, then E/k is separable.

(b) If K/E and E/k are separable, then K/k is separable.

(c) If k is perfect, then any extension of k is separable.

(d) If K/k is separable and E/k is algebraic, then K/E is separable.

Proof. (a) follows from the fact that any finitely generated subextension of E is a finitely generated subex-
tension of K.

(b) We have the following lattice of fields.

K Ep−∞

E kp−∞

k

According to the hypothesis, K and Ep−∞
are linearly disjoint over E and E and kp−∞

are linearly disjoint
over k. Note that the compositum Ekp−∞

is contained in Ep−∞
whence K and Ekp−∞

are linearly disjoint over
k. From Theorem 12.14, we have that K and kp−∞

are linearly disjoint over k.
(c) Clear.
(d) Let F = E(a1, . . . , an) ⊆ K be a finitely generated subextension of K/E and set L = k(a1, . . . , an).

This has a separating transcendence basis S ⊆ L. Then, F/E(S) is separable. Hence, it suffices to show that
S is algebraically independent over E.
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Since F/E(S) is algebraic and E(S)/k(S) is algebraic, we have trdeg(F/k) = |S|. Hence, trdeg(F/E) =
trdeg(F/k)− trdeg(E/k) = |S|. Hence, S must be a transcendence basis of F/E. This completes the proof.

■

Definition 12.21 (Free). The pair of extensions (K/k, L/k) is said to be free if every k-algebraically
independent subset of K is L-algebraically independent.

Proposition 12.22. If (K/k, L/k) is free, then so is (L/k, K/k).

Proof. ■

12.3 A Brief Treatment of Varieties

Throughout this section, k is an arbitrary field and K, an algebraic closure of k.

12.3.1 Parametrization

Definition 12.23. An irreducible k-variety V is called rational if the function field k(V) is a purely
transcendental extension of k.

Definition 12.24. A curve is an irreducible k-variety that has dimension 1. Equivalently, dim k[V] = 1.
We say that V can be parametrized by rational functions in k(t) if there are rational functions f1, . . . , fn ∈
k(t) such that

{( f1(t), . . . , fn(t)) | t ∈ K},

wherever defined, is a dense subset of V in the k-Zariski topology.

Theorem 12.25. Let V be an irreducible curve defined over a field k. Then, V can be parametrized by rational
functions in k(t) if and only if there is an k-isomorphism k(V) ∼= k(t).

Proof. ( =⇒ ) Suppose we have a parametrization given by ( f1(t), . . . , fn(t)) where fi(t) ∈ k(t). Let

U = {( f1(a), . . . , fn(a)) | a ∈ K}.

Then, U = V in the k-Zariski topology. Consier the ring homomorphism φ : k[X]→ k(t) given by φ(Xi) =
fi(t). Note that

ker φ = {h ∈ k[X] | h( f1(t), . . . , fn(t)) = 0}.

If h ∈ ker φ, then h( f1(a), . . . , fn(a)) = 0 for all a ∈ K. Hence, U ⊆ Z(h), consequently, V = U ⊆
Z(h). In particular, h ∈ I (V). Conversely, if g ∈ I (V), then for all but finitely many elements of K,
g( f1(a), . . . , fn(a)) = 0. Hence, g( f1(t), . . . , fn(t)) = 0, that is, g ∈ ker φ and this gives, ker φ = I (V). And
hence, φ induces a map φ′ : k[V] → k(t), which in turn induces ψ : k(V) → k(t). Finally, from Lüroth’s
Theorem, k(V) ∼= k(t).

( ⇐= ) Let φ : k(V) → k(t) be a k-automorphism. Let xi denote the image of Xi in k[V] ⊆ k(V) and let
fi(t) = φ(xi) and φ−1(t) = g(x1, . . . , xn)/h(x1, . . . , xn). Note that xi = φ−1(φ(xi)) = φ−1( fi(t)) = fi(g/h).

Now, given any p ∈ V such that h(p) ̸= 0, with p = (p1, . . . , pn), then pi = fi(g(p)/h(p)) and hence,
p = ( f1(a), . . . , fn(a)) where a = g(p)/h(p). Hence, all but finitely many points in V can be expressed as
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( f1(a), . . . , fn(a)) for some a ∈ K. On the other hand, if a ∈ K such that each fi(a) is defined, then setting
p = ( f1(a), . . . , fn(a)), we have u(p) = 0 for every u ∈ I (V). This means, p ∈ Z(I (V)) = V.

In conclusion, we have that the set {( f1(a), . . . , fn(a)) | a ∈ K} misses finitely many points of V and
hence, is dense in V. ■
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