Field and Galois Theory

Swayam Chube

November 19, 2023

Contents

1	Algebraic Extensions	2
2	Algebraic Closure	3
3	Normal Extensions	6
4	Separable Extensions	8
5	Inseparable Extensions	13
6	Finite Fields	15
7	Galois Extensions 7.1 Normal Basis Theorem	17 19 21
8	Cyclotomic Extensions	22
9	Norm and Trace	24
10	Cyclic Extensions 10.1 Hilbert's Theorems 10.1.1 Lagrange Resolvents 10.2 Solvability by Radicals 10.3 Kummer Extensions	26 28 28 30
11	Infinite Galois Theory 11.1 Galois Groups as Inverse Limits	32 32 32 32 33 33
12	Transcendental Extensions	36
	12.1 Lüroth's Theorem	38 42
	12.3.1 Parametrization	42

Algebraic Extensions

Definition 1.1 (Extension, Degree). Let F be a field. If F is a subfield of another field E, then E is said to be an *extension* field of F. The dimension of E when viewed as a vector space over F is said to be the *degree of the extension* E/F and is denoted by [E:F].

Definition 1.2 (Algebraic Element).

Definition 1.3 (Distinguished Class). Let \mathscr{C} be a class of extension fields $F \subseteq E$. We say that \mathscr{C} is distinguished if it satisfies the following conditions:

- 1. Let $k \subseteq F \subseteq E$ be a tower of fields. The extension $K \subseteq E$ is in $\mathscr C$ if and only if $k \subseteq F$ is in $\mathscr C$ and $F \subseteq E$ is in $\mathscr C$.
- 2. If $k \subseteq E$ is in \mathscr{C} , if F is any extension of k, and E, F are both contained in some field, then $F \subseteq EF$ is in \mathscr{C} .
- 3. If $k \subseteq F$ and $k \subseteq E$ are in \mathscr{C} and F, E are subfields of a common field, then $K \subseteq FE$ is in \mathscr{C} .

Lemma 1.4. Let E/k be algebraic and let $\sigma: E \to E$ be an embedding of E over k. Then σ is an automorphism.

Proof. Since σ is known to be injective, it suffices to show that it is surjective. Pick some $\alpha \in E$ and let $p(x) \in k[x]$ be its minimal polynomial over k. Let K be the subfield of E generated by all the roots of P in E. Obviously, [K:k] is finite. Since P remains unchanged under σ , it is not hard to see that σ maps a root of P in E to another root of P in E. Therefore, $\sigma(K) \subseteq K$. But since $[\sigma(K):k] = [K:k]$ due to obvious reasons, we must have that $\sigma(K) = K$, consequently, $\alpha \in K = \sigma(K)$. This shows surjectivity.

Algebraic Closure

Theorem 2.1. *Let k be a field. Then there is an algebraicaly closed field containing k*.

Proof due to Artin.

Corollary 2.2. Let k be a field. Then there exists an extension k^a which is algebraic over k and algebraically closed.

Proof.

Lemma 2.3. Let k be a field and L and algebraically closed field with $\sigma: k \to L$ an embedding. Let α be algebraic over k in some extension of k. Then, the number of extensions of σ to an embedding $k(\alpha) \to L$ is precisely equal to the number of distinct roots of the minimal polynomial of α over k.

Lemma 2.4. Suppose E and L are algebraically closed fields with $E \subseteq L$. If L/E is algebraic, then E = L.

Proof. Let $\alpha \in L$. Let $p(x) \in E[x]$ be the minimal polynomial of α over E. Since E is algebraically closed, p splits into linear factors over E, one of them being $(x - \alpha)$, implying that $\alpha \in E$. This completes the proof.

Theorem 2.5 (Extension Theorem). Let E/k be algebraic, L an algebraically closed field and $\sigma: k \to L$ be an embedding of k. Then there exists an extension of σ to an embedding of E in E. If E is algebraically closed and E is algebraic over E, then any such extension of E is an isomorphism of E onto E.

Proof. Let $\mathscr S$ be the set of all pairs (F,τ) where $F\subseteq E$ and F/k is algebraic and $\tau:F\to L$ is an extension of σ . Define a partial order \leq on $\mathscr S$ by $(F_1,\tau_1)\leq (F_2,\tau_2)$ if and only if $F_1\subseteq F_2$ and $\tau_2\mid_{F_1}\equiv \tau_1$. Note that $\mathscr S$ is nonempty since it contains (k,σ) . Let $\mathscr S=\{(F_\alpha,\tau_\alpha)\}$ be a chain in $\mathscr S$. Define $F=\bigcup_\alpha F_\alpha$. Now, for any $t\in F$, there is β such that $t\in F_\beta$; using this, define $\tau(t)=\tau_\beta(t)$. It is not hard to see that this is a valid embedding.

Now, invoking Zorn's Lemma, there is a maximal element, say (K, τ) . We claim that K = E, for if not, then we may choose some $\alpha \in E$ and invoke Lemma 2.3.

Finally, if *E* is algebraically closed, so is σE , consequently, we are done due to the preceding lemma.

Corollary 2.6. Let k be a field and E, E' be algebraic extensions of k. Assume that E, E' are algebraically closed. Then there exists an isomorphism $\tau : E \to E'$ inducing the identity on k.

Proof. Consider the extension of $\sigma: k \to E'$ where $\sigma \mid_{k} = id_{k}$ whence the conclusion immediately follows.

Since an algebraically closed and algebraic extension of k is determined upto an isomorphism, we call such an extension an *algebraic closure* of k and is denoted by k^a .

Definition 2.7 (Conjugates). Let E/k be an algebraic extension contained in an algebraic closure k^a . Then, the distinct roots of the minimal polynomial of α over k are called the *conjugates* of α . In particular, two roots of the same minimal polynomial over k are said to be *conjugate* to one another.

Here's a nice exercise from [DF04].

Example 2.8. A field is said to be *formally real* if -1 cannot be expressed as a sum of squares in it. Let k be a formally real field with k^a its algebraic closure. If $\alpha \in k^a$ with odd degree over k, then $k[\alpha]$ is also formally real.

Proof. Suppose not. Let $\alpha \in k^a$ be such that $k[\alpha]$ is not formally real and $[k[\alpha] : k]$ is minimum, greater than 1. Then, there are elements $\gamma_1, \ldots, \gamma_m \in k[\alpha]$ such that $\sum_{i=1}^m \gamma_i^2 = -1$. We may choose polynomials $p_i(x) \in k[x]$ such that $p_i(\alpha) = \gamma_i$ with deg $p_i(\alpha) < [k[\alpha] : k]$.

Let $f(x) \in k[x]$ be the irreducible polynomial of α over k. We have

$$p_1(\alpha)^2 + \dots + p_m(\alpha)^2 = -1$$

and thus, α is a root of the polynomial $p_1(x)^2 + \cdots + p_m(x)^2 + 1$. Thus, there is a polynomial $g(x) \in k[x]$ such that

$$p_1(x)^2 + \cdots + p_m(x)^2 + 1 = f(x)g(x).$$

Notice that the degree of the left hand side is even and less than $2 \deg f$ whence $\deg g < \deg f$ and is odd. Further, note that g(x) may not have a root in k lest -1 be written as a sum of squares in k. Consider now the factorization of g(x) as a product of irreducibles:

$$g(x) = h_1(x) \cdots h_n(x).$$

Equating degrees, we see that there is an index j such that deg h_j is odd. Let β be a root of h_j in k^a . Then, $[k[\beta]:k]=\deg h_j\leq \deg g<\deg f$ and

$$p_1(\beta)^2 + \dots + p_m(\beta)^2 + 1 = f(\beta)g(\beta) = 0$$

whence $k[\beta]$ is not formally real and contradicts the choice of α .

The proof of the next theorem requires some tools from later chapters.

Theorem 2.9. Let K/k be an algebraic extension such that every non-constant polynomial in k[x] has a root in K. Then, K is algebraically closed.

Proof. Let $\alpha \in k^a$. We shall show that $\alpha \in K$ which would imply the desired conclusion. Let $f(x) \in k[x]$ be the minimal polynomial of α over k and $K \subseteq k^a$ be the splitting field of f(x) over k, which is obviously a finite extension.

Due to Lemma 5.8, there are subfields F_0 and E of F such that $F = F_0E$, E/k is purely inseparable and F_0 is the separable closure of k in F. Since F_0/k is a finite separable extension, due to Theorem 4.18, there is some $\beta \in F_0$ such that $F_0 = k(\beta)$.

Let g(x) be the minimal polynomial of β over k and $\beta' \in K$ be a root of g(x). Since g(x) is the minimal polynomial of β' and is separable since β is separable over k, we have that $\beta' \in F_0 = k(\beta)$ and thus

$$F_0 = \underbrace{k(\beta) = k(\beta')}_{\text{due to a dimension argument}} \subseteq K.$$

E/k is finite, it has a basis, say $\gamma_1, \ldots, \gamma_n$. The minimal polynomial of γ_i is of the form $(x - \gamma_i)^{p^{r_i}}$ and thus has a single root, whence, $\gamma_i \in K$. Thus $E \subseteq K$. As a result,

$$F = F_0 E \subseteq K$$

and thus $\alpha \in K$ thereby completing the proof.

Normal Extensions

Definition 3.1 (Splitting Field). Let k be a field and $\{f_i\}_{i\in I}$ be a family of polynomials in k[x]. By a *splitting field* for this family, we shall mean an extension K of k such that every f_i splits in linear factors in K[x] and K is generated by all the roots of all the polynomials f_i for $i \in I$ in some algebraic closure \overline{k}

In particular, if $f \in k[x]$ is a polynomial, then the splitting field of f over k is an extension K/k such that f splits into linear factors in K and K is generated by all the roots of f.

Definition 3.2 (Normal Extension). An algebraic extension K/k is said to be *normal* if whenever an irreducible polynomial $f(x) \in k[x]$ has a root in K, it splits into linear factors over K.

Theorem 3.3 (Uniqueness of Splitting Fields). Let K be a splitting field of the polynomial $f(x) \in k[x]$. If E is another splitting field of f, then there exists an isomorphism $\sigma : E \to K$ inducing the identity on k. If $k \subseteq K \subseteq \overline{k}$, where \overline{k} is an algebraic closure of k, then any embedding of E in \overline{k} inducing the identity on k must be an isomorphism of E on K.

Proof. We prove both assertions together. Due to Theorem 2.5, there is an embedding $\sigma: E \to \overline{k}$ such that $\sigma|_{k} = \mathbf{id}_{k}$. Therefore, it suffices to prove the second half of the theorem.

We have two factorizations

$$f(x) = c(x - \alpha_1) \cdots (x - \alpha_n)$$
 over E
= $c(x - \beta_1) \cdots (x - \beta_n)$ over K

Since σ induces the identity map on k, f must remain invariant under σ . Further, we have

$$\sigma f(x) = c(x - \sigma \beta_1) \cdots (x - \sigma \beta_n)$$

Due to unique factorization, we must have that $(\sigma\beta_1, \ldots, \sigma\beta_n)$ differs from $(\alpha_1, \ldots, \alpha_n)$ by a permutation. Since $\sigma E = k(\sigma\beta_1, \ldots, \sigma\beta_n)$, we immediately have the desired conclusion.

Theorem 3.4. Let K/k be algebraic in some algebraic closure \overline{k} of k. Then, the following are equivalent:

- 1. Every embedding σ of K in \bar{k} over k is an automorphism of K
- 2. K is the splitting field of a family of polynomials in k[x]

3. K/k is normal

Proof.

- $(1) \Longrightarrow (2) \land (3)$: For each $\alpha \in K$, let $m_{\alpha}(x)$ denote the minimal polynomial for α over k. We shall show that K is the splitting field for $\{m_{\alpha}\}_{\alpha \in K}$. Obviously, K is generated by $\{\alpha\}_{\alpha \in K}$, hence, it suffices to show that m_{α} splits into linear factors over K. Let β be a root of m_{α} in \overline{k} . Then, there is an isomorphism $\sigma: k(\alpha) \to k(\beta)$. One may extend this to an embedding $\sigma: K \to \overline{k}$, which by our hypothesis, is an automorphism of K, implying that $\beta \in K$ and giving us the desired conclusion.
- $(2) \Longrightarrow (1)$: Let K be the splitting field for the family of polynomials $\{f_i\}_{i \in I}$. Let $\alpha \in K$ and α be the root of some polynomial f_i and $\sigma : K \to k^a$ be an embedding of fields. Since f_i remains invariant under σ , it must map a root of f_i to another toot of f_i , that is, $\sigma \alpha$ is a root of f_i . Consequently, σ maps K into K. Now, due to Lemma 1.4, σ is an automorphism and K/k is normal.
- (3) \Longrightarrow (1): Let $\sigma: K \to \overline{k}$ be an embedding of fields. Let $\alpha \in K$ and $p(x) \in k[x]$ be its irreducible polynomial over k. Since p remains invariant under σ , it must map α to a root β of p in \overline{k} . But since p splits into linear factors over K, $\beta \in K$ and thus $\sigma(K) \subseteq K$, consequently, $\sigma(K) = K$ due to Lemma 1.4, therefore completing the proof.

Corollary 3.5. The splitting field of a polynomial is a normal extension.

Theorem 3.6. Normal extensions remain normal under lifting. If $k \subseteq E \subseteq K$, and K is normal over k, then K is normal over E. If K_1, K_2 are normal over k and are contained in some field L, then K_1K_2 is normal over k and so is $K_1 \cap K_2$.

Proof. Let K/k be normal and F/k be any extension with K and F contained in some larger extension. Let σ be an embedding of KF over F in \overline{F} . The restriction of σ to K is an embedding of K over K and therefore, is an automorphism of K. As a result, $\sigma(KF) = (\sigma K)(\sigma F) = KF$ and thus KF/F is normal.

Now, suppose $k \subseteq E \subseteq K$ with K/k normal. Let σ be an embedding of K in \overline{k} over E. Then, σ induces the identity on k and is therefore an automorphism of K. This shows that K/E is normal.

Next, if K_1 and K_2 are normal over k and σ is an embedding of K_1K_2 over k, then its restriction to K_1 and K_2 respectively are also embeddings over k and consequently are automorphisms. This gives us

$$\sigma(K_1K_2) = (\sigma K_1)(\sigma K_2) = K_1K_2$$

Finally, since any embedding of $K_1 \cap K_2$ can be extended to that of K_1K_2 , we have, due to a similar argument, that $K_1 \cap K_2$ is normal over k.

Separable Extensions

Let E/k be a finite extension, and therefore, algebraic. Let L be an algebraically closed field along with an embedding $\sigma: k \to L$. Define S_{σ} to be the set of extensions of σ to $\sigma^*: E \to L$.

Definition 4.1 (Separable Degree). Given the above setup, the *separable degree* of the finite extension E/k, denoted by $[E:k]_s$ is defined to be the cardinality of S_σ .

Proposition 4.2. The separable degree is well defined. That is, if L' is an algebraically closed field and $\tau: k \to L'$ be an embedding, then the cardinality of S_{τ} is equal to that of S_{σ}

Definition 4.3 (Separable Extension). Let E/k be a finite extension. Then it is said to be *separable* if $[E:k]_s = [E:k]$. Similarly, let $\alpha \in \overline{k}$. Then α is said to be separable over k if $k(\alpha)/k$ is separable.

Proposition 4.4. *Let* E/F *and* F/k *be finite extensions. Then*

$$[E:k]_s = [E:F]_s[F:k]_s$$

Proof. Let L be an algebraically closed field and $\sigma: k \to L$ be an embedding. Let $\{\sigma_i\}_{i \in I}$ be the extensions of σ to an embedding $E \to L$ and $\{\tau_{ij}\}$ be the extensions of σ to an embedding $E \to L$. We have indexed τ in such a way that the restriction $\tau_i|_{E} = \sigma_i$. Using the definition of the separable degree, we have that for each i there are precisely $[E:F]_s$ j's such that τ_{ij} is a valid extension. This immediately implies the desired conclusion.

Corollary 4.5. Let E/k be finite. Then, $[E:k]_s \leq [E:k]$.

Proof. Due to finitness, we have a tower of extensions

$$k \subseteq k(\alpha_1) \subseteq \cdots \subseteq k(\alpha_1, \ldots, \alpha_n)$$

We may now finish using Lemma 2.3.

Theorem 4.6. *Let* E/k *be finite and* char k = 0. *Then* E/k *is separable.*

Proof. Since E/k is finite, there is a tower of extensions as follows:

$$k \subseteq k(\alpha_1) \subseteq \cdots \subseteq k(\alpha_1, \ldots, \alpha_n)$$

We shall show that the extension $k(\alpha)/k$ is separable for some $\alpha \in \overline{k}$. Let $p(x) = m_{\alpha}(x)$ be the minimal polynomial over k[x]. We contend that p(x) does not have any multiple roots. Suppose not, then p(x) and p'(x) share a root, say β . But since p(x) is the minimal polynomial for β over k, it must divide p'(x) which is impossible over a field of characteristic 0. Finally, due to Lemma 2.3, we must have $k(\alpha)/k$ is separable.

This immediately implies the desired conclusion, since

$$[E:k]_{s} = [k(\alpha_{1},...,\alpha_{n}):k(\alpha_{1},...,\alpha_{n-1}]\cdots[k(\alpha_{1}):k] = [E:k]$$

Theorem 4.7. Let E/k be finite and char k = p > 0. Then, there is $m \in \mathbb{N}_0$ such that

$$[E:k] = p^m[E:k]_s$$

Proof.

Remark 4.0.1. From the above proof we obtain that if $\alpha \in E$, then $\alpha^{[E:k]_i}$ is separable over k.

Corollary 4.8. Let E/k be a finite extension. Then, $[E:k]_s$ divides [E:k].

Proof. Follows from Theorem 4.6 and Theorem 4.7.

Definition 4.9 (Inseparable Degree). Let E/k be finite. Then, we denote

$$[E:k]_i = \frac{[E:k]}{[E:k]_s}$$

as the inseparable degree.

Lemma 4.10. Let K/k be algebraic and $\alpha \in K$ is separable over k. Let $k \subseteq F \subseteq K$. Then, α is separable over F.

Proof. Let $p(x) \in k[x]$ and $f(x) \in F[x]$ be the minimal polynomial of α over k and F respectively. By definition, $f(x) \mid p(x)$ and therefore has distinct roots in the algebraic closure of k. Consequently, α is separable over F.

Proposition 4.11. *Let* E/k *be finite. Then, it is separable if and only if each element of* E *is separable over* k.

Proof. Suppose E/k is separable and $\alpha \in E \setminus k$. Then, there is a tower of extensions

$$k \subsetneq k(\alpha_1) \subsetneq \cdots \subsetneq k(\alpha_1, \ldots, \alpha_n) = E$$

with $\alpha_1 = \alpha$. Recall that $[E:k]_s \leq [E:k]$ with equality if and only if there is an equality at each step in the tower. This implies the desired conclusion.

Conversely, suppose each element of E is separable over k. Then, each α_i is separable over $k(\alpha_1, \dots, \alpha_{i-1})$ due to Lemma 4.10. Consequently, for each step in the tower,

$$[k(\alpha_1,\ldots,\alpha_i):k(\alpha_1,\ldots,\alpha_{i-1})]_s=[k(\alpha_1,\ldots,\alpha_i):k(\alpha_1,\ldots,\alpha_{i-1})]$$

implying the desired conclusion.

Definition 4.12 (Infinite Separable Extensions). An algebraic extension E/k is said to be *separable* if each finitely generated sub-extension is separable.

Theorem 4.13. Let E/k be algebraic and generated by a family $\{\alpha_i\}_{i\in I}$. If each α_i is separable over k, then E is separable over k.

Proof. Let $k(\alpha_1, ..., \alpha_n)/k$ be a finitely generated sub-extension of E/k. From our proof of Proposition 4.11, we know that α_i is separable over $k(\alpha_1, ..., \alpha_{i-1})$, and therefore, $k(\alpha_1, ..., \alpha_n)$ is separable over k and we have the desired conclusion.

Theorem 4.14. Let E/k be algebraic. Then, E/k is separable if and only if each element of E is separable over k.

Proof. Suppose E/k is separable, then for each $\alpha \in E$, $k(\alpha)$ is a finitely generated sub-extension of E, which is separable by definition. This implies that α is separable over k, again by definition.

Conversely, suppose each element is separable over k. Let $k(\alpha_1, ..., \alpha_n)$ be a finitely generated sub-extension of E. Then, we have the following tower

$$k \subsetneq k(\alpha_1) \subsetneq \cdots \subsetneq k(\alpha_1, \ldots, \alpha_n)$$

From our proof of Proposition 4.11, we know that α_i is separable over $k(\alpha_1, \dots, \alpha_{i-1})$, this immediately implies that $k(\alpha_1, \dots, \alpha_n)/k$ is separable.

Theorem 4.15. *Separable extensions (not necessarily finite) form a distinguished class of extensions.*

Proof. Suppose E/k is separable and F is an intermediate field. Since each element of F is an element of E, we have that F must be separable over E, due to Theorem 4.14. Conversely, suppose both E/F and E/K are separable. Now, if E/K is finite, so is E/K and we are done due to Proposition 4.4.

Now, suppose E/k is not finite. It suffices to show that for all $\alpha \in E$, α is separable over k. Let $p(x) = a_n x^n + \cdots + a_0$ be the unique monic irreducible polynomial of α over E. Then, E is also the monic irreducible polynomial of E over E over E over E is also separable over E over E is also separable over E over E is also separable over E is also separable over E is also separable over E in the sufficient E in the sufficient E is also separable over E in the sufficient E is also separable over E in the sufficient E is also separable over E in the sufficient E is also separable over E in the sufficient E is also separable over E in the sufficient E is also separable over E in the sufficient E is also separable over E in the sufficient E is also separable over E in the sufficient E is also separable over E in the sufficient E is also separable over E in the sufficient E i

$$k \subseteq k(a_0, \ldots, a_n) \subseteq k(a_0, \ldots, a_n)(\alpha)$$

Furthermore, since each a_i is separable over k for $0 \le i \le n$, it must be the case that $k(a_0, \ldots, a_n)$ is separable over k and finally so must α .

Next, suppose E/k is separable and F/k is an extension, where both E and F are contained in some algebraically closed field E. Since every element of E is separable over E, it must be separable over E, through a similar argument involving the minimal polynomial as carried out above. Since E is generated by all the elements of E, we may finish using Theorem 4.13. This completes the proof.

Definition 4.16 (Separable Closure). Let k be a field and k^a be an algebrai closure. We define the separable closure k^{sep} as

$$k^{\text{sep}} = \{a \in k^a \mid a \text{ is separable over } k\}$$

If $\alpha, \beta \in k^{\text{sep}}$, then $\alpha, \beta \in k(\alpha, \beta)$, which by choice of α, β is separable over k. Therefore, $\alpha\beta, \alpha/\beta, \alpha+\beta, \alpha-\beta \in k(\alpha, \beta)$ are separable over k, and lie in k^{sep} , from which it follows that k^{sep} is a field extension of k

Primitive Element Theorem

Definition 4.17 (Primitive Element). Let E/k be a finite extension. Then $\alpha \in E$ is said to be *primitive* if $E = k(\alpha)$. In this case, the extension E/k is said to be simple.

Theorem 4.18 (Steinitz, 1910). *Let* E/k *be a finite extension. Then, there exists a primitive element* $\alpha \in E$ *if and only if there exist only a finite number of fields* F *such that* $k \subseteq F \subseteq E$. *If* E/k *is separable, then there exists a primitive element.*

Proof. If k is finite, then so is E and it is known that the multiplicative group of finite fields are cyclic, therefore generated by a single element, immediately implying the desired conclusion. Henceforth, we shall suppose that k is infinite.

Suppose there are only a finite number of fields intermediate between k and E. Let $\alpha, \beta \in E$. We shall show that $k(\alpha, \beta)/k$ has a primitive element. Indeed, consider the intermediate fields $k(\alpha + c\beta)$ for $c \in k$, which are infinite in number. Therefore, there are distinct elements $c_1, c_2 \in k$ such that $k(\alpha + c_1\beta) = k(\alpha + c_2\beta)$. Consequently, $(c_1 - c_2)\beta \in k(\alpha + c_1\beta)$, therefore, $\beta \in k(\alpha + c_1\beta)$ and thus $\alpha \in k(\alpha + c_1\beta)$. This implies that $\alpha + c_1\beta$ is a primitive element for $k(\alpha, \beta)/k$. Now, since E/k is finite, it must be finitely generated. We may now use induction to finish.

Conversely, suppose E/k has a primitive element, say $\alpha \in E$. Let f(x) be the monic irreducible polynomial for α over k. Now, for each intermediate field $k \subseteq F \subseteq E$, let g_F denote the monic irreducible polynomial for α over F. Using the unique factorization over $\overline{k}[x]$, $g_F \mid f$ for each intermediate field F, therefore, there may be only finitely many such g_F and thus, only finitely many intermediate fields F.

Finally, suppose E/k is separable and therefore, finitely generated. Hence, it suffices to prove the statement for $k(\alpha, \beta)/k$. Say $n = [k(\alpha, \beta) : k]$ and let $\sigma_1, \ldots, \sigma_n$ be distinct embeddings of $k(\alpha, \beta)$ into \bar{k} over k

$$f(x) = \prod_{1 \le i \ne j \le n} \left(x(\sigma_i \beta - \sigma_j \beta) + (\sigma_i \alpha - \sigma_j \beta) \right)$$

Since f is not identically zero, there is $c \in k$ (due to the infiniteness of k), such that $f(c) \neq 0$ and thus, the elements $\sigma_i(\alpha + c\beta)$ are distinct for $1 \leq i \leq n$, and thus

$$n \le [k(\alpha + c\beta) : k]_s \le [k(\alpha + c\beta) : k] \le [k(\alpha, \beta) : k] = n$$

Thus, $\alpha + c\beta$ is primitive for $k(\alpha, \beta)/k$ which completes the proof.

Note that there are finite extension with infinitely many subfields. For example, consider the extension $\mathbb{F}_p(x,y)/\mathbb{F}_p(x^p,y^p)$ which has degree p^2 . Let $z\in k=\mathbb{F}_p(x^p,y^p)$ and $w=x+zy\in\mathbb{F}_p(x,y)$. We have $w^p=x^p+z^py^p\in\mathbb{F}_p(x^p,y^p)$ and thus, k(w)/k has degree p. Furthermore, for $z\neq z'$ and w'=x+z'y, it is not hard to see that k(w,w') contains both x and y, and is equal to $\mathbb{F}_p(x,y)$, from which it follows that $w\neq w'$. Since we have infinitely many choices of z, there are infinitely many subfields of the extension $\mathbb{F}_p(x,y)/\mathbb{F}_p(x^p,y^p)$.

Lemma 4.19. Let E/k be an algebraic separable extension. Further, suppose that there is an integer $n \ge 1$ such that for every element $\alpha \in E$, $[k(\alpha):k] \le n$. Then E/k is finite and $[E:k] \le n$.

Proof. Let $\alpha \in E$ such that $[k(\alpha):k]$ is maximal. We claim that $E=k(\alpha)$, for if not, there would be $\beta \in E \setminus k(\alpha)$. Now, since $k(\alpha,\beta)$ is a separable extension and is finite, it must be primitve. Thus, there is $\gamma \in E$ such that $k(\alpha,\beta)=k(\gamma)$ and $[k(\gamma):k]=[k(\alpha,\beta):k]>[k(\alpha):k]$, contradicting the assumed maximality. This completes the proof.

Inseparable Extensions

Proposition 5.1. Let $\alpha \in k^a$ and $f(x) \in k[x]$ be the minimal polynomial of α over k. If char k = 0, then all the roots of f have multiplicity 1. If char k = p > 0, then there is a non-negative integer m such that every root of f has multiplicity p^m . Consequently, we have

$$[k(\alpha):k] = p^m[k(\alpha):k]_s$$

and α^{p^m} is separable over k.

Proof.

Definition 5.2. Let char k = p > 0. An element $\alpha \in k^a$ is said to be *purely inseparable* over k if there is a non-negative integer $n \ge 0$ such that $\alpha^{p^n} \in k$.

Theorem 5.3. Let char k = p > 0 and E/k be an algebraic extension. Then the following are equivalent:

- (a) $[E:k]_s = 1$.
- (b) Every element $\alpha \in E$ is purely inseparable over k.
- (c) For every $\alpha \in E$, the irreducible equation of α over k is of type $X^{p^n} a = 0$ for some $n \ge 0$ and $a \in k$.
- (d) There is a set of generators $\{\alpha_i\}_{i\in I}$ of E over k such that each α_i is purely inseparable over k.

Proof. (a) \Longrightarrow (b). Let $\alpha \in E$. From the multiplicativity of the separable degree, we must have $[k(\alpha):k]_s=1$. Let $f(x)\in k[x]$ be the minimal polynomial of α over k. Since $[k(\alpha):k]_s$ is equal to the number of distinct roots of f, we see that $f(x)=(x-\alpha)^m$ for some positive integer m. Let $m=p^nr$ such that $p\nmid r$. Then, we have

$$f(x) = (x - \alpha)^{p^n r} = (x^{p^n} - \alpha^{p^n})^r = x^{p^n r} - r\alpha^{p^n} x^{p^n (r-1)} + \cdots$$

Since the coefficients of f lie in k, we have $r\alpha^{p^n} \in k$ whence $\alpha^{p^n} \in k$.

(b) \implies (c). There is a minimal non-negative integer n such that $\alpha^{p^n} \in k$. Consider the polynomial $g(x) = x^{p^n} - \alpha^{p^n} \in k[x]$. Note that $g(x) = (x - \alpha)^{p^n}$, whence the minimal polynomial for α over k divides g and is thus of the form $(x - \alpha)^m$ for some positive integer $m \le p^n$. Using a similar argument as in the previous paragraph, we see that there is a non-negative integer r such that $\alpha^{p^r} \in k$. Due to the minimality of n, we must have $m = p^n$ and g the minimal polynomial of α over k.

- $(c) \implies (d)$. Trivial.
- $(d) \implies (a)$. Any embedding of E in k^a must be the identity on the α_i 's whence the embedding must be the identity on all of E which completes the proof.

Definition 5.4. An algebraic extension E/k is said to be *purely inseparable* if it satisfies the equivalent conditions of Theorem 5.3.

Proposition 5.5. *Purely inseparable extensions form a distinguished class of extensions.*

Proof. Let char k = p > 0. The assertion about the tower of fields follows from the multiplicativity of separable degree. Now, let E/k be purely inseparable. Then there is a set of generators $\{\alpha_i\}_{i\in I}$ generating E over k. Then, $\{\alpha_i\}_{i\in I}$ generates EF over F. Since the minimal polynomial of α_i over F must divide the minimal polynomial of α_i over k, which is of the form $(x - \alpha_i)^{p^{n_i}}$ for some non-negative integer n, we see that α_i is purely inseparable over F whence EF is purely inseparable over F.

Finally, let E/k and F/k be purely inseparable extensions. If $\{\alpha_i\}_{i\in I}$ and $\{\beta_j\}_{j\in J}$ generate E and F over k respectively such that each α_i and β_j is purely inseparable over k, then EF is generated by $\{\alpha_i\}_{i\in I} \cup \{\beta_j\}_{j\in J}$ over k whence is purely inseparable over k.

Proposition 5.6. *Let* E/k *be an algebraic extension and* E_0 *the separable closure of* k *in* E. Then, E/E_0 *is purely inseparable.*

Proof. If char k=0, then E/k is separable and $E_0=E$ and the conclusion is obvious. On the other hand, if char k=p>0, then for every $\alpha \in E$, there is a non-negative integer m such that α^{p^m} is separable over k whence an element of E_0 . Thus, E/E_0 is purely inseparable.

Proposition 5.7. Let K/k be normal and K_0 the separable closure of k in K. Then K_0/k is normal.

Proof. Let $\sigma: K_0 \to k^a$ be an embedding of fields. This extends to an embedding of K and is thus an automorphism of K. Note that $\sigma(K_0)$ is separable over K and is thus contained in K_0 whence $\sigma(K_0) = K_0$ and σ is an automorphism. This completes the proof.

Lemma 5.8. Let K/k be normal, $G = \operatorname{Aut}(K/k)$ and K^G the fixed field of G. Then K^G/k is purely inseparable and K/K^G is separable. If K_0 is the separable closure of k in K, then $K = K^GK_0$ and $K^G \cap K_0 = 0$.

Proof. Let $\alpha \in K^G$ and $\sigma : k(\alpha) \to k^a$ be an embedding over k. This can be extended to an embedding $\widetilde{\sigma} : K \to k^a$. Since K is normal, this is an automorphism $\widetilde{\sigma} : K \to K$ and thus an element of G. This must leave α fixed whence σ is the identity map, consequently, α is purely inseparable over k and the conclusion follows.

We shall now show that K/K^G is separable. Pick some $\alpha \in K$ and let $\sigma_1, \ldots, \sigma_n \in G$ such that the elements $\sigma_1(\alpha), \ldots, \sigma_n(\alpha)$ form a maximal set of pairwise distinct elements. Consider the polynomial f(x) in K[x] given by

$$f(x) = \prod_{i=1}^{n} (x - \sigma_i(\alpha))$$

It is not hard to see that for any $\sigma \in G$, $\sigma(f) = f$, whence $f \in K^G[x]$ and α is separable over K^G .

Note that any element of $K^G \cap K_0$ is both separable and purely inseparable over k whence an element of k. Thus $K^G \cap K_0 = k$.

Finally, since both purely inseparable and separable extensions form a distinguished class, we have K/K_0K^G is both separable and purely inseparable whence $K=K_0K^G$. This completes the proof.

Finite Fields

It is well known that every finite field must have prime characteristic. In fact, any integral domain with nonzero characteristic must have prime characteristic.

Theorem 6.1. Let F be a finite field with characteristic p > 0. Then there is a positive integer n such that F has cardinality p^n . Further, there is a unique field upto isomorphism of cardinality p^n .

Proof. The prime subfield of F is the subfield generated by 1 and is isomorphic to \mathbb{F}_p . Then $[F:\mathbb{F}_p]=n$, whence the conclusion follows. Now, we show that there is a field with cardinality p^n . Consider the polynomial $f(x)=x^{p^n}-x\in\mathbb{F}_p[x]$. First, note that Df(x)=-1, and thus f(x) has distinct roots in $\overline{\mathbb{F}}_p$. It is not hard to see that if α , β are roots of f(x) in $\overline{\mathbb{F}}_p$, then $\alpha-\beta$ and $\alpha\beta$ are roots of f(x) in $\overline{\mathbb{F}}_p$. Therefore, the collection of roots of f(x) in $\overline{\mathbb{F}}_p$ form a field. The cardinality of this field is the number of distinct roots of f(x) in $\overline{\mathbb{F}}_p$, which is precisely p^n .

As for uniqueness, note that if F is a field of cardinality p^n , then every element of F is a root of $f(x) = x^{p^n} - x \in \mathbb{F}_p[x]$ (this is because F contains a copy of \mathbb{F}_p in it). Therefore, F is the splitting field for f(x) over $\mathbb{F}_p[x]$ in some algebraic closure. But since all splitting fields are isomorphic, we have the desired conclusion.

Theorem 6.2 (Frobenius). The group of automorphisms of \mathbb{F}_q where $q = p^n$ is cyclic of degree n, generated by the Frobenius mapping, $\varphi : \mathbb{F}_q \to \mathbb{F}_q$ given by $\varphi(x) = x^p$.

Proof. We first verify that φ is an automorphism. That φ is a ring homomorphism is easy to show, from which it would follow that φ is injective. Surjectivity follows from here since \mathbb{F}_q is finite. Next, note that φ leaves \mathbb{F}_p fixed, thus, $G = \operatorname{Aut}(\mathbb{F}_q) = \operatorname{Aut}(\mathbb{F}_q/\mathbb{F}_p)$. Furthermore, $|\operatorname{Aut}(\mathbb{F}_q/\mathbb{F}_p)| = [\mathbb{F}_q : \mathbb{F}_p]_s \leq [\mathbb{F}_q : \mathbb{F}_p] = n$.

We now show that the order of φ in G is precisely n, for if d were the order of φ , then $\varphi^d(x) = x$ for all $x \in \mathbb{F}_q$ and thus, $x^{p^d} - x = 0$ for all $x \in \mathbb{F}_q$, from which it follows that $p^d \ge q$ and $d \ge n$ and the conclusion follows.

Theorem 6.3. Let $m, n \in \mathbb{N}$. Then in an algebraic closure $\overline{\mathbb{F}_p}$ of \mathbb{F}_p , the subfield \mathbb{F}_{p^n} is contained in \mathbb{F}_{p^m} if and only if $n \mid m$.

Proof. If \mathbb{F}_{p^n} is contained in \mathbb{F}_{p^m} , then $p^m = (p^n)^d$ where $d = [\mathbb{F}_{p^m} : \mathbb{F}_{p^n}]$. The converse follows from noting that $x^{p^n} - x \mid x^{p^m} - x$.

Theorem 6.4. Let $m, n \in \mathbb{N}$ such that $n \mid m$. Then the extension $\mathbb{F}_{p^m} / \mathbb{F}_{p^n}$ is finite Galois.

Proof. We have $[\mathbb{F}_{p^m}:\mathbb{F}_p]=m$ and $[\mathbb{F}_{p^n}:\mathbb{F}_p]=n$, consequently, $[\mathbb{F}_{p^m}:\mathbb{F}_{p^n}]_s=m/n=[\mathbb{F}_{p^m}:\mathbb{F}_{p^n}]$ and thus the extension is separable. To show that the extension $\mathbb{F}_{p^m}/\mathbb{F}_{p^n}$ is normal, it suffices to show that the extension $\mathbb{F}_{p^m}/\mathbb{F}_p$ is normal but this trivially follows from the fact that \mathbb{F}_{p^m} is the splitting field of $x^{p^m}-x\in\mathbb{F}_p[x]$. This completes the proof.

Galois Extensions

Definition 7.1 (Fixed Field). Let K be a field and G be a group of automorphisms of K. The *fixed field* of K under G, denoted by K^G is the set of all elements $x \in K$ such that $\sigma x = x$ for all $\sigma \in G$.

That the aforementioned set forms a field is trivial.

Definition 7.2 (Galois Extension, Group). An extension K/k is said to be *Galois* if it is normal and separable. The group of automorphisms of K over k is known as the *Galois Group* of K/k and is denoted by Gal(K/k).

Theorem 7.3. Let K be a Galois extension of k and G = Gal(K/k). Then $k = K^G$. If F is an intermediate field, $k \subseteq F \subseteq K$, then K is Galois over F and the map

$$F \mapsto \operatorname{Gal}(K/F)$$

from the intermediate fields to subgroups of G is injective. Finiteness is not required in this case.

Proof. Let $\alpha \in K^G$ and $\sigma : k(\alpha) \to \overline{K}$ be an embedding over k. Due to Theorem 2.5, σ may be extended to an embedding of K over k in \overline{K} . Since K/k is normal, this is an automorphism and therefore, an element of G. As a result, σ sends α to itself, therefore, any embedding of $k(\alpha)$ over k is the identity map, implying that $[k(\alpha) : k]_S = 1$, or equivalently, $k(\alpha) = k$ whence $\alpha \in k$.

Let F be an intermediate field. Due to Theorem 3.6 and Theorem 4.15, we have that K/F is normal and separable, therefore Galois.

Finally, if F and F' map to the same subgroup H of G, then due to the first part, of this theorem, we must have $F = K^H = F'$, establishing injectivity.

Lemma 7.4. Let E/k be algebraic and separable, further suppose that there is an integer $n \ge 1$ such that every element $\alpha \in E$ is of degree at most n over k. Then $[E:k] \le n$.

Proof. Let $\alpha \in E$ such that $[k(\alpha) : k]$ is maximized. We shall show that $k(\alpha) = E$. Suppose not, then there is $\beta \in E \setminus k(\alpha)$ and thus, we have a tower $k \subseteq k(\alpha) \subseteq k(\alpha, \beta)$. Due to Theorem 4.18, there is $\gamma \in E$ such that $k(\alpha, \beta) = k(\gamma)$. But then,

$$[k(\gamma):k] = [k(\alpha,\beta):k] > [k(\alpha):k]$$

a contradiction to the maximality of α . Therefore, $E = k(\alpha)$ and we have the desired conclusion.

Theorem 7.5 (Artin). *Let* K *be a field and let* G *be a finite group of automorphisms of* K, *of order* n. *Let* $k = K^G$. *Then* K *is a finite Galois extension of* k, *and its Galois group is* G. *Further,* [K:k] = n.

Proof. Let $\alpha \in K$. We shall show that K is the splitting field of the family $\{m_{\alpha}(x)\}_{\alpha \in K}$ and that α is separable over k.

Let $\{\sigma_1\alpha, \ldots, \sigma_m\alpha\}$ be a maximal set of images of α under the elements of G. Define the polynomial:

$$f(x) = \prod_{i=1}^{m} (x - \sigma_i \alpha)$$

For any $\tau \in G$, we note that $\{\tau \sigma_1 \alpha, \dots, \tau \sigma_m \alpha\}$ must be a permutation of $\{\sigma_1 \alpha, \dots, \sigma_m \alpha\}$, lest we contradict maximality. As a result, α is a root of f^{τ} for all $\tau \in G$ and therefore, the coefficients of f lie in $K^G = k$, i.e. $f(x) \in k[x]$.

Since the $\sigma_i \alpha'$ s are distinct, the minimal polynomial of α over k must be separable, and thus K/k is separable. Next, we see that the minimal polynomial for α also splits in K and thus, K is the splitting field for the family $\{m_{\alpha}(x)\}_{\alpha \in K}$. Consequently, K/k is normal and hence, Galois.

Finally, since the minimal polynomial for α divides f, we must have $[k(\alpha):k] \leq \deg f \leq n$ whence due to Lemma 7.4, $[K:k] \leq n$. Now, recall that $n = |G| \leq [K:k]_s \leq [K:k]$ and we have the desired conclusion.

Corollary 7.6. Let K/k be a finite Galois extension and G = Gal(K/k). Then, every subgroup of G belongs to some subfield F such that $K \subseteq F \subseteq K$.

Lemma 7.7. *Let* K/k *be Galois and* F *an intermediate field,* $k \subseteq F \subseteq K$, *and let* $\lambda : F \to \overline{k}$ *be an embedding. Then,*

$$Gal(K/\lambda F) = \lambda Gal(K/F)\lambda^{-1}$$

Proof. The embedding λ can be extended to an embedding of K due to Theorem 2.5 and since K/k is normal, λ is an automorphism. As a result, $\lambda F \subseteq K$ and thus, $K/\lambda F$ is Galois. Let $\sigma \in \operatorname{Gal}(K/F)$. It is not hard to see that $\lambda \sigma \lambda^{-1} \in \operatorname{Gal}(K/\lambda F)$ and conversely, for $\tau \in \operatorname{Gal}(K/\lambda F)$, $\lambda^{-1}\tau\lambda \in \operatorname{Gal}(K/F)$. This implies the desired conclusion.

Theorem 7.8. Let K/k be Galois with $G = \operatorname{Gal}(K/k)$. Let F be an intermediate field, $k \subseteq F \subseteq K$, and let $H = \operatorname{Gal}(K/F)$. Then F is normal over k if and only if H is normal in G. If F/k is normal, then the restriction map $\sigma \mapsto \sigma \mid_F$ is a homomorphism of G onto $\operatorname{Gal}(F/k)$ whose kernel is H. This gives us $\operatorname{Gal}(F/k) \cong G/H$.

Proof. Suppose F/k is normal. To see that the map $\sigma \to \sigma \mid_F$ is surjective, simply recall Theorem 2.5. The kernel of said mapping is obviously H and we have that $H \unlhd G$ and due to the First Isomorphism Theorem, $G/H \cong \operatorname{Gal}(F/k)$.

On the other hand, if F/k is not normal, then there is an embedding $\lambda : F \to \overline{k}$ such that $F \neq \lambda F$. Note that due to Theorem 2.5, $\lambda F \subseteq K$. Then, we have $Gal(K/F) \neq Gal(K/\lambda F) = \lambda Gal(K/F)\lambda^{-1}$, and equivalently, Gal(K/F) is not normal in G. This completes the proof of the theorem.

Note that in the proof of the above theorem, while showing *H* is normal in *G*, we did not use that the Galois extension is finite. We can now put together all the above results into one all-powerful theorem.

Theorem 7.9 (Fundamental Theorem of Galois Theory). Let K/k be a finite Galois extension with $G = \operatorname{Gal}(K/k)$. There is a bijection between the set of subfields E of K containing k and the set of subgroups H of G given by $E = K^H$. The field E is Galois over k if and only if H is normal in G, and if that is the case, then the

restriction map $\sigma \mapsto \sigma \mid_E$ induces an isomorphism of G/H onto Gal(E/k).

Definition 7.10. A Galois extension K/k is said to be *abelian (resp. cyclic)* if its Galois group is *abelian (resp. cyclic)*.

Theorem 7.11. Let K/k be finite Galois and F/k an arbitrary extension. Suppose K, F are subfields of some larger field. Then KF is Galois over F, and F is Galois over F. Let F is Galois over F is F is F is F is F in F in F is F in F in F in F in F in F in F is F in F in

Proof. That KF/F and $K/K \cap F$ are Galois follow from Theorem 3.6 and Theorem 4.15. Let $\chi: H \to G$ denote the restriction map. Note that $\ker \chi$ contains all $\sigma \in H$ such that σ fixes K. But since σ implicitly fixes F, it must also fix KF and is therefore the unique identity automorphism. As a result, $\ker \chi$ is trivial and χ is injective. Let $H' = \chi(H) \subseteq G$. We shall show that $K^{H'} = K \cap F$. Indeed, if $\alpha \in K^{H'}$, then α is also fixed by all elements of H, since χ is only the restriction map. As a result, $\alpha \in F$, consequently $\alpha \in K \cap F$. The conclusion follows from Theorem 7.9.

Now, suppose F/k is Galois. Then, due to Theorem 3.6, both KF and $K \cap F$ are normal over k whence are Galois.

7.1 Normal Basis Theorem

Definition 7.12 (Normal Element). Let K/k be a finite Galois extension with $Gal(K/k) = \{\sigma_1, \dots, \sigma_n\}$. An element $\alpha \in K$ is said to be a *normal element* if $\{\sigma_1(\alpha), \dots, \sigma_n(\alpha)\}$ forms a k-basis of K.

Theorem 7.13 (Normal Basis Theorem). *If* K/k *is a finite Galois extension, then it has a normal element.*

Proof. Let $G = Gal(K/k) = \{\sigma_1, \dots, \sigma_n\}$. We shall divide the proof into two cases.

Case 1. *G* is cyclic.

Let $G = \langle \sigma \rangle$ for some $\sigma \in G$. Let $m_{\sigma}(x) \in k[x]$ denote the minimal polynomial of σ . Since σ is a root of $x^n - 1 \in k[x]$, we must have $m_{\sigma}(x) \mid x^n - 1$. If $\deg(m_{\sigma}) = m < n$, then there are $a_0, \ldots, a_m \in k$ such that

$$m_{\sigma}(x) = a_m x^m + \cdots + a_0.$$

In particular, $a_m \sigma^m + \cdots + a_0 \mathbf{id} = 0$, but this is a contradiction to Dedekind's Lemma on the independence of characters. Therefore, $m_{\sigma}(x) = x^n - 1$, consequently, $m_{\sigma}(x)$ must also be the characteristic polynomial of σ due to a degree argument. Since the minimal polynomial and the characteristic polynomial are the same, there is a σ -cyclic vector for the extension K/k, which is the desired normal element.

Case 2. *k* is infinite. Note that the previous case subsumes the case with *k* finite.

Due to Theorem 4.18, $K = k(\alpha)$ for some $\alpha \in K$. Suppose without loss of generality that $\sigma_1 = id$. Let $\alpha_i = \sigma_i(\alpha)$, which are all pairwise distinct, and define

$$g_i(x) = \frac{\prod_{j \neq i} (x - \alpha_j)}{\prod_{j \neq i} (\alpha_i - \alpha_j)}.$$

Denote g_1 by simply g, then, $g_i = \sigma_i(g)$.

The polynomial

$$g_1(x) + \cdots + g_n(x)$$

attains the value 1 for $\alpha_1, \ldots, \alpha_n$ but since it has degree at most n-1, it must be identically equal to 1. Further, for $i \neq j$, $f \mid g_i g_j$ and $g_i^2 - g_i$ vanishes at $\alpha_1, \ldots, \alpha_n$ whence $f \mid g_i^2 - g_i$.

Define the matrix

$$A(x) = \begin{bmatrix} \sigma_1 \sigma_1(g) & \sigma_1 \sigma_2(g) & \dots & \sigma_1 \sigma_n(g) \\ \vdots & \vdots & \ddots & \vdots \\ \sigma_n \sigma_1(g) & \sigma_n \sigma_2(g) & \dots & \sigma_n \sigma_n(g) \end{bmatrix}.$$

We contend that det A(x) is a nonzero polynomial. Suppose not. Consider $M(x) = A(x)^T A(x)$. The (i, j)-th entry is given by

$$\sum_{\sigma \in G} \sigma \sigma_i(g) \sigma \sigma_j(g) = \sum_{\sigma \in G} \sigma(g_i g_j).$$

If $i \neq j$, note that $f \mid \sigma(g_i g_j)$ for all $\sigma \in G$. Therefore, f divides all non-diagonal entries of M(x) while the diagonal entries of M(x) are given by

$$\sum_{\sigma \in G} \sigma(g_i)^2 \equiv \sum_{\sigma \in G} \sigma(g_i) \pmod{f} \equiv \sum_{i=1}^n g_i \pmod{f} \equiv 1 \pmod{f}.$$

Hence, $\det M(x) = 1$ in K[x]/(f(x)), in particular, it is nonzero in K[x], therefore, $\det A(x) \neq 0$ in K[x].

Since K is infinite, there is some $\theta \in K$ such that $\det A(\theta) \neq 0$. Let $\beta = g(\theta)$. We claim that β is the desired normal element. To do so, it suffices to show that $\{\sigma_1(\beta), \ldots, \sigma_n(\beta)\}$ is linearly independent over k.

Indeed, suppose there is a linear combination

$$c_1\sigma_1(\beta) + \cdots + c_n\sigma_n(\beta) = 0 \iff c_1\sigma_1(g(\theta)) + \cdots + c_n\sigma_n(g(\theta)) = 0.$$

Applying σ_i to the above equation for $1 \le i \le n$, we obtain a system of linear equations given by

$$A(\theta) \begin{pmatrix} c_1 \\ \vdots \\ c_n \end{pmatrix} = 0,$$

whence $c_1 = \cdots = c_n = 0$, since $A(\theta)$ is invertible. This completes the proof.

Once we have a normal element, we can easily find the primitive (and sometimes normal) elements of all intermediate fields.

Theorem 7.14. Let K/k be a finite Galois extension with G = Gal(K/k) and $\alpha \in K$ be a normal element.

- (a) If $H \leq G$, then $\beta_H := \operatorname{Tr}_{KH}^K(\alpha)$ is a primitive element of K^H/k .
- (b) If $H \subseteq G$, then β_H is a normal element of K^H/k .

Proof. (a) Obviously, $\beta_H \in K^H$. We shall show that $Gal(K/k(\beta_H)) \subseteq H$, which would imply $K^H \subseteq k(\beta_H)$ and the conclusion would follow.

Let $\tau \in G \backslash H$. Then,

$$\tau(\beta_H) = \sum_{\sigma \in \tau H} \sigma(\alpha).$$

Since τH is a coset distinct from H, they are disjoint and since the collection $\{\sigma(\alpha) \mid \sigma \in G\}$ is a linearly independent set, we cannot have $\tau(\beta_H) = \beta_H$, consequently, $Gal(K/k(\beta_H)) \subseteq H$.

(b) Let τ_1, \ldots, τ_m be elements of G whose images under the canonical projection $G \twoheadrightarrow G/H$ are all the elements of G/H. Note that this projection map is simply the restriction map from Gal(K/k) to $Gal(k(\beta_H)/k)$. Suppose

$$c_1\tau_1(\beta_H)+\cdots+c_m\tau_m(\beta_H)=0,$$

then,

$$0 = \sum_{i=1}^{m} c_i \left(\sum_{\sigma \in \tau_i H} \sigma(\alpha) \right).$$

By our choice of τ_i 's, the cosets $\tau_i H$ and $\tau_j H$ are pairwise distinct, consequently, the sum written above is essentially of linearly independent elements, $\sigma(\alpha)$ where σ ranges over G. Therefore, $c_1 = \cdots = c_m = 0$. This completes the proof.

7.2 Galois Groups of Polynomials

Definition 7.15. Let $f(x) \in k[x]$ be a polynomial and k^a an algebraic closure containing k. Let f have roots $r_1, \ldots, r_n \in k^a$. Define the discriminant of f as

$$\operatorname{disc}(f) := \left(\prod_{i < j} (r_i - r_j)\right)^2.$$

The Galois group of f, denoted G_f is defined as $Gal(k(r_1, ..., r_n)/k)$.

The group G_f permutes $\{r_1, \dots, r_n\}$ whence it can be embedded in \mathfrak{S}_n . Henceforth, we shall identify G_f with its image under this embedding.

Proposition 7.16. $\operatorname{disc}(f) \in k$.

Proof. Since the Galois group permutes $\{r_i \mid 1 \le i \le n\}$, $\operatorname{disc}(f)$ is the fixed field of the action of the entire Galois group on $k(r_1, \ldots, r_n)$ which is k.

Theorem 7.17. Let char $k \neq 2$ and $f(x) \in k[x]$ a separable polynomial. Then, $G_f \subseteq \mathfrak{A}_n$ if and only if $\operatorname{disc}(f)$ is a perfect square in k.

Proof. Let

$$\delta = \prod_{i < j} (r_i - r_j).$$

Then, for each $\sigma \in G_f$, $\sigma(\delta) = \operatorname{sgn}(\sigma)\delta$. Thus,

$$G_f \subseteq \mathfrak{A}_n \iff \sigma(\delta) = \delta \quad \forall \sigma \in G_f \iff \delta \in k.$$

This completes the proof.

Cyclotomic Extensions

Definition 8.1 (Root of Unity). Let k be a field. A *root of unity* over k is an element $\zeta \in k^a$ such that $\zeta^n = 1$ for some $n \in \mathbb{N}$.

Consider the polynomial x^n-1 with $\gcd(\operatorname{char} k,n)=1$. In this case, the polynomial is separable over k and thus has distinct roots. Let $Z_n=\{z_1,\ldots,z_n\}$ denote the distinct roots. It is not hard to see that $Z_n\subseteq k^\times$ forms a multiplicative group. Since every finite multiplicative subgroup of a field is cyclic, so is Z_n . A generator for the group Z_n is called a **primitive** n-th root of unity. Obviously, there are $\varphi(n)$ such primitive n-th roots of unity.

Consider now the case $\gcd(\operatorname{char} k, n) \neq 1$. Let $\operatorname{char} k = p > 0$. Then, there is a positive integer r such that $n = p^r m$ with $p \nmid m$. Then,

$$x^n - 1 = \left(x^m - 1\right)^{p^r}$$

and thus every n-th root of unity is an m-th root of unity, whence it suffices to study polynomials of the form $(x^n - 1)$ with gcd(char k, n) = 1.

Proposition 8.2. Every root of unity is a primitive n-th root of unity for some positive integer n.

Proof. Let ζ be a root of unity and let n be the smallest positive integer such that $\zeta^n = 1$. Consider the subgroup $\langle \zeta \rangle \leq Z_n$. If the order of this subgroup is m, then $\zeta^m = 1$ whence $m \geq n$ and thus m = n and the conclusion follows.

As a result, need only concern ourselves with primitive n-th roots of unity with gcd(char k, n) = 1.

Proposition 8.3. Let k be a field and $\zeta_n \in k^a$ a primitive n-th root of unity such that gcd(n, char k) = 1. Then, $k(\zeta_n)/k$ is a Galois extension.

Proof. Since ζ_n is a generator for Z_n , $k(\zeta_n)$ is the splitting field of $x^n - 1$ over k and thus a normal extension of k. Further, since $x^n - 1$ is a separable polynomial over k, so is the extension $k(\zeta_n)/k$ whence it is Galois.

Proposition 8.4. Let gcd(char k, n) = 1. If ζ is a primitive n-th root of unity, then $k(\zeta)/k$ is an abelian extension.

Proof. Define the map $\psi : \operatorname{Gal}(k(\zeta)/k) \to \operatorname{Aut}(\mu_n)$ by $\sigma \mapsto \sigma|_{\mu_n}$. Note that $\operatorname{Aut}(\mu_n) \cong (\mathbb{Z}/n\mathbb{Z})^{\times}$, further, it is not hard to see that ψ is injective and the conclusion follows.

Note that although we have shown $\operatorname{Gal}(k(\zeta)/k)$ to be embeddable into $(\mathbb{Z}/n\mathbb{Z})^{\times}$, the map may not be a surjection take for example $k = \mathbb{R}$ and $\zeta = \exp(2\pi i/5)$. Then, $k(\zeta) = \mathbb{C}$, and $\operatorname{Gal}(k(\zeta)/k) \cong \{\pm 1\}$.

Proposition 8.5. *Let* ζ *be a primitive n-th root of unity over* \mathbb{Q} *. Then,*

$$[\mathbb{Q}(\zeta):\mathbb{Q}]=\varphi(n)$$

and consequently, the map $\psi: Gal(\mathbb{Q}(\zeta)/\mathbb{Q}) \to (\mathbb{Z}/n\mathbb{Z})^{\times}$ is an isomorphism.

Proof.

Rewrite this chapter following what JKV

taught

Chapter 9

Norm and Trace

Definition 9.1. Let E/k be a finite extension and $[E:k]_s = r$ and let $\sigma_1, \ldots, \sigma_r$ be distinct embeddings of E in an algebraic closure k^a of k. We define the *norm* and *trace* of $\alpha \in E$ as

$$N_{E/k}(\alpha) = N_k^E(\alpha) = \left(\prod_{j=1}^r \sigma_j \alpha\right)^{[E:k]_i}$$
$$\operatorname{Tr}_{E/k}(\alpha) = \operatorname{Tr}_k^E(\alpha) = [E:k]_i \sum_{j=1}^r \sigma_j \alpha$$

Notice that if E/k were not separable, then char k > 0 and would be a prime, say p. Further, $[E:k]_i = p^{\nu}$ for some $\nu \ge 1$, consequently, $\operatorname{Tr}_k^E(\alpha) = 0$ (since char $E = \operatorname{char} k = p$).

Proposition 9.2. *Let* E/k *be a finit extension such that* $E = k(\alpha)$ *for some* $\alpha \in E$. *If*

$$p(x) = x^n + a_{n-1}x^{n-1} + \dots + a_0$$

is the minimal polynomial of α over k, then

$$N_k^E(\alpha) = (-1)^n a_0 \qquad \operatorname{Tr}_k^E(\alpha) = -a_{n-1}$$

Proof. This follows from the fact that the minimal polynomial splits as

$$p(x) = ((x - \alpha_1) \cdots (x - \alpha_r))^{[E:k]_i}$$

whence the conclusion follows.

Proposition 9.3. Let E/k be a finite extension. Then the norm $N_k^E: E^{\times} \to k^{\times}$ is a multiplicative homomorphism and the trace $\operatorname{Tr}_k^E: E \to k$ is an additive homomorphism. Further, if we have a tower of finit extensions $k \subseteq F \subseteq E$, then

$$N_k^E = N_k^F \circ N_F^E \qquad \operatorname{Tr}_k^E = \operatorname{Tr}_k^F \circ \operatorname{Tr}_F^E$$

Proof. First, we must show that N_k^E is a map $E^\times \to k^\times$ and Tr_k^E is a map $E \to k$. Recall that for $\alpha \in E$, $\beta = \alpha^{[E:k]_i}$ is separable over k and thus N_k^E , which is the product of all the conjugates of β is also separable since all conjugates lie in k^{sep} . Now, let $\sigma: k^a \to k^a$ be a homomorphism fixing k. Then, it is not hard to see

that $\sigma(\beta) = \beta$ and thus $[k(\beta) : k]_s = 1$ but since β is separable, we have $[k(\beta) : k] = 1$ and $\beta \in k$. A similar argument can be applied to the trace.

Let $\{\sigma_i\}$ be the set of distinct embeddings of E into k^a fixing F and $\{\tau_j\}$ be the set of distinct embeddings of F into k^a fixing k. Extend each τ_i to a homomorphism $k^a \to k^a$.

We contend that the set of all distinct embeddings of E into k^a fixing k is precisely $\{\tau_j \circ \sigma_i\}$. Obviously, every element of the aforementioned family is distinct and is an embedding of E into k^a fixing k. Now, let $\sigma: E \to k^a$ be an embedding of E into k^a . Then, the restriction $\sigma|_F$ is equal to (the restriction of) some τ_j , whereby $\tau_j^{-1}\sigma$ fixes E whereby it is equal to some σ_i . Thus every embedding of E into E over E is of the form E0 over E1.

Finally, we have

$$\left(\prod_{i,j} (\tau_j \circ \sigma_i)(\alpha)\right)^{[E:F]_i[F:k]_i} = \left(\prod_j \tau_j \left(\prod_i \sigma_i(\alpha)\right)^{[E:F]_i}\right)^{[F:k]_i} = N_k^F \circ N_F^E(\alpha)$$

$$[E:F]_i[F:k]_i \sum_{i,j} \tau_j \circ \sigma_i(\alpha) = [F:k]_i \sum_j \tau_j \left([E:F]_i \sum_i \sigma_i(\alpha)\right)$$

and the conclusion follows.

Theorem 9.4. Let E/k be a finite extension and $\alpha \in E$. Let $m_{\alpha} : E \to E$ be the linear transformation given by $m_{\alpha}(x) = \alpha x$. Then,

$$N_k^E(\alpha) = \det(m_\alpha)$$
 $\operatorname{Tr}_k^E(\alpha) = \operatorname{tr}(m_\alpha)$

Note that we may unambiguously write $det(m_{\alpha})$ and $tr(m_{\alpha})$ since both these quantities do not depend on the choice of a basis, since similar matrices have the same determinant and trace.

Proof.

Cyclic Extensions

10.1 Hilbert's Theorems

Definition 10.1. A Galois extension K/k is said to be *cyclic* if Gal(K/k) is a cyclic group. Similarly, it is said to be *abelian* if Gal(K/k) is abelian.

Theorem 10.2 (Linear Independence of Characters). *Let* G *be a group (monoid) and* K *a field. If* $\sigma_1, \ldots, \sigma_n : G \to K^{\times}$ *are distinct group homomorphisms. Then,*

$$c_1\sigma_1 + \cdots + c_n\sigma_n = 0 \iff c_1 = \cdots = c_n = 0$$

Corollary 10.3. Let K/k be a Galois extension. Then, there is $\alpha \in K$ such that $\operatorname{Tr}_k^K(\alpha) \neq 0$.

Proof. Suppose not. If $Gal(K/k) = \{\sigma_1, \dots, \sigma_n\}$, then

$$\sigma_1 + \cdots + \sigma_n = 0$$

on K, a contradiction to Theorem 10.2.

Theorem 10.4 (Hilbert's Theorem 90). Let K/k be a cyclic degree n extension with galois group G. Let $\sigma \in G$ be a generator and $\beta \in K$. The norm $N_k^K(\beta) = 1$ if and only if there is $\alpha \in K^\times$ such that $\beta = \alpha/\sigma(\alpha)$

Proof. \implies Suppose $N_k^K(\beta) = 1$. We have a set of distinct characters $\{\mathbf{id}, \sigma, \dots, \sigma^{n-1}\}$ from $K^{\times} \to K^{\times}$. Then, due to Theorem 10.2, the set map

$$\tau = \mathbf{id} + \beta \sigma + (\beta \sigma(\beta))\sigma^2 + \dots + (\beta \sigma(\beta) \dots \sigma^{n-2}(\beta))\sigma^{n-1}$$

is nonzero, whereby, there is $\theta \in K^{\times}$ such that $\alpha = \tau(\theta) \neq 0$. Notice that

$$\sigma(\alpha) = \sigma(\theta) + (\sigma(\beta))\sigma^{2}(\theta) + \dots + (\sigma(\beta)\sigma^{2}(\beta)\cdots\sigma^{n-1}(\beta))\sigma^{n}(\theta)$$

Since $N_k^K(\beta) = 1$, we have

$$\beta\sigma(\beta)\cdots\sigma^{n-1}(\beta)=1$$

whence, we have $\sigma(\alpha) = \alpha/\beta$ and the conclusion follows.

 \longleftarrow This is trivial enough.

Example 10.5. Find all rational points on the curve $x^2 + y^2 = 1$.

Proof. This reduces to finding all elements $\alpha \in \mathbb{Q}[i]$ with $N_{\mathbb{Q}}^{\mathbb{Q}[i]}(\alpha) = 1$. Any element α of $\mathbb{Q}[i]$ may be written as (a+bi)/c. Due to Theorem 10.4, there is an element $\alpha \in \mathbb{Q}[i]$, such that $N_{\mathbb{Q}}^{\mathbb{Q}[i]}(\alpha) = 1$. Using the general form of elements in $\mathbb{Q}[i]$, we have

$$\alpha = \frac{a+bi}{a-bi} = \frac{(a^2 - b^2) + 2abi}{a^2 + b^2}$$

this completes the proof.

Lemma 10.6. Let K/k be a cyclic extension of degree n with $Gal(K/k) = \langle \sigma \rangle$ and suppose k contains a primitive n-th root of unity, ζ . Then, ζ is an eigenvalue of σ .

Proof. Note that $N_k^K(\zeta^{-1})=1$. Due to Theorem 10.4 there is $\alpha\in K$ such that $\alpha/\sigma(\alpha)=\zeta^{-1}$ and the conclusion follows.

Theorem 10.7 (Structure of Cyclic Extensions). *Let* K/k *be a cyclic extension of degree* n *and suppose* k *contains a primitive* n-th root of unity. Then, $K = k(\alpha)$ for some $\alpha \in K$ such that $\alpha^n \in k$.

Proof. Let $Gal(K/k) = \langle \sigma \rangle$. Due to Lemma 10.6, there is $\alpha \in K$ such that $\sigma(\alpha) = \zeta \alpha$. Then, α has n-distinct conjugates in K whence $K = k(\alpha)$. Now,

$$\sigma(\alpha^n) = \sigma(\alpha)^n = \alpha^n$$
.

Thus, α^n is fixed under the action of Gal(K/k), that is, $\alpha^n \in k$. This completes the proof.

Theorem 10.8 (Additive Hilbert's Theorem 90). *Let* K/k *be a cyclic Galois extension with* $Gal(K/k) = \langle \sigma \rangle$ *and* $\beta \in K$. *Then* $Tr_k^K(\beta) = 0$ *iff there is* $\alpha \in K$ *such that* $\beta = \alpha - \sigma(\alpha)$.

Proof. Due to Corollary 10.3, there is some $\theta \in K$ with $\operatorname{Tr}_k^K(\theta) \neq 0$. Consider $\alpha \in K$ given by

$$\alpha = \frac{1}{\operatorname{Tr}_k^K(\theta)} \left(\beta \sigma(\theta) + (\beta + \sigma(\beta)) \sigma^2(\theta) + \dots + (\beta + \dots + \sigma^{n-2}(\beta)) \sigma^{n-1}(\theta) \right).$$

We have

$$\begin{split} \sigma(\alpha) &= \frac{1}{\operatorname{Tr}_{k}^{K}(\theta)} \left(\sigma(\beta) \sigma^{2}(\theta) + (\sigma(\beta) + \sigma^{2}(\beta)) \sigma^{3}(\theta) + \dots + (\sigma(\beta) + \dots + \sigma^{n-1}(\beta)) \sigma^{n}(\theta) \right) \\ &= \alpha - \beta \frac{1}{\operatorname{Tr}_{k}^{K}(\theta)} \left(\sigma(\theta) + \dots + \sigma^{n}(\theta) \right) \\ &= \alpha - \beta \end{split}$$

The converse is trivial.

Theorem 10.9 (Artin-Schreier). *Let* k *be a field of characteristic* p > 0.

(a) Let K/k be a cyclic extension of degree p. Then there is $\alpha \in K$ such that $K = k(\alpha)$ and α is a root of $f(x) = x^p - x - a$ for some $a \in k$. Further, K is the splitting field of f(x) over k.

- (b) Conversely, if $a \neq b^p b$ for some $b \in k$, and K is the splitting field of $f(x) = x^p x a \in k[x]$, then f(x) is irreducible and K/k is cyclic of degree p.
- *Proof.* (a) Let $Gal(K/k) = \langle \sigma \rangle$, since it is a group of prime order. We have $Tr_k^K(-1) = p \cdot (-1) = 0$ whence there is $\alpha \in K$ such that $-1 = \alpha \sigma(\alpha)$, equivalently, $\sigma(\alpha) = \alpha + 1$. Let $a = \alpha^p \alpha$. Then,

$$\sigma(a) = \sigma(\alpha^p - \alpha) = \sigma(\alpha)^p - (\alpha + 1) = \alpha^p + 1 - (\alpha + 1) = a.$$

Thus, $\sigma^n(a) = a$ for $1 \le n \le p$, consequently, $a \in K^{Gal(K/k)} = k$.

Note that for $1 \le m \ne n \le p$, we have

$$\sigma^m(\alpha) = \alpha + m \neq \alpha + n = \sigma^n(\alpha).$$

Thus, $p \le [k(\alpha) : k]_s \le [k(\alpha) : k] \le [K : k] = p$ whence $[k(\alpha) : k] = p$ and $K = k(\alpha)$.

(b) Let $\alpha \in K$ be a root of f(x). Then, so is $\alpha + 1$. Hence, all the roots of f(x) in K are given by

$$\{\alpha, \alpha+1, \ldots, \alpha+p-1\},\$$

whence $K = k(\alpha)$. Suppose $f(x) = g_1(x) \cdots g_r(x)$ where $g_1, \dots, g_r \in k[x]$ are irreducible polynomials. If r is a root of some g_i , then r is a root of f and thus K = k(r). In particular, $\deg g_i = [K : k]$. This gives us $r \deg g_1 = p$ and since f(x) does not have a root in k, we must have r = 1 and $\deg g_1 = p$. That is, f(x) is irreducible.

Finally, $Gal(K/k) = \langle \sigma \rangle$ where $\sigma(\alpha) = \alpha + 1$. This completes the proof.

10.1.1 Lagrange Resolvents

Let p > 0 be a prime number and k a field such that char k = 0 or gcd(char k, p) = 1. Suppose further, that $\mu_p \subseteq k$, that is, k contains a primitive p-th root of unity. Now let K/k be a cyclic extension of order p. Using Theorem 10.7, there is some $a \in k$ such that $K = k(\sqrt[p]{a})$. We shall explicitly find such an $a \in k$.

Let $\alpha \in K$ be primitive for the extension K/k and $Gal(K/k) = \langle \sigma \rangle$. If $m_{\alpha}(x)$ is the minimum polynomial of α over k, then the roots of m_{α} are given by $\{\alpha, \sigma(\alpha), \ldots, \sigma^{p-1}(\alpha)\}$ and of course, are distinct. Let $\mu_p = \{z_1, \ldots, z_p\} \subseteq k$. Define

$$(z_i, \alpha) := \sum_{j=0}^{p-1} \sigma^j(\alpha) z_i^j.$$

These are called the *Lagrange Resolvents*.

Then,

$$\begin{bmatrix} (z_1, \alpha) \\ \vdots \\ (z_p, \alpha) \end{bmatrix} = \underbrace{\begin{bmatrix} 1 & z_1 & \dots & z_1^{p-1} \\ \vdots & \vdots & \ddots & \vdots \\ 1 & z_p & \dots & z_p^{p-1} \end{bmatrix}}_{V(z_1, \dots, z_p)} \begin{bmatrix} \alpha \\ \vdots \\ \sigma^{p-1}(\alpha) \end{bmatrix}.$$

The Vandermonde determinant, det $V(z_1, \ldots, z_p)$ is nonzero and hence, the matrix is invertible. Note that

$$\sigma((z_i,\alpha))=z_i^{-1}(z_i,\alpha),$$

whence (z_i, α) is an eigenvector corresponding to the eigenvalue z_i^{-1} . In particular, $(z_i, \alpha)^p$ is invariant under σ and thus lies in the base field k. This shows that $K = k((z_i, \alpha))$.

10.2 Solvability by Radicals

Definition 10.10. An extension K/k is said to be *radical* if there is a tower

$$k = F_0 \subseteq F_1 \subseteq \cdots \subseteq F_n = K$$

where F_{i+1}/F_i is obtained by adjoining an n_i -th root of an element in F_i . Each F_{i+1}/F_i is called a *simple radical extension*.

Definition 10.11. A polynomial $f(x) \in k[x]$ is said to be *solvable by radicals* if any splitting field K of f over k is contained in a radical extension of k.

Lemma 10.12. Let E/k be a finite separable radical extension. Then, the normal closure, K of E is a radical Galois extension.

Proof. Fix some algebraically closed field k^a containing k and let

$$k = F_0 \subseteq F_1 \subseteq \cdots \subseteq F_m = E$$

be a tower of simple radical extensions. Let $\{\mathbf{id} = \sigma_1, \dots, \sigma_n\}$ be the distinct k-embeddings of E/k into k^a . Then, note that $\sigma_j(F_{i+1})/\sigma_j(F_i)$ is also a simple radical extension. Thus, we have a tower of successive simple radical extensions

$$k = \sigma_1(F_0) \subseteq \cdots \subseteq \sigma_1(F_m) \subseteq \sigma_1(F_m) \sigma_1(F_0) \subseteq \cdots \subseteq \sigma_1(F_m) \ldots \sigma_n(F_m) = K.$$

This completes the proof.

Theorem 10.13 (Galois). Let char k = 0 and $f(x) \in k[x]$. Then, f(x) is solvable by radicals over k if and only if G_f is a solvable group.

Proof. \implies Let K be the splitting field of f over k, which is contained in a radical extension E. Due to Lemma 10.12, we may suppose that E/k is Galois. There is a tower of extensions

$$k = F_0 \subseteq \cdots \subseteq F_r = E$$
.

with $F_{i+1} = F_i\left(\frac{n_{i+1}\sqrt{a_{i+1}}}{a_{i+1}}\right)$. Let $n = n_1 \cdots n_r$ and ζ a primitive n-th root of unity. Note that $E(\zeta) = E \cdot k(\zeta)$, a compositium of two Galois extensions over k whence is a Galois extension of k. Denote by $M_i = F_i(\zeta)$. Then, we have

$$k \subseteq M_0 \subseteq \cdots \subseteq M_r = E(\zeta).$$

Note that M_i contains a primitive n_{i+1} -th root of unity (which is a suitable power of ζ) whence $Gal(M_{i+1}/M_i)$ is cyclic. Consider the chain of subgroups

$$Gal(M_r/k) \supseteq Gal(M_r/M_0) \supseteq \cdots \supseteq Gal(M_r/M_{r-1}) \supseteq \{1\}.$$

Each successive quotient is

 $\operatorname{Gal}(M_r/M_i)/\operatorname{Gal}(M_r/M_{i+1})\cong\operatorname{Gal}(M_{i+1}/M_i)$ and $\operatorname{Gal}(M_r/k)/\operatorname{Gal}(M_r/M_0)\cong\operatorname{Gal}(M_0/k)$, all of which are abelian. Thus, $\operatorname{Gal}(M_r/k)$ is solvable, consequently,

$$G_f = \operatorname{Gal}(K/k) \cong \operatorname{Gal}(M_r/k) / \operatorname{Gal}(M_r/K),$$

is solvable.

 \Leftarrow Let $|G_f| = n$ and ζ a primitive n-th root of unity in k^a . Let $L = K(\zeta)$ and $E = k(\zeta)$. Then, L/E is a Galois extension with Galois group isomorphic to a subgroup of Gal(K/k), in particular, Gal(L/E) is solvable. Thus, there is a series

$$Gal(L/E) = H_0 \supseteq H_1 \supseteq \cdots \supseteq H_m = \{1\}$$

with H_i/H_{i+1} abelian. Let $F_i = L^{H_i}$. This gives a filtration

$$E = F_0 \subseteq F_1 \subseteq \cdots \subseteq F_m = L$$

wherein each extension F_{i+1}/F_i is abelian with degree n_i dividing n. Let $Gal(F_{i+1}/F_i) = P$, an abelian group whence, due to the structure theorem, admits a filtration

$$P = Q_0 \supseteq Q_1 \supseteq \cdots \supseteq Q_r = \{1\}.$$

such that Q_i/Q_{i+1} is cyclic. Let $S_i = P^{Q_i}$. Then, we have a filtration

$$F_i = S_0 \subseteq S_1 \subseteq \cdots \subseteq S_r = F_{i+1}$$

where each extension S_{j+1}/S_j is cyclic with order dividing n. But since S_j contains a primitive n-th root of unity, the extension S_{j+1}/S_j must be a simple radical extension. In particular, F_{i+1}/F_i is a radical extension. Consequently, L/E is a radical extension. Finally, E/k itself is a simple radical extension and hence, E/k is a radical extension containing E/k. This completes the proof.

10.3 Kummer Extensions

Definition 10.14. A finite algebraic extension K/k is said to be a *Kummer extension* if $\mu_n \subseteq F$, there is $n \in \mathbb{N}$ and $a_i \in k$ for $1 \le i \le m$ such that $K = k(\sqrt[n]{a_1}, \dots, \sqrt[n]{a_m})$. A Kummer extension is said to be a *simle Kummer extension* if m = 1.

Theorem 10.15. Let $\mu_n \subseteq k$ and $a \in k^{\times}$. Let $b \in k^a$ such that $b^n = a$. Then, Gal(k(b)/k) is cyclic of order $|\overline{a}|$ where \overline{a} is the coset of a in $k^{\times}/(k^{\times})^n$.

Proof.

Remark 10.3.1. Due to Theorem 10.7, every simple Kummer extension K/k with [K:k] = m can be obtained by adjoining th m-th root of some element in k. This makes our analysis a lot easier.

Lemma 10.16. Let $\mu_n \subseteq k$ and $a, b \in k^{\times}$ such that $[k(\sqrt[n]{a}) : k] = [k(\sqrt[n]{b}) : k] = n$. Then, these extensions are k-isomorphic if and only if $\langle \overline{a} \rangle = \langle \overline{b} \rangle$ in $k^{\times} / (k^{\times})^n$.

Proof.

Theorem 10.17. Let K/k be a finite abelian extension and suppose that $\mu_n \subseteq k$. Then, Gal(K/k) has exponent n if and only if there are $b_1, \ldots, b_m \in k^{\times}$ such that $K = k(\sqrt[n]{b_1}, \ldots, \sqrt[n]{b_m})$.

Proof. \Longrightarrow Due to the structure theorem, $Gal(K/k) \cong \mathbb{Z}/n_1\mathbb{Z} \oplus \cdots \oplus \mathbb{Z}/n_r\mathbb{Z}$ where $n_i \mid n$. Let H_i denote the subgroup corresponding to

$$\mathbb{Z}/n_1\mathbb{Z}\oplus\cdots\oplus\widehat{\mathbb{Z}/n_i\mathbb{Z}}\oplus\cdots\oplus\mathbb{Z}/n_r\mathbb{Z}$$

and $F_i = K^{H_i}$. Then, $\bigcap_{i=1}^r H_i = \{1\}$ and $Gal(F_i/k) \cong \mathbb{Z}/n_i\mathbb{Z}$. Due to Theorem 10.7, there is some $b_i \in k^{\times}$ such that $F_i = k(\sqrt[n]{b_i})$. Finally, since $K = F_1 \cdots F_r$, the conclusion follows.

 \longleftarrow Let $F_i = k(\sqrt[n]{b_i})$. Then, $Gal(F_i/k)$ is cyclic of exponent n. Let $\rho_i : Gal(K/k) \to Gal(F_i/k)$ denote the restriction map. It is not hard to see that the map $\Phi : Gal(K/k) \to \prod_{i=1}^m Gal(F_i/k)$ given by $\Phi = \rho_1 \times \cdots \times \rho_m$ is an injection and thus Gal(K/k) is abelian of exponent n. This completes the proof.

Infinite Galois Theory

11.1 Galois Groups as Inverse Limits

11.1.1 Inverse Limit of Topological Groups

Lemma 11.1. Let G be a compact topological group. Then, $H \leq G$ is open if and only if it is closed with finite index.

Proof. Since *G* is compact, the number of cosets of *H* in *G* must be finite else we would have an infinite open cover of *G* with no finite subcover. Further, *H* is the complement of a disjoint union of cosets of *H* and hence, is closed, since every coset of *H* in *G* is open.

Conversely, if $H, \sigma_1 H, \dots, \sigma_n H$ are the distinct cosets of H in G, then $H = G \setminus (\sigma_1 H \cup \dots \cup \sigma_n H)$, and thus, is open.

11.1.2 Profinite Groups

Definition 11.2 (Profinite Group). A profinite group is a topological group that is isomorphic to an inverse limit of finite topological groups with the discrete topology.

The *profinite completion* of a topological group G is defined as $\widehat{G} = \varprojlim G/N$ where N ranges over the set of all open normal subgroups of finite index in G. If no topology is specified on the group, then \widehat{G} refers to the profinite completion of G with the discrete topology.

Remark 11.1.1. Note that if N is an open normal subgroup of a topological group G, then G/N has the discrete topology even if G is not Hausdorff.

Theorem 11.3. A profinite group is a compact Hausdorff topological group.

Proof.

Theorem 11.4. Let G be a topological group. Let $\phi: G \to \widehat{G}$ denote the natural map. Then, the image of ϕ is dense in \widehat{G} . If G is a profinite group, then ϕ is an isomorphism of topological groups.

Proof. Let $X = \prod G/N$, which is a compact topological group containing \widehat{G} . Let U be a basic open set in X.

11.1.3 The Galois Group

We shall now show that every profinite group occurs as a Galois group. In order to do so, we shall require the following analogue of Artin's Theorem for profinite groups.

Theorem 11.5. Let G be a profinite group acting faithfully by automorphisms on a field K such that for each $x \in K$, $\operatorname{stab}_G(x)$ is an open subgroup of G. Then, K/K^G is Galois with group G.

Proof.

Theorem 11.6 (Waterhouse). *Let G be a profinite group. Then, it is the Galois group of some field extension.*

Proof. Let \mathcal{H} denote the set of all open subgroups of G. Define

$$X = \bigsqcup_{H \in \mathcal{H}} G/H$$

and let G act on X through left multiplication on cosets. This action is faithful and every element of X has an open stabilizer in G. Let $K = \mathbb{Q}(X)$ and extend the action of G on X to an action by field automorphisms on K. Due to Theorem 11.5, $G \cong \operatorname{Gal}(K/K^G)$.

11.2 The Krull Topology

Definition 11.7. Let K/k be a Galois extension. For $\sigma \in \operatorname{Gal}(K/k)$, a *basic open set* around σ is a coset $\sigma \operatorname{Gal}(K/F)$ where F/k is a **finite Galois** extension.

Proposition 11.8. The collection of basic open sets as defined above form a basis for a topology on Gal(K/k).

Proof. Since Gal(K/F) contains the identity element for each F/k finite Galois, the union of all the basic open sets is equal to Gal(K/k). Consider two basic open sets $\sigma_1 Gal(K/F_1)$ and $\sigma_2 Gal(K/F_2)$ having a nonempty intersection. Let σ be an automorphism in that intersection. We shall show that the basic open set $\sigma Gal(K/F_1F_2)$ is contained in the intersection. Since $\sigma \in \sigma_1 Gal(K/F_1)$, there is $\alpha \in Gal(K/F_1)$ such that $\sigma = \sigma_1 \alpha$. Let $\tau \in \sigma Gal(K/F_1F_2)$, then there is $\beta \in Gal(K/F_1F_2)$ such that $\tau = \sigma \beta$. Now, $\sigma_1^{-1}\tau = \alpha \beta \in Gal(K/F_1)$, whence $\tau \in \sigma_1 Gal(K/F_1)$. This completes the proof.

The topology defined above is known as the **Krull Topology**.

Theorem 11.9. *The Krull Topology on* Gal(K/k) *makes it a topological group.*

Proof. We must show that the multiplication map and the inversion map are continuous. Let $G = \operatorname{Gal}(K/k)$ and $\varphi : G \times G \to G$ be given by $(x,y) \mapsto xy$. Let U be an open set in G and $(\sigma,\tau) \in \varphi^{-1}(U)$. Then there is a basic open set of the form $\sigma\tau\operatorname{Gal}(K/F)$ for some finite Galois extension F/k. Consider the basic open set $\sigma\operatorname{Gal}(K/F) \times \tau\operatorname{Gal}(K/F)$ that contains (σ,τ) . I claim that the image of this basic open set lies inside $\sigma\tau\operatorname{Gal}(K/F)$. Indeed, for $(\sigma\alpha,\tau\beta)$ in the basic open set, its image is $\sigma\alpha\tau\beta = \sigma\tau\alpha'\beta = \sigma\tau\gamma$ for some $\gamma \in \operatorname{Gal}(K/F)$. Where we used the normality of $\operatorname{Gal}(K/F)$ in G since the extension is normal. Thus φ is continuous.

Let $\psi: G \to G$ be the inversion map, that is, $x \mapsto x^{-1}$. We use a similar strategy as above. Let U be an open set containing σ^{-1} for some $\sigma \in G$. Then, there is a basic open set $\sigma^{-1}\operatorname{Gal}(K/F)$ that is contained in U. Thus, $\operatorname{Gal}(K/F)$ is normal in G. As a result, under ψ , $\sigma\operatorname{Gal}(K/F)$ maps to $\sigma^{-1}\operatorname{Gal}(K/F)$. This completes the proof.

Proposition 11.10. Gal(K/k) *under the Krull Topology is Hausdorff.*

Proof. Let $\sigma, \tau \in \operatorname{Gal}(K/k)$ be distinct elements. Then, there is $\alpha \in K$ such that $\sigma(\alpha) \neq \tau(\alpha)$. Let F be the normal closure of $k(\alpha)$ in K, which is a finite Galois extension, and note that $\sigma \operatorname{Gal}(K/F) \neq \tau \operatorname{Gal}(K/F)$ and thus must be disjoint (since they are cosets).

Proposition 11.11. Let K/k be a Galois extension and E an intermediate field. Then Gal(K/E) is a closed subgroup of Gal(K/k).

Proof. Let $\sigma \in G \setminus Gal(K/E)$. Then $\sigma Gal(K/E)$ is a basic open set containing σ and disjoint from Gal(K/E) (since it is a coset). This implies the desired conclusion.

Proposition 11.12. *Let* $H \leq G = Gal(K/k)$. *Then* $Gal(K/K^H)$ *is the closure of* H *in* G.

Proof. Obviously, $H \subseteq \operatorname{Gal}(K/K^H)$. Further, since the latter is closed, $\overline{H} \subseteq \operatorname{Gal}(K/K^H)$. We shall show the reverse inclusion. Let $\sigma \in G \setminus \overline{H}$. As we have seen earlier, there is a finite Galois extension F/k such that the basic open set $\sigma \operatorname{Gal}(F/k)$ is disjoint from \overline{H} . We claim that there is $\alpha \in F$ such that α is fixed under H but not under σ . Suppose there is no such α . Then, $\sigma|_F$ fixes $F^{H|_F}$ where $H|_F = \{h|_F : h \in H\}$. From finite Galois theory, we know that $\sigma|_F \in H|_F$. And thus, there is some $h \in H$ such that $\sigma|_F = h|_F$, consequently, $\sigma \operatorname{Gal}(K/F) = h \operatorname{Gal}(K/F)$, a contradiction.

Since there is some $\alpha \in F$ that is not fixed by σ but fixed under H, we must have that $\sigma \notin Gal(K/K^H)$. This completes the proof.

Theorem 11.13 (Krull). Let K/k be Galois and equip G = Gal(K/k) with the Krull topology. Then

- (a) For all intermediate fields E, Gal(K/E) is a closed subgroup of G.
- (b) For all $H \leq G$, $Gal(K/K^H)$ is the closure of H in G.
- (c) (The Galois Correspondence) There is an inclusion reversing bijection between the intermediate fields of K/k an closed subgroups of Gal(K/k).
- (d) For an arbitrary subgroup H of G, $K^{H} = K^{\overline{H}}$.

Proof. (a) and (b) follow from the previous two propositions. From this, the Galois correspondence is immediate. Finally to see (d), suppose $H \le G$. Then, $Gal(K/K^H) = \overline{H}$, whence

$$K^H = K^{\operatorname{Gal}(K/K^H)} = K^{\overline{H}}.$$

This completes the proof.

Theorem 11.14. Gal(K/k) in the Krull Topology is isomorphic, as topological groups to the inverse limit $G = \varprojlim \operatorname{Gal}(E/k)$ as a subspace of $X = \prod \operatorname{Gal}(E/k)$, each of which is given the discrete topology.

In particular, $\operatorname{Gal}(K/k)$ in the Krull Topology is a profinite group.

Proof. Define the map $\Phi: \operatorname{Gal}(K/k) \to X$ by $\Phi(\sigma) = (\sigma|_E)_E$. This is obviously an injective map whose image is G. To see that this is a continuous map, it suffices to check that each component of this map is continuous. Let E/k be a finite Galois extension. The component of Φ along E is given by $\Phi_E: \operatorname{Gal}(K/k) \to \operatorname{Gal}(E/k)$, which is the restriction map. A basic open set in $\operatorname{Gal}(E/k)$ is simply a point, say $\sigma \in \operatorname{Gal}(E/k)$. Then, $\Phi_E^{-1}(\sigma) = \tau \operatorname{Gal}(K/E)$ where τ is a k-automorphism of K whose restriction to E is σ . This is obviously an open set in $\operatorname{Gal}(K/k)$ whence Φ is continuous.

Lastly, we must show that Φ is an open map with respect to G, for which, it suffices to show that the image of a basic open set in Gal(K/k) is open in G. Consider the basic open set $\sigma Gal(K/E)$ where E/k is a finite Galois extension. Then,

$$\Phi\left(\sigma\operatorname{Gal}(K/E)\right) = \left(\left\{\sigma_{E}\right\} \times \prod_{\substack{F \neq E \\ F/k \text{ is finite Galois}}} \operatorname{Gal}(F/k)\right) \cap G,$$

which is open in *G*. This completes the proof.

Corollary 11.15. Gal(K/k) is compact in the Krull topology.

Transcendental Extensions

Definition 12.1 (Algebraically Independent). Let K/k be any extension. Elements $a_1, \ldots, a_n \in K$ are said to be *algebraically independent over k* if there is no non-zero polynomial $f(x_1, \ldots, x_n) \in k[x_1, \ldots, x_n]$ such that $f(a_1, \ldots, a_n) = 0$. A set $A \subseteq K$ is said to be algebraically independent over k if every finite subset of A is algebraically independent over k.

Lemma 12.2. *Let* K/k *be any extension* $a \in K$ *and* $A \subseteq K$. *The following are equivalent:*

- (a) $a \in K$ is algebraic over k(A).
- (b) There are $\beta_0, ..., \beta_{n-1} \in K(A)$ such that $a^n + \beta_{n-1}a^{n-1} + ... + \beta_0 = 0$.
- (c) There are $\beta_0, \ldots, \beta_n \in k[A]$ such that $\beta_n a^n + \cdots + \beta_0 = 0$.
- (d) There is a non-zero polynomial $f(x_1,...,x_m,y) \in k[x_1,...,x_m,y]$ such that there are $b_1,...,b_m \in A$ with $f(b_1,...,b_m,y) \neq 0$ in K[y] but $f(b_1,...,b_m,a) = 0$.

Proof. Trivial.

Lemma 12.3 (Exchange Lemma). *Let* K/k *be any extension and* $b \in K$ *be algebraically dependent on* $\{a_1, \ldots, a_m\} \subseteq K$ *but not on* $\{a_1, \ldots, a_{m-1}\}$ *. Then,* a_m *is algebraically dependent on* $\{a_1, \ldots, a_{m-1}, b\}$.

Proof. Since b is algebraically dependent on $\{a_1, \ldots, a_m\}$, there is a non-zero polynomial $f(x_1, \ldots, x_m, y) \in k[x]$ such that $f(a_1, \ldots, a_m, b) = 0$. Then, we may write

$$f(x_1,...,x_m,y) = \sum_i f_i(x_1,...,x_{m-1},y)x_m^i.$$

Since b is not algebraically dependent on $\{a_1, \ldots, a_{m-1}\}$, one of the f_i 's must be non-zero, say f_j . Thus, a_m is algebraically dependent over $\{a_1, \ldots, a_{m-1}, b\}$.

Definition 12.4. Let K/k be any extension. An algebraically independent subset $A \subseteq K$ is said to be a *transcendence basis* if K/k(A) is algebraic.

Theorem 12.5. *Let* K/k *be any field extension and* $A, B \subseteq K$ *be two transcendence bases. Then,* |A| = |B|.

Proof. First, suppose A is finite. Let $A = \{a_1, \ldots, a_n\}$. Then, for every $a_i \in A$, there is a finite subset B_i of B such that a_i is algebraically dependent on $k(B_i)$. Therefore, K is algebraic over $k(B_1 \cup \cdots \cup B_n)$. Hence, B must be finite. Say $B = \{b_1, \ldots, b_m\}$.

Let $l = |A \cap B|$ and without loss of generality, say $A \cap B = \{a_1, \dots, a_l\}$, thus, $B = \{a_1, \dots, a_l, b_{l+1}, \dots, b_n\}$. If l = n, then $A \subseteq B$ and we have $n \le m$. Suppose not, that is, l < n.

Now, a_{l+1} is algebraic over B but algebraic independent over $\{a_1, \ldots, a_l\}$. Let j be the smallest index such that a_{l+1} is algebraically dependent over $\{a_1, \ldots, a_l, b_{l+1}, \ldots, b_j\}$. Due to Lemma 12.3, we see that b_j is algebraically dependent over

$$B_1 = \{a_1, \ldots, a_l, a_{l+1}, b_{l+1}, \ldots, b_{i-1}, b_{i+1}, \ldots, b_m\}.$$

Note that B_1 is algebraically independent, for if not, then we must have a_{l+1} algebraically dependent over $B_1 \setminus \{a_{l+1}\}$. But this would mean that $B_1 \setminus \{a_{l+1}\}$ is a transcendence basis of K/k, which is absurd. Hence, B_1 is algebraically independent and thus, a transcendence basis of K/k. Now, $|A \cap B_1| = l + 1$.

We may continue this process and at each step increase the size of the intersection $|A \cap B_i|$. The process terminates when $A \setminus B_i = \emptyset$, in other words, $A \subseteq B_i$ whence $n = |A| \le |B_i| = m$. Arguing in the other direction, one can show that $m \le n$, whence m = n. This proves the theorem in the finite case.

Now, suppose both A and B are infinite. Then, for each $a \in A$, there is a corresponding finite subset $B_a \subseteq B$ such that a is algebraically dependent on B_a . Therefore, every element of A is algebraically dependent over $C = \bigcup_{a \in A} B_a \subseteq B$. This means that K is algebraic over k(C) and hence, C = B. Consequently,

$$|B| = |C| = \left| \bigcup_{a \in A} B_a \right| \le |A \times \mathbb{N}| = |A|.$$

A similar argument in the other direction would give $|A| \leq |B|$. This completes the proof.

Definition 12.6 (Transcendence Degree). Let K/k be any extension. The *transcendence degree* of K/k, denoted trdeg(K/k) is the cardinality of a transcendence basis of K/k.

Remark 12.0.1. Let K/k be any extension and $A \subseteq K$ be an algebraically independent subset of K. Let Σ be the poset of all algebraically independent subsets of K that contain K. Using a standard Zorn argument, one can show that Σ contains a maximal element, which obviously must be a transcendence basis.

Theorem 12.7 (Additivity of trdeg). *Let* $k \subseteq E \subseteq K$ *be a tower of field extensions with* trdeg(K/E) *and* trdeg(E/k) *finite. Then,* trdeg(K/k) = trdeg(K/E) + trdeg(E/k).

Proof.

12.1 Lüroth's Theorem

Lemma 12.8. Let x be an indeterminate over a field k and $r(x) \in k(x)$. Then, $[k(x) : k(r(x))] = \deg(r(x))$.

Proof.

Theorem 12.9. Aut $(k(x)/k) \cong PGL_2(k)$.

Proof. If $\theta: k(x) \to k(x)$ is a k-automorphism, then $\deg(\theta(x)) = 1$ and hence, must be of the form $\frac{ax+b}{cx+d}$ where $\begin{pmatrix} a & b \\ c & d \end{pmatrix} \in \operatorname{GL}_2(k)$. The conclusion now follows from an application of the First Isomorphism Theorem.

Theorem 12.10 (Lüroth's Theorem). Let k(t)/k be a purely transcendental extension. Then, any intermediate field strictly containing k is of the form k(r(t)) where $r(t) \in k(t)$ is a rational function. Further, $[k(t):k(r(t))] = \deg(r(t))$.

Proof.

12.2 Linear Disjointness

Definition 12.11 (Linearly Disjoint). Let K and L be two field extensions of k contained in a larger field Ω . Then, K and L are said to be *linearly disjoint* if every k-linearly independent subset of K is L-linearly independent as elements of Ω .

Proposition 12.12. *K* and *L* are linearly disjoint over *k* if and only if *L* and *K* are linearly disjoint over *k*.

Proof. Suppose K and L are linearly disjoint but not L and K. Then, there is a k-linearly independent subset $\{y_1, \ldots, y_n\}$ of L that is not K-linearly independent. Hence, there are $x_i \in K$, not all zero, such that $\sum_{i=1}^n x_i y_i = 0$. The vector space generated by the x_i 's is a finite dimensional one over k and admits a finite basis, u_1, \ldots, u_m . We may write

$$x_i = \sum_{j=1}^m a_{ij} u_j$$

with $a_{ij} \in k$ and hence,

$$0 = \sum_{i=1}^{n} x_i y_i = \sum_{i=1}^{n} \sum_{j=1}^{m} a_{ij} y_i u_j = \sum_{j=1}^{m} \left(\sum_{i=1}^{n} a_{ij} y_i \right) u_j.$$

Using the linear disjointness of K and L, we must have $\sum_{i=1}^{n} a_{ij}y_i = 0$ for all j. But since the y_i 's are linearly independent over k, we must have $a_{ij} = 0$ for all i, j. A contradiction.

Henceforth, we shall tacitly assume that all pairs of field extensions are contained in a larger field extension Ω/k .

Proposition 12.13. *Let* $k \subseteq R$ *be a domain with* K = Q(R) *and* $\{u_{\alpha}\} \subseteq R$ *be a k-basis of* R. *If* $\{u_{\alpha}\}$ *is* L-linearly independent, then K and L are linearly disjoint.

Proof. Suppose not, then there are $x_1, \ldots, x_n \in K$ that are k-linearly independent but not L-linearly independent. Hence, there is a linear combination $\sum_{i=1}^n z_i x_i = 0$ where $z_i \in L$. There is an $r \in R$ such that $rx_i \in R$ for each $1 \le i \le n$. Note that the rx_i 's still remain k-linearly independent. Thus, we may suppose that every $x_i \in R$.

The *k*-vector subspace of *R* generated by the x_i 's is contained in a *k*-vector space *V* generated by finitely many $\{u_j\}_{j=1}^m \subseteq \{u_\alpha\}$. Obviously, n < m. Hence, the set $\{x_i\}_{i=1}^n$ can be completed to a basis of *V*, $\{x_1, \ldots, x_n, x_{n+1}, \ldots, x_m\}$.

Let W denote the L-vector space generated by $\{u_i\}_{i=1}^m$. We have dim W=m and that $\{x_1,\ldots,x_m\}$ is a generating set for W and hence, forms a basis. Consequently, x_1,\ldots,x_n is linearly independent over L. This completes the proof.

Theorem 12.14 (Transitivity of Linear Disjointness). Consider the following lattice of fields.

Then, K, L are linearly disjoint over k if and only if K, E are linearly disjoint over k and KE, L are linearly disjoint over E.

Proof.

Proposition 12.15. *Suppose* K/k *is separable and* L/k *is purely inseparable with* char k = p > 0. *Then,* K *and* L *are linearly disjoint over* k.

Proof. Suppose not, then there is a finite k-linearly independent subset X of K that is not L-linearly independent. We may now replace K by K(X) and suppose that K/k is a finite separable extension and hence, admits a primitive element, $K = k(\alpha)$. A basis for K/k is then given by $\{1, \alpha, \ldots, \alpha^{n-1}\}$. Let f(x) be the irreducible polynomial of α over k. We contend that f(x) is the irreducible polynomial of α over k.

Let $g(x) \in L[x]$ be the irreduible polynomial of k. Then, there is a non-negative integer m such that $g(x)^{p^m} \in k[x]$. Since α is a root of g(x) and f(x), there is a positive integer r such that $f(x) = g(x)^r h(x)$ for some $h(x) \in L[x]$ such that $\gcd(g,h) = 1$. But since f is separable, we must have r = 1 and f(x) = g(x)h(x). Further, $g(x)^{p^m} = f(x)q(x)$ for some $g(x) \in k[x]$ and hence, $g(x)^{p^m-1} = h(x)g(x)$. Since $\gcd(g,h) = 1$, we must have g(x) = 1, consequently, g(x) = f(x).

This shows that $\{1, \alpha, \dots, \alpha^{n-1}\}$ is linearly independent over L and hence, K and L are linearly disjoint.

Proposition 12.16. Let K/k be purely transcendental and L/k purely inseparable with char k = p > 0. Then, K and L are linearly disjoint.

Proof. Let K = k(X) where X is a set of k-algebraically independent elements. Let R = k[X] and note that the monomials formed from X form a k-basis for R and it suffices to show that these are linearly independent over L. Suppose there were a relation $\sum_i a_i X^{\alpha_i} = 0$ where $a_i \in L$. Since this is a finite sum, there is a positive integer m such that $a_i^{p^m} \in k$ for all i.

Raising the aforementioned relation to the power p^m , we have

$$\sum_{i} a_i^{p^m} X^{p^m \cdot \alpha_i} = 0.$$

Thus, $a_i^{p^m} = 0$ for all *i*. And the conclusion follows.

Definition 12.17 (Separably Generated). An extension K/k is said to be *separably generated* if it has a transcendence basis $S \subseteq K$ such that K/k(S) is separable. Such a transcendence basis is called a *separating transcendence basis*.

Remark 12.2.1. If K/k is separably generated, it is not necessary that every transcendence basis is a separating transcendence basis. For example, consider the extension $\mathbb{F}_p(x)/\mathbb{F}_p$. This has a separating transcendence basis $\{x\}$. Also, $\{x^p\}$ is a transcendence basis but $\mathbb{F}_p(x)/\mathbb{F}_p(x^p)$ is purely inseparable.

Theorem 12.18 (McLane). *Let* char k = p > 0 *and* K/k *any extension. Then, the following are equivalent:*

- (a) K is linearly disjoint from $k^{p^{-\infty}}$.
- (b) K is linearly disjoint from $k^{p^{-n}}$ for some positive integer n.
- (c) K is linearly disjoint from k^{p-1} .
- (d) Any finitely generated subfield of K/k is separably generated.

Proof. (a) \Longrightarrow (b) \Longrightarrow (c) is clear.

 $(c) \implies (d)$ Let $A = \{a_1, \dots, a_n\} \subseteq K$ and $E = k(A) \subseteq K$. If A is algebraically independent over k, then we are done by taking A to be a transcendence basis.

Suppose A is not algebraically independent and choose $0 \neq f \in k[x_1, ..., x_n]$ to be of smallest degree such that $f(a_1, ..., a_n) = 0$. Suppose that every monomial in f is a power of p. Then, there are monomials $m_{\alpha}(x) \in k[x_1, ..., x_n]$ such that

$$f(X) = \sum_{\alpha} a_{\alpha} m_{\alpha}(X)^{p},$$

where not all a_{α} 's are zero. Hence, there is a $g(X) \in k^{p^{-1}}[x_1, \dots, x_n]$ such that $f(X) = g(X)^p$. Denote

$$g(X) = \sum_{\alpha} a_{\alpha}^{1/p} m_{\alpha}(\vec{a}).$$

The elements $m_{\alpha}(\vec{a})$ are linearly dependent over $k^{p^{-1}}$ and hence, are linearly dependent over k. Consequently, there exist $b_{\alpha} \in k$ such that

$$\sum_{\alpha} b_{\alpha} m_{\alpha}(\vec{a}) = 0.$$

Set $h(X) = \sum_{\alpha} b_{\alpha} m_{\alpha}(X) \in k[X]$. Then, $h(\vec{a}) = 0$, which contradicts the minimality of the degree of f.

Hence, in f, there is a monomial that is not a power of p. Without loss of generality, suppose that monomial contains x_1 whose exponent is not a power of p. Then, consider the polynomial $f_0(x_1) \in k[a_2, \ldots, a_n][x_1]$ given by

$$f_0(x_1) = f(x_1, a_2, \dots, a_n).$$

Note that $f_0(a_1) = 0$ and $f_0'(x_1)$ is a non-zero polynomial which cannot have a_1 as a root, lest we contradict the minimality of the degree of f. Hence, a_1 is separable over $k[a_2, \ldots, a_n]$. Now, induct downwards.

 $(d) \implies (a)$ Let $a_1, \ldots, a_n \in K$ be k-linearly independent and set $E = k(a_1, \ldots, a_n)$. This is a finitely generated subfield of K/k and hence, has a separating transcendence basis $S \subseteq k(a_1, \ldots, a_n)$. Since k(S) is purely transcendental and $k^{p^{-\infty}}$ is purely inseparable, they are linearly disjoint over k.

Next, since $k^{p^{-\infty}}(S)/k(S)$ is purely inseparable and E/k(S) is separable, they are linearly disjoint over k(S). Thus, due to Theorem 12.14, E and $k^{p^{-\infty}}$ are linearly disjoint over k.

Since every finitely generated subfield of K is linearly disjoint from $k^{p^{-\infty}}$ over k, we must have that K is linearly disjoint from $k^{p^{-\infty}}$ over k. This completes the proof.

Definition 12.19 (Separable). An extension K/k that satisfies the equivalent statements of Theorem 12.18 is said to be *separable*.

Theorem 12.20. *Let* char k = p *and* $k \subseteq E \subseteq K$ *be a tower of fields.*

- (a) If K/k is separable, then E/k is separable.
- (b) If K/E and E/k are separable, then K/k is separable.
- (c) If k is perfect, then any extension of k is separable.
- (d) If K/k is separable and E/k is algebraic, then K/E is separable.

Proof. (*a*) follows from the fact that any finitely generated subextension of *E* is a finitely generated subextension of *K*.

(*b*) We have the following lattice of fields.

According to the hypothesis, K and $E^{p^{-\infty}}$ are linearly disjoint over E and E and $E^{p^{-\infty}}$ are linearly disjoint over E. Note that the compositum $E^{p^{-\infty}}$ is contained in $E^{p^{-\infty}}$ whence E and $E^{p^{-\infty}}$ are linearly disjoint over E. From Theorem 12.14, we have that E and $E^{p^{-\infty}}$ are linearly disjoint over E.

- (c) Clear.
- (*d*) Let $F = E(a_1, ..., a_n) \subseteq K$ be a finitely generated subextension of K/E and set $L = k(a_1, ..., a_n)$. This has a separating transcendence basis $S \subseteq L$. Then, F/E(S) is separable. Hence, it suffices to show that S is algebraically independent over E.

Since F/E(S) is algebraic and E(S)/k(S) is algebraic, we have $\operatorname{trdeg}(F/k) = |S|$. Hence, $\operatorname{trdeg}(F/E) = \operatorname{trdeg}(F/k) - \operatorname{trdeg}(E/k) = |S|$. Hence, S must be a transcendence basis of F/E. This completes the proof.

Definition 12.21 (Free). The pair of extensions (K/k, L/k) is said to be *free* if every k-algebraically independent subset of K is L-algebraically independent.

Proposition 12.22. *If* (K/k, L/k) *is free, then so is* (L/k, K/k).

Proof.

12.3 A Brief Treatment of Varieties

Throughout this section, k is an arbitrary field and K, an algebraic closure of k.

12.3.1 Parametrization

Definition 12.23. An irreducible k-variety V is called *rational* if the function field k(V) is a purely transcendental extension of k.

Definition 12.24. A *curve* is an irreducible k-variety that has dimension 1. Equivalently, dim k[V] = 1. We say that V can be *parametrized* by rational functions in k(t) if there are rational functions $f_1, \ldots, f_n \in k(t)$ such that

$$\{(f_1(t),\ldots,f_n(t)) \mid t \in K\},\$$

wherever defined, is a dense subset of *V* in the *k*-Zariski topology.

Theorem 12.25. Let V be an irreducible curve defined over a field k. Then, V can be parametrized by rational functions in k(t) if and only if there is an k-isomorphism $k(V) \cong k(t)$.

Proof. (\Longrightarrow) Suppose we have a parametrization given by $(f_1(t), \ldots, f_n(t))$ where $f_i(t) \in k(t)$. Let

$$U = \{(f_1(a), \dots, f_n(a)) \mid a \in K\}.$$

Then, $\overline{U} = V$ in the k-Zariski topology. Consier the ring homomorphism $\varphi : k[X] \to k(t)$ given by $\varphi(X_i) = f_i(t)$. Note that

$$\ker \varphi = \{ h \in k[X] \mid h(f_1(t), \dots, f_n(t)) = 0 \}.$$

If $h \in \ker \varphi$, then $h(f_1(a), \ldots, f_n(a)) = 0$ for all $a \in K$. Hence, $U \subseteq Z(h)$, consequently, $V = \overline{U} \subseteq Z(h)$. In particular, $h \in \mathscr{I}(V)$. Conversely, if $g \in \mathscr{I}(V)$, then for all but finitely many elements of K, $g(f_1(a), \ldots, f_n(a)) = 0$. Hence, $g(f_1(t), \ldots, f_n(t)) = 0$, that is, $g \in \ker \varphi$ and this gives, $\ker \varphi = \mathscr{I}(V)$. And hence, φ induces a map $\varphi' : k[V] \to k(t)$, which in turn induces $\psi : k(V) \to k(t)$. Finally, from Lüroth's Theorem, $k(V) \cong k(t)$.

 (\Leftarrow) Let $\varphi: k(V) \to k(t)$ be a k-automorphism. Let x_i denote the image of X_i in $k[V] \subseteq k(V)$ and let $f_i(t) = \varphi(x_i)$ and $\varphi^{-1}(t) = g(x_1, \ldots, x_n)/h(x_1, \ldots, x_n)$. Note that $x_i = \varphi^{-1}(\varphi(x_i)) = \varphi^{-1}(f_i(t)) = f_i(g/h)$. Now, given any $p \in V$ such that $h(p) \neq 0$, with $p = (p_1, \ldots, p_n)$, then $p_i = f_i(g(p)/h(p))$ and hence, $p = (f_1(a), \ldots, f_n(a))$ where a = g(p)/h(p). Hence, all but finitely many points in V can be expressed as

 $(f_1(a),\ldots,f_n(a))$ for some $a\in K$. On the other hand, if $a\in K$ such that each $f_i(a)$ is defined, then setting $p=(f_1(a),\ldots,f_n(a))$, we have u(p)=0 for every $u\in \mathscr{I}(V)$. This means, $p\in Z(\mathscr{I}(V))=V$. In conclusion, we have that the set $\{(f_1(a),\ldots,f_n(a))\mid a\in K\}$ misses finitely many points of V and

hence, is dense in V.

Bibliography

[DF04] David S. Dummit and Richard M. Foote. *Abstract algebra*. Wiley, New York, 3rd ed edition, 2004. [Lan02] Serge Lang. *Algebra*. Springer Science & Business Media, 2002.