Complex Analysis

Swayam Chube

July 14, 2023

Abstract
The main reference for these notes is [Con78], which I find much more readable than [Ahl66].

Contents

1	Intr	oduction	
	1.1	Preliminaries	
	1.2	Power Series	
	1.3	Analytic Functions	
	1.4	Cauchy Riemann Equations	
	1.5	Analytic Functions as Mappings	
2	Con	nplex Integration	
	2.1	Riemann Stieltjes Integral	
	2.2	Power Series for Analytic Functions	
	2.3	Zeros of Analytic Functions	
	2.4	Cauchy's Theorem	
	2.5	Winding Numbers	
	2.6	The Open Mapping Theorem	
	2.7	The Complex Logarithm	
3	Singularities and Residue Calculus 3		
	3.1	Classification of Singularities	
	3.2	Residues	
	3.3	Argument Principle	
	3.4	Runge's Theorem	
4	Con	iformal Maps 3	
	4.1	Schwarz Lemma and applications	
		4.1.1 Automorphisms of D and H	
		4.1.2 Upper Half Plane	
	4.2	The Riemann Mapping Theorem	
		4.2.1 Montel's Theorem	
		4.2.2 Proof of the Riemann Mapping Theorem	
5	Seri	les and Product Developments 42	
		Weierstrass' Theorem	

Chapter 1

Introduction

1.1 Preliminaries

Definition 1.1. Let $\{a_n\}$ be a real sequence. Define the limit superior and the limit inferior of a sequence to be

$$\liminf_{n\to\infty} a_n = \lim_{n\to\infty} \inf\{a_n, a_{n+1}, \ldots\}$$

$$\limsup_{n\to\infty} a_n = \lim_{n\to\infty} \sup\{a_n, a_{n+1}, \ldots\}$$

Proposition 1.2. \mathbb{C} *is complete.*

Proof. Let $\{z_n = x_n + \iota y_n\}$ be a Cauchy sequence in \mathbb{C} . For every $\varepsilon > 0$, there is $N \in \mathbb{N}$ such that for all $m, n \geq N, |z_n - z_m| < \varepsilon$, and thus, $|x_n - x_m| < \varepsilon$ and $|y_n - y_m| < \varepsilon$. Consequently, both the sequences $\{x_n\}$ and $\{y_n\}$ are Cauchy and converge and therefore, so does $\{z_n\}$.

1.2 Power Series

Definition 1.3 (Power Series). Let $a \in \mathbb{C}$. A power series about a is an infinite series of the form $\sum_{n=0}^{\infty} a_n(z-a)^n$ where $\{a_n\}$ is an infinite sequence of complex numbers.

Example 1.4. The power series
$$\sum_{n=0}^{\infty} z^n$$
 converges if $|z| < 1$ and diverges if $|z| > 1$.

Proof. Suppose |z| < 1. We shall show that the sequence of partial sums is Cauchy. Indeed, for $m \ge n$, we have

$$|z^n + \dots + z^m| < |z|^n \frac{1}{1 - |z|}$$

On the other hand, if |z| > 1, we shall show that the sequence is not Cauchy. If s_n denotes the n-th partial sum of the series, we note that

$$|s_{n+1} - s_n| = |z|^{n+1}$$

This completes the proof.

Theorem 1.5. For a given power series $\sum_{n=0}^{\infty} a_n(z-a)^n$, define the number $R \in [0,\infty]$ by

$$\frac{1}{R} = \limsup_{n \to \infty} |a_n|^{1/n}$$

then

- (a) if |z a| < R, the series converges absolutely
- (b) if |z a| > R, the series diverges
- (c) if 0 < r < R, then the series converges uniformly on $\overline{B}(a,r)$

This R is known as the radius of convergence of the power series.

Proof. For simplicity, let a = 0 (this does not affect the correctness of the proof).

- (a) Since |z| < R, there is a real number r such that |z| < r < R. Consequently, by definition, there is $N \in \mathbb{N}$ such that for all $n \ge N$, $|a_n|^{1/n} < \frac{1}{r}$. In other words, for all $n \ge N$, $|z|^n |a_n| < 1$. It is evident from here that the partial sums form a Cauchy sequence.
- (b) If |z| > R, there is a positive real number r such that |z| > r > R, consequently, there is a subsequence $\{n_k\}$ such that $|a_{n_k}|^{1/n_k}r > 1$. If A_n denotes the partial sums of the sequence, then $|A_{n_k} A_{n_k-1}| > 1$ and thus, the sequence is not Cauchy, and therefore, divergent.
- (c) There is a positive real number ρ such that $r < \rho < R$ and a natural number N such that for all $n \ge N$, $|a_n| < \frac{1}{\rho^n}$. Consequently, for all $z \in \overline{B}(0,r)$, $|a_nz^n| < \left(\frac{r}{\rho}\right)^n$ and we are done due to the Weierstrass M-test.

Theorem 1.6 (Mertens). Let $\{a_n\}$, $\{b_n\}$ and $\{c_n\}$ be complex sequences such that

- (a) $\sum a_n$ converges absolutely and $\sum b_n$ converges
- (b) $\sum a_n = A$ and $\sum b_n = B$
- (c) $\{c_n\}$ is the Cauchy product of $\{a_n\}$ and $\{b_n\}$

Then, $\sum c_n$ *converges to AB.*

Proof. Define A_n , B_n and C_n in the obvious way. Further, let $\beta_n = B_n - B$. Then, we have

$$C_n = \sum_{k=0}^n a_k B_{n-k}$$

$$= \sum_{k=0}^n a_k (B + \beta_{n-k})$$

$$= BA_n + \sum_{k=0}^n a_k \beta_{n-k}$$

Let $\gamma_n = \sum_{k=0}^n a_k \beta_{n-k}$. We shall show $\lim_{n\to\infty} \gamma_n = 0$. Let $\varepsilon > 0$ be given. Let $\alpha = \sum_{n=0}^\infty |a_n|$ (since it is known that it converges absolutely). From (b), we know that $\beta_n \to 0$, therefore, there is N such that $|\beta_n| < \varepsilon/\alpha$ for

all $n \ge N$. Consequently, we have

$$|\gamma_n| \le |\beta_0 a_n + \dots + \beta_N a_{n-N}| + |\beta_{N+1} a_{n-N-1} + \dots + \beta_n a_0|$$

$$\le |\beta_0 a_n + \dots + \beta_N a_{n-N}| + \varepsilon \alpha$$

Which immediately gives us

$$\limsup_{n\to\infty} |\gamma_n| \le \varepsilon \alpha$$

and since ε was arbitrary, we have the desired conclusion.

1.3 Analytic Functions

Definition 1.7. If $G \subset \mathbb{C}$ is open, and $f : G \to \mathbb{C}$ then f is *differentiable* at a point $a \in G$ if

$$\lim_{h \to 0} \frac{f(a+h) - f(a)}{h}$$

exists. The value of this limit is denoted by f'(a) and is called the *derivative* of f at a. If f is differentiable at each point of G we say that f is differentiable on G. If f' is continuous then we say that f is *continuously differentiable*.

Proposition 1.8. *If* $f : G \to \mathbb{C}$ *is differentiable at* $a \in G$ *, then* f *is continuous at* a.

Proof. One line:

$$\lim_{z \to a} |f(z) - f(a)| = \lim_{z \to a} \frac{|f(z) - f(a)|}{|z - a|} |z - a| = \lim_{z \to a} \left| \frac{f(z) - f(a)}{z - a} \right| \lim_{z \to a} |z - a| = 0$$

Definition 1.9 (Analytic Function). A function $f: G \to \mathbb{C}$ is *analytic* if f is continuously differentiable on G.

Theorem 1.10 (Chain Rule). Let f and g be analytic on G and Ω respectively and suppose $f(G) \subseteq \Omega$. Then $g \circ f$ is analytic on G and

$$(g \circ f)'(z) = g'(f(z))f'(z)$$

for all $z \in G$.

Proof. Define the function $h \equiv g \circ f : G \to \mathbb{C}$. We shall show that the function h is differentiable at every point $a \in G$ and that the derivative at a equals g'(f(a))f'(a). Notice that the latter implies analyticity.

Let z=f(a). Then, by definition, we have functions $u:G\to\mathbb{C}$ and $v:\Omega\to\mathbb{C}$ with $\lim_{x\to a}u(x)=0$ and $\lim_{x\to z}v(z)=0$ satisfying

$$f(x) - f(a) = (x - a)(f'(a) + u(x))$$

$$g(x) - g(z) = (x - z)(g'(z) + v(x))$$

Note that

$$h(x) - h(a) = g(f(x)) - g(f(a))$$

$$= (f(x) - f(a))(g'(z) + v(f(x)))$$

$$= (x - a)(f'(a) + u(x))(g'(z) + v(f(x)))$$

Taking the limit gives the desired result.

Theorem 1.11. Let $f(z) = \sum_{n=0}^{\infty} a_n (z-a)^n$ have radius of convergence R > 0. Then

(a) For each $k \ge 1$, the series

$$\sum_{n=k}^{\infty} n(n-1)\cdots(n-k+1)a_n(z-a)^{n-k} \tag{*}$$

has radius of convergence R

- (b) The function f is infinitely differentiable on B(a,R) and furthermore, $f^{(k)}(z)$ is given by the series (\star) for all $k \ge 1$ and |z-a| < R
- (c) For $n \geq 0$,

$$a_n = \frac{1}{n!} f^{(n)}(a)$$

Proof. It suffices to prove the theorem for a = 0.

(a) We shall prove it for k=1 since the general case would follow inductively. Since $\lim_{n\to\infty} n^{1/(n-1)}=1$, it suffices to show that

$$\limsup_{n\to\infty} |a_n|^{1/n} = \limsup_{n\to\infty} |a_n|^{1/(n-1)}$$

Note that we may write

$$f(z) = a_0 + z \underbrace{\sum_{n=1}^{\infty} a_n z^{n-1}}_{g(z)}$$

It is not hard to argue that both f(z) and g(z) have the same radius of convergence, and thus $\limsup |a_n|^{1/n} = \limsup |a_n|^{1/(n-1)}$.

(b) Again, we shall only show this for k = 1 since the general case would follow inductively. Define

$$s_n = \sum_{k=0}^n a_k z^k$$
 and $e_n = \sum_{k=n+1}^\infty a_k z^k$

Obviously, $f = s_n + e_n$ for all $n \in \mathbb{N}$. Let $g(z) := \sum_{n=1}^{\infty} n a_n z^{n-1}$.

Let $w \in B(0, R)$ and choose a positive real number r such that 0 < |w| < r < R. Let $\delta > 0$ be chosen such that $B(w, \delta) \subseteq B(0, r)$. Choose any $\varepsilon > 0$.

Then, we have

$$\frac{f(z) - f(w)}{z - w} - g(w) = \left(\frac{s_n(z) - s_n(w)}{z - w} - g(w)\right) + \frac{e_n(z) - e_n(w)}{z - w}$$

Note that

$$\left| \frac{e_n(z) - e_n(w)}{z - w} \right| \le \sum_{k=n+1}^{\infty} |z^{k-1} + \dots + w^{k-1}| \le \sum_{k=n+1}^{\infty} kr^{k-1}$$

Since the series on the right is the trailing sum of a convergent series, there is $N_1 \in \mathbb{N}$ such that for all $n \ge N_1$, $\sum_{k=n+1}^{\infty} kr^{k-1} < \varepsilon/3$.

Similarly, there is $N_2 \in \mathbb{N}$ such that for all $n \ge N_2$, $|s'_n(w) - g(w)| < \varepsilon/3$. Finally, there is $\delta' > 0$ such that for all $z \in B(w, \delta')$,

$$\left| \frac{s_n(z) - s_n(w)}{z - w} - s'_n(w) \right| < \frac{\varepsilon}{3}$$

Putting these together, we see that for all $z \in B(w, \min\{\delta, \delta'\})$, and $n \ge \max\{N_1, N_2\}$

$$\left| \frac{f(z) - f(w)}{z - w} - g(w) \right| \le \left| \frac{s_n(z) - s_n(w)}{z - w} - s'_n(w) \right| + |s'_n(w) - g(w)| + \left| \frac{e_n(z) - e_n(w)}{z - w} \right| \le \varepsilon$$

And we are done.

(c) Straightforward.

Corollary 1.12. If the series $f(z) = \sum_{n=0}^{\infty} a_n (z-a)^n$ has radius of convergence R > 0 then f(z) is analytic in B(a,R).

1.4 Cauchy Riemann Equations

Let $f: G \to \mathbb{C}$ be analytic and let $u(x,y) = \Re f(x+iy)$ and $v(x,y) = \Im f(x+iy)$. Then, we must have, for all $z \in G$,

$$\lim_{h \to 0} \frac{f(z+h) - f(z)}{h} = \lim_{h \to 0} \frac{f(z+ih) - f(z)}{ih}$$

The analyticity of f implies the differentiability of u and v and thus, the above equality is equivalent to

$$u_x + iv_x = f'(z) = \frac{1}{i} \left(u_y + iv_y \right)$$

or,

$$u_x = v_y$$
 and $u_y + v_x = 0$ (CR)

Suppose u and v have continuous partial derivatives, in which case, recall that second order mixed derivatives exist and do not depend on the order of derivatives taken, that is, $u_{xy} = u_{yx}$ and $v_{xy} = v_{yx}$. Straightforward algebraic manipulation would yield

$$u_{xx} + u_{yy} = 0$$

In other words, *u* and *v* are harmonic conjugates.

Theorem 1.13. Let $G \subseteq \mathbb{C}$ and $u, v : G \to \mathbb{R}$ have continuous partial derivatives. Then $f : G \to \mathbb{C}$ defined by f(z) = u(z) + iv(z) is analytic if and only if u and v satisfy (CR).

Proof. Suppose the functions u and v satisfy the hypothesis of the theorem. Let z = x + iy. We shall show that

$$\lim_{s+it\to 0}\frac{f(z+(s+it))-f(z)}{s+it}$$

exists.

Define

$$\varphi(s,t) = (u(x+s,y+t) - u(x,y)) - (u_x(x,y)s + u_y(x,y)t)$$

$$\psi(s,t) = (v(x+s,y+t) - v(x,y)) - (v_x(x,y)s + v_y(x,y)t)$$

It is not hard to see, using CR, that

$$\varphi(s,t) + i\psi(s,t) = f(z + (s+it)) - f(z) - (s+it)(u_x(x,y) + iv_x(x,y))$$

and hence, it would suffice to show that

$$\lim_{s+it\to 0} \frac{\varphi(s,t) + i\psi(s,t)}{s+it} = 0$$

We have

$$u(x+s,y+t) - u(x,y) = u(x+s,y+t) - u(x,y+t) + u(x,y+t) - u(x,y)$$

Due to the Mean Value Theorem, there are real numbers s_1 and t_1 with $|s_1| < s$ and $|t_1| < t$ such that

$$u(x+s,y+t) - u(x,y) = u_x(x+s_1,y+t)s + u_y(x,y+t_1)t$$

Thus,

$$\varphi(s,t) = (u_x(x+s_1,y+t) - u_x(x,y))s + (u_y(x,y+t_1) - u_y(x,y))t$$

Using continuity, it is not hard to see that

$$\lim_{s+it\to 0} \frac{\varphi(s,t)}{s+it} = 0$$

and a similar result can be obtained for $\psi(s, t)$.

This completes the proof.

Theorem 1.14. Let G be either the whole complex plane \mathbb{C} or some open disk. If $u: G \to \mathbb{R}$ is a harmonic function then u has a harmonic conjugate.

Proof.

1.5 Analytic Functions as Mappings

We shall suppose in this section that all paths are continuously differentiable.

Theorem 1.15. If $f: G \to \mathbb{C}$ is analytic, then f preserves angles at each point $z_0 \in G$ where $f'(z_0) \neq 0$.

Proof. Straightforward.

Maps which preserve angles are known as **conformal maps**. Thus, if f is analytic on $G \subseteq \mathbb{C}$ and $f'(z) \neq 0$ for all $z \in G$, it is conformal.

Definition 1.16. A mapping of the form $S(z) = \frac{az+b}{cz+d}$ where $S: \mathbb{C}_{\infty} \to \mathbb{C}_{\infty}$ is called a *linear fractional transformation*. If a,b,c,d are such that $ad-bc \neq 0$, then S(z) is called a Möbius Transformation.

A Möbius Transformtion is invertible, where

$$S^{-1}(z) = \frac{dz - b}{-cz + a}$$

Chapter 2

Complex Integration

2.1 Riemann Stieltjes Integral

The following definition is taken from [Rud53]

Definition 2.1. Let [a,b] be a given interval. By a partition P of [a,b] we mean a finite set of points x_0, x_1, \ldots, x_n where

$$a = x_0 \le x_1 \le \dots \le x_n = b$$

Let $\alpha : [a, b] \to \mathbb{R}$ be monotonically increasing. Corresponding to each partition P of [a, b], write

$$\Delta \alpha_i = \alpha(x_i) - \alpha(x_{i-1})$$
 for $1 \le i \le n$

Let $f : [a, b] \to \mathbb{R}$ be bounded. For each partition $[x_{i-1}, x_i]$, let

$$M_i = \sup_{x_{i-1} \le x \le x_i} f(x) \qquad m_i = \sup_{x_{i-1} \le x \le x_i} f(x)$$

Define

$$U(P, f, \alpha) = \sum_{i=1}^{n} M_i \Delta \alpha_i$$
 $L(P, f, \alpha) = \sum_{i=1}^{n} m_i \Delta \alpha_i$

and

$$\int_{a}^{b} f \, d\alpha = \inf_{\mathcal{P}} U(P, f, \alpha) \qquad \int_{a}^{b} f \, d\alpha = \sup_{P \in \mathcal{P}} L(P, f, \alpha)$$

If the above two values are equal, we say that f is *Riemann-Stieltjes integrable* with respect to α on [a,b] and denote the common value as $\int_a^b f \ d\alpha$.

Definition 2.2. A function $\gamma:[a,b]\to\mathbb{C}$ for $[a,b]\subseteq\mathbb{R}$ is of *bounded variation* if there is a constant M>0 such that for any partition $P=\{a=t_0< t_1<\cdots< t_m=b\}$ of [a,b]

$$v(\gamma, P) = \sum_{k=1}^{|} \gamma(t_k) - \gamma(t_{k-1})| \le M$$

The total variation of γ , $V(\gamma)$ is defined by

$$V(\gamma) = \sup_{P \in \mathcal{P}([a,b])} v(\gamma, P)$$

Proposition 2.3. $\gamma:[a,b]\to\mathbb{C}$ *is of bounded variation if and only if* $\Re\gamma$ *and* $\Im\gamma$ *are of bounded variation.*

Proof. Follows from the following inequality:

$$\max\{|u(t_k) - u(t_{k-1})|, |v(t_k) - v(t_{k-1})|\} \le |\gamma(t_k) - \gamma(t_{k-1})| \le |u(t_k) - u(t_{k-1})| + |v(t_k) - v(t_{k-1})|$$

Proposition 2.4. *Let* $\gamma : [a,b] \to \mathbb{C}$ *be of bounded variation. Then*

- (a) If P and Q are partitions of [a, b] with Q a refinement of P, then $v(\gamma, P) \le v(\gamma, Q)$
- (b) If $\sigma:[a,b]\to\mathbb{C}$ is also of bounded variation and $\alpha,\beta\in\mathbb{C}$ then $\alpha\gamma+\beta\sigma$ is of bounded variation and $V(\alpha\gamma+\beta\sigma)\leq |\alpha|V(\gamma)+|\beta|V(\sigma)$

Proof.

1. Let $[t_{i-1}, t_i]$ be an interval in the partition of P. Let $y \in Q \setminus P$ such that $y \in [t_{i-1}, t_i]$. Then, note that

$$|\gamma(t_i) - \gamma(t_{i-1})| \le |\gamma(t_i) - \gamma(y)| + |\gamma(y) - \gamma(t_i)|$$

giving us the desired conclusion.

2. Similar to above, we have

$$|(\alpha\gamma + \beta\sigma)(t_i) - (\alpha\gamma + \beta\sigma)(t_{i-1})| \le |\alpha||\gamma(t_i) - \gamma(t_{i-1})| + |\beta||\sigma(t_i) - \sigma(t_{i-1})|$$

Consequently,

$$v(\alpha \gamma + \beta \sigma, P) \le |\alpha| v(\gamma, P) + |\beta| v(\sigma, P)$$

The conclusion is obvious.

Definition 2.5 (Smooth, Piecewise Smooth). A path in a region $G \subseteq \mathbb{C}$ is a continuous function $\gamma : [a,b] \to G$ for some $[a,b,] \subseteq \mathbb{R}$. If $\gamma'(t)$ exists for each $t \in [a,b]$ and $\gamma' : [a,b] \to \mathbb{C}$ is continuous, then γ issaid to be *smooth*. γ Is said to be *piecewise smooth* if there is a partition $a = t_0 < t_1 < \cdots < t_n = b$ of [a,b] such that γ is smooth on each subinterval $[t_{i-1},t_i]$ for $1 \le i \le n$.

Proposition 2.6. *If* $\gamma : [a,b] \to \mathbb{C}$ *is piecewise smooth then* γ *is of bounded variation and*

$$V(\gamma) = \int_a^b |\gamma'(t)| dt$$

Proof. We shall prove the statement in the case when γ is smooth on [a,b]. The general case follows from applying our proof to each piecewise smooth subinterval of [a,b].

Let $a = t_0 < t_1 < \cdots < t_m = b$ be a partition, denoted by P. Then,

$$v(\gamma, P) = \sum_{k=1}^{m} |\gamma(t_k) - \gamma(t_{k-1})|$$

$$= \sum_{k=1}^{m} \left| \int_{t_{k-1}}^{t_k} \gamma'(t) dt \right|$$

$$\leq \sum_{k=1}^{m} \int_{t_{k-1}}^{t_k} |\gamma'(t)| dt$$

$$= \int_{a}^{b} |\gamma'(t)| dt$$

First, this shows that γ is of bounded variation and further, $V(\gamma) \leq \int_a^b |\gamma'(t)| \ dt$. We shall show the reverse inequality, which would prove the theorem.

Let $\varepsilon > 0$. Since γ' is continuous on [a, b], it must be uniformly continuous, therefore, there is $\delta > 0$ such that whenever $|s - t| < \delta$, we have $|\gamma'(s) - \gamma'(t)| < \varepsilon$.

Let $a = t_0 < t_1 < \cdots < t_m = b$ be a partition with mesh smaller than δ . Consequently, for all $1 \le i \le m$, we have for all $t \in [t_{i-1}, t_i]$,

$$|\gamma'(t) - \gamma'(t_i)| < \varepsilon \Longrightarrow |\gamma'(t)| < |\gamma'(t_i)| + \varepsilon$$

Hence,

$$\begin{split} \int_{t_{i-1}}^{t_i} |\gamma'(t)| \, dt &= |\gamma'(t_i)| \Delta t_i + \varepsilon \Delta t_i \\ &= \left| \int_{t_{i-1}}^{t_i} \gamma'(t_i) - \gamma'(t) + \gamma'(t) \, dt \right| + \varepsilon \Delta t_i \\ &\leq \left| \int_{t_{i-1}}^{t_i} \gamma'(t_i) - \gamma'(t) \, dt \right| + \left| \int_{t_{i-1}}^{t_i} \gamma'(t) \, dt \right| + \varepsilon \Delta t_i \\ &\leq \varepsilon \Delta t_i + |\gamma(t_i) - \gamma(t_{i-1})| + \varepsilon \Delta t_i \\ &= |\gamma(t_i) - \gamma(t_{i-1})| + 2\varepsilon \Delta t_i \end{split}$$

Adding together all these inequalities, we have

$$\int_{a}^{b} |\gamma'(t)| dt \le v(\gamma, P) + 2\varepsilon(b - a) \le V(\gamma) + 2\varepsilon(b - a)$$

Since ε was arbitrary, we have the desired conclusion.

Theorem 2.7. Let $\gamma:[a,b]\to\mathbb{C}$ be of bounded variation and suppose that $f:[a,b]\to\mathbb{C}$ is continuous. Then there is a complex number I such that for every $\varepsilon>0$ there is a $\delta>0$ such that when P is a partition of [a,b] with $\|P\|<\delta$, then

$$\left|I - \sum_{k=1}^{m} f(\tau_k)(\gamma(t_k) - \gamma(t_{k-1}))\right| < \varepsilon$$

for whatever choice of points $\tau_k \in [t_{k-1}, t_k]$.

This number I is called the *integral of f with respect to* γ *over* [a,b] and is designated by

$$I = \int f \, d\gamma$$

We first need the following lemma due to Cantor:

Lemma 2.8 (Cantor). *Let* $A_1, A_2, ...$ *be a sequence of non-empty compact, closed subsets of a topological space* X *such that* $A_1 \supseteq A_2 \supseteq \cdots$ *. Then,*

$$\bigcap_{k=0}^{\infty} A_k \neq \emptyset$$

Proof. Suppose $\bigcap_{k=0}^{\infty} A_k = \emptyset$. Define $B_i = X \setminus A_i$, then, $\{B_i\}$ forms an open cover for A_1 , consequently, has a finite subcover, say $\{B_{n_1}, \dots, B_{n_k}\}$. Now, since

$$A_1 \subseteq \bigcup_{i=1}^k B_{n_i} \subseteq \bigcup_{j=1}^{n_k} B_j$$

This immediately implies that

$$A_{n_k} = A \cap \bigcap_{i=1}^{n_k} B_i = \emptyset$$

a contradiction.

Proof of Theorem 2.7. Since f is continuous, it must be uniformly continuous. Thus, we can find positive numbers $\delta_1 > \delta_2 > \cdots$ such that if $|s-t| < \delta_m$, then $|f(s)-f(t)| < \frac{1}{m}$. Let \mathscr{P}_m denote the colletion of all partitions P of [a,b] with $\|P\| < \delta_m$. Note that we have $\mathscr{P}_1 \supseteq \mathscr{P}_2 \supseteq \cdots$. Finally define F_m to be the closure of

$$\left\{ S(P) := \sum_{k=1}^{n} f(\tau_k) (\gamma(t_k) - \gamma(t_{k-1})) \mid P \in \mathscr{P}_m, \ t_{k-1} \le \tau_k \le t_k \right\} \tag{\diamond}$$

We shall show that the following hold:

$$\begin{cases} F_1 \supseteq F_2 \supseteq \cdots \\ \operatorname{diam} F_m \le \frac{2}{m} V(\gamma) \end{cases}$$

The first sequence of containments follows trivially from the definition of \mathscr{P}_m . Recall that in a metric space, diam $\overline{E} = \operatorname{diam} E$ for all $E \subseteq X$. With this in mind, it suffices to show that the diameter of the set (\diamond) is at most $\frac{2}{m}V(\gamma)$.

We shall show that if $P \in \mathscr{P}_m$ and $P \subseteq Q$ are partitions of [a,b], then $|S(P) - S(Q)| < \frac{1}{m}V(\gamma)$. Choose any interval $[t_{k-1},t_k]$ in the partition P and let Q refine it as

$$t_{k-1} = s_0 < s_1 < \dots < s_n = t_k$$

Let χ_1, \ldots, χ_n be a tagging of the refinement. Then,

$$\left| f(\tau_k) \sum_{i=1}^n \gamma(s_i) - \gamma(s_{i-1}) - \sum_{i=1}^n f(\chi_i) (\gamma(s_i) - \gamma(s_{i-1})) \right|$$

$$= \left| \sum_{i=1}^n (f(\tau_k) - f(\chi_i)) (\gamma(s_i) - \gamma(s_{i-1})) \right|$$

$$\leq \frac{1}{m} \sum_{i=1}^n |\gamma(s_i) - \gamma(s_{i-1})|$$

Adding together these inequalities for each subinterval $[t_{k-1}, t_k]$, we have that $|S(P) - S(Q)| \le \frac{1}{m}V(\gamma)$. Let $P, R \in \mathscr{P}_m$ and Q be their common refinement. Then, we have

$$|S(P) - S(R)| \le |S(P) - S(Q)| + |S(Q) - S(R)| \le \frac{2}{m}V(\gamma)$$

From this it follows that diam $F_m \leq \frac{2}{m}V(\gamma)$. Now, since diam $F_m \to 0$ as $m \to \infty$, it must be the case that $\bigcap_{m=1}^{\infty} F_m$ is a singleton set, containing a single complex number, say I.

Let $\varepsilon > 0$, choose $m > \frac{2}{\varepsilon}V(\gamma)$. Choose $\delta = \delta_m$. Since $I \in F_m$, it must be the case that $F_m \subseteq B(I, \varepsilon)$, giving us the desired conclusion.

Proposition 2.9. Let $f,g:[a,b]\to\mathbb{C}$ be continuous functions and let $\gamma,\sigma:[a,b]\to\mathbb{C}$ be functions of bounded variation. Then for any scalars α and β ,

1.
$$\int_a^b \alpha f + \beta g \, d\gamma = \alpha \int_a^b f \, d\gamma + \beta \int_a^b g \, d\gamma$$

2.
$$\int_a^b f \, d(\alpha \gamma + \beta \sigma) = \alpha \int_a^b f \, d\gamma + \beta \int_a^b f \, d\sigma$$

Proof.

Lemma 2.10. Let $\gamma : [a,b] \to \mathbb{C}$ be of bounded variation and let $f : [a,b] \to \mathbb{C}$ be continuous. If $a = t_0 < t_1 < \cdots < t_n = b$ then

$$\int_{a}^{b} f \, d\gamma = \sum_{k=1}^{n} \int_{t_{k-1}}^{t_k} f \, d\gamma$$

Theorem 2.11. *If* γ *is piecewise smooth and* $f : [a,b] \to \mathbb{C}$ *is continuous, then*

$$\int_{a}^{b} f \, d\gamma = \int_{a}^{b} f(t) \gamma'(t) \, dt$$

Proof. It suffices to consider the case where γ is smooth, since the general statement follows by applying our result to each piecewise smooth component and adding them up using Lemma 2.10.

We have that $\gamma = u + iv$ is smooth where $u, v : [a, b] \to \mathbb{R}$; thus, both u and v must be smooth, furthermore, $\gamma' = u' + iv'$. As a result, it suffices to prove the theorem for γ being real valued and smooth. We shall require the fact that is it real valued to apply the Mean Value Theorem.

Let $\varepsilon > 0$ and $\delta > 0$ be such that for any partition $P = \{a = t_0 < t_1 < \dots < t_n = b\}$,

$$\left| \int_{a}^{b} f \, d\gamma - \sum_{k=1}^{n} f(\tau_{k}) (\gamma(t_{k}) - \gamma(t_{k-1})) \right| < \frac{\varepsilon}{2}$$

$$\left| \int_{a}^{b} f(t) \gamma'(t) \, dt - \sum_{k=1}^{n} f(\tau_{k}) \gamma'(\tau_{k}) (t_{k} - t_{k-1}) \right| < \frac{\varepsilon}{2}$$

for any choice of $\tau_k \in [t_{k-1}, t_k]$. Using the mean value theorem, choose τ_k such that

$$\gamma'(\tau_k) = \frac{\gamma(t_k) - \gamma(t_{k-1})}{t_k - t_{k-1}}$$

Consequently,

$$\left| \int_a^b f \, d\gamma - \int_a^b f(t) \gamma'(t) \, dt \right| < \varepsilon$$

and we have the desired conclusion.

Definition 2.12 (Bounded Variation). Let $\gamma : [a, b] \to \mathbb{C}$ be a path. The set $\{\gamma(t) \mid a \le t \le b\}$ is called the *trace of* γ and is denoted by $\{\gamma\}$. The path γ is said to be *rectifiable* if it is of bounded variation.

Definition 2.13 (Line Integral). If $\gamma : [a, b] \to \mathbb{C}$ is a rectifiable path and f is a function defined and continuous on the trace of γ . Then, the line integral of f along γ is

$$\int_a^b f(\gamma(t)) \ d\gamma(t)$$

Theorem 2.14. If $\gamma:[a,b]\to\mathbb{C}$ is a rectifiable path and $\varphi:[c,d]\to[a,b]$ is a continuous non-decreasing function with $\varphi(c)=a$ and $\varphi(d)=b$. Then, for any function f continuous on $\{\gamma\}$,

$$\int_{\gamma} f = \int_{\gamma \circ \varphi} f$$

Proof. Let $\varepsilon > 0$. Then, there is a δ_1 such that for all partitions $P = \{c = s_0 < s_1 < \dots < s_n = d\}$ with $\|P\| < \delta$, and a tagging, $\sigma_k \in [s_{k-1}, s_k]$,

$$\left| \int_{\gamma \circ \varphi} f - \sum_{k=1}^n f(\gamma \circ \varphi(\sigma_k)) (\gamma \circ \varphi(s_k) - \gamma \circ \varphi(s_{k-1})) \right| < \frac{\varepsilon}{2}$$

furthermore, whenever $s,t \in [c,d]$ with $|s-t| < \delta_1$, $|\varphi(s) - \varphi(t)| < \delta_2$ (note that we can do this since the function φ is uniformly continuous).

Choose $\delta_2 > 0$ such that if $P = \{a = t_0 < t_1 < \dots < t_n = b\}$ with $||P|| < \delta_2$ and a tagging $\tau_k \in [t_{k-1}t_k]$, then

$$\left| \int_{\gamma} f - \sum_{k=1}^{n} f(\gamma(\tau_k))(\gamma(t_k) - \gamma(t_{k-1})) \right| < \frac{\varepsilon}{2}$$

Finally, let $\sigma_k = \varphi(\tau_k)$, then we have through a trivial manipulation that

$$\left| \int_{\gamma} f - \int_{\gamma \circ \varphi} f \right| < \varepsilon$$

Definition 2.15. Let $\sigma:[c,d]\to\mathbb{C}$ and $\gamma[a,b]\to\mathbb{C}$ be rectifiable paths. The path σ is *equivalent* to γ if there is a function $\varphi:[c,d]\to[a,b]$ which is continuous, strictly increasing, and with $\varphi(c)=a$ and $\varphi(d)=b$ such that $\sigma=\gamma\circ\varphi$.

A *curve* is an equivalence class of paths. A trace of a curve is the trace of any one of its members. A curve is smooth (piecewise smooth) if and only if some one of its representatives is smooth (piecewise smooth).

Definition 2.16. If γ is a rectifiable curve then denote by $-\gamma:[-b,-a]\to\mathbb{C}$ the curve defined by $(-\gamma)(t)=\gamma(-t)$ for $-b\le t\le -a$. This may also be denoted by γ^{-1} (although the former is more customary). For some $c\in\mathbb{C}$, let $\gamma+c:[a,b]\to\mathbb{C}$ denote the curve defined by $(\gamma+c)(t)=\gamma(t)+c$.

Definition 2.17. Let $\gamma[a,b] \to \mathbb{C}$ be a rectifiable path and for $a \le t \le b$, let $|\gamma|(t)$ be $V(\gamma,[a,t])$. That is,

$$|\gamma|(t) = \sup \left\{ \sum_{k=1}^{n} |\gamma(t_k) - \gamma(t_{k-1})| : \{a = t_0 < t_1 < \dots < t_n = t\} \text{ is a partition of } [a, t] \right\}$$

Define

$$\int_{\gamma} f |dz| = \int_{a}^{b} f(\gamma(t)) d|\gamma|(t)$$

Proposition 2.18. Let γ be a rectifiable curve and suppose that f is a function continuous on $\{\gamma\}$. Then

(a)
$$\int_{\gamma} f = - \int_{-\gamma} f$$

(b)
$$\left| \int_{\gamma} f \right| \le \int_{\gamma} |f| \, |dz| \le V(\gamma) \sup\{|f(z)| : z \in \{\gamma\}\}$$

(c) If
$$c \in C$$
, then $\int_{\gamma} f(z) dz = \int_{\gamma+c} f(z-c) dz$

Proof. All follow from definitions.

Theorem 2.19 (Fundamental Theorem of Calculus for Line Integrals). *Let* G *be open in* $\mathbb C$ *and let* γ *be a rectifiable path in* G *with initial and end points* α *and* β *respectively. If* $f:G\to\mathbb C$ *is a continuous function with a primitive* $F:G\to\mathbb C$, *then*

$$\int_{\gamma} f = F(\beta) - F(\alpha)$$

We would require the following lemma in order to prove the above theorem

Lemma 2.20. *If* G *is an open set in* \mathbb{C} , $\gamma:[a,b]\to G$ *is a rectifiable path, and* $f:G\to\mathbb{C}$ *is continuous then for every* $\varepsilon>0$ *there is a polygonal path* Γ *in* G *such that* $\Gamma(a)=\gamma(a)$, $\Gamma(b)=\gamma(b)$ *and* $|\int_{\gamma}f-\int_{\Gamma}f|<\varepsilon$.

Proof. We shall divide the proof into two cases:

• Case I: G is an open disk, say B(c,r)

Since $\{\gamma\}$ is compact, there is $\rho > 0$ such that $\{\gamma\} \subseteq \overline{B}(c,\rho) \subseteq G$. Consequently, we shall proceed with the assumption that $G = \overline{B}(c,\rho)$. Therefore, G is compact and f is uniformly continuous on G.

Let $\varepsilon > 0$. Then, there is a δ_1 such that whenever $|s - t| < \delta_1$, $|f(s) - f(t)| < \varepsilon$. Similarly, there is $\delta_2 > 0$ such that whenever $|s - t| < \delta_2$, $|\gamma(s) - \gamma(t)| < \delta_1$.

Furthermore, due to Theorem 2.7, there is a mesh size, δ_3 such that for any partition $P = \{a = t_0 < t_1 < \cdots < t_n = b\}$ with $||P|| < \delta_3$,

$$\left| \int_{\gamma} f - \sum_{k=1}^{n} f(\gamma(\tau_k)) (\gamma(t_k) - \gamma(t_{k-1})) \right|$$

Let $\delta = \min\{\delta_2, \delta_3\}$ and $P = \{a = t_0 < t_1 < \dots < t_n = b\}$ be a partition of [a, b] with $||P|| < \delta$. Define the polygonal path Γ by

$$\Gamma(t) = \frac{1}{t_k - t_{k-1}} \left((t_k - t)\gamma(t_{k-1}) + (t - t_{k-1})\gamma(t_k) \right)$$

which is essentially the straight line joining the points $\gamma(t_{k-1})$ and $\gamma(t_k)$.

First, note that

$$\int_{\Gamma} f = \sum_{k=1}^{n} \frac{\gamma(t_k) - \gamma(t_{k-1})}{t_k - t_{k-1}} \int_{t_{k-1}}^{t_k} f(\Gamma(t)) dt$$

Then, we have

$$\left| \int_{\gamma} f - \int_{\Gamma} f \right| \leq \varepsilon + \left| \sum_{k=1}^{n} f(\gamma(\tau_{k}))(\gamma(t_{k}) - \gamma(t_{k-1})) - \sum_{k=1}^{n} \frac{\gamma(t_{k}) - \gamma(t_{k-1})}{t_{k} - t_{k-1}} \int_{t_{k-1}}^{t_{k}} f(\Gamma(t)) dt \right|$$

$$\leq \varepsilon + \left| \sum_{k=1}^{n} \frac{\gamma(t_{k}) - \gamma(t_{k-1})}{t_{k} - t_{k-1}} \int_{t_{k-1}}^{t_{k}} f(\gamma(t_{k})) - f(\Gamma(t)) dt \right|$$

$$\leq \varepsilon + \sum_{k=1}^{n} \frac{|\gamma(t_{k}) - \gamma(t_{k-1})|}{t_{k} - t_{k-1}} \left| \int_{t_{k-1}}^{t_{k}} f(\gamma(t_{k})) - f(\Gamma(t)) dt \right|$$

$$\leq \varepsilon + \varepsilon \sum_{k=1}^{n} |\gamma(t_{k}) - \gamma(t_{k-1})| \leq \varepsilon (1 + V(\gamma))$$

This completes the proof for the first case.

• Case II: *G* is arbitrary

Since $\{\gamma\}$ is compact, there is r>0 such that for all $z\in\gamma$, $B(z,r)\subseteq G$. Using uniform continuity, there is $\delta>0$ such that $|\gamma(s)-\gamma(t)|< r$ whenever $|s-t|<\delta$. Let $P=\{a=t_0< t_1<\cdots< t_n=b\}$ be a partition with $\|P\|<\delta$. Define $\gamma_k:[t_{k-1},t_k]\to\mathbb{C}$. Note that $\{\gamma_k\}\subseteq B(\gamma(t_{k-1}),r)$ and thus, we can apply Case I to obtain a polygonal path Γ_k such that $|\int_{\gamma_k}f-\int_{\Gamma_k}f|<\varepsilon/n$. The conclusion is now obvious by pasting together all the Γ_k 's.

Proof of Theorem 2.19. Again, we divide the proof into two cases:

• <u>Case I:</u> $\gamma : [a, b] \to \mathbb{C}$ is piecewise smooth.

Then, we trivially have

$$\int_a^b f(\gamma(t))\gamma'(t) dt = \int_a^b F'(\gamma(t))\gamma'(t) dt = \int_a^b (f \circ \gamma)'(t) dt = F(\gamma(b)) - F(\gamma(a))$$

• Case II: General case

Recall that a polygonal path is piecewise smooth. That is, for any polygonal path Γ that begins at $\gamma(a)$ and ends at $\gamma(b)$, $\int_{\Gamma} f = F(\gamma(b)) - F(\gamma(a))$. Since any rectifiable curve can be approximated by a polygonal path, we have a suitable Γ for every $\varepsilon > 0$ such that

$$\left| \int_{\gamma} f - (F(\beta) - F(\alpha)) \right| = \left| \int_{\gamma} f - \int_{\Gamma} f \right| < \varepsilon$$

giving us the desired conclusion.

Corollary 2.21. Let G, γ and f satisfy the same hypothesis as in Theorem 2.19. If γ is a closed curve, then

$$\int_{\gamma} f = 0$$

Recall that the fundamental theorem of calculus in real analysis claimed that each continuous function had a primitive. This is untrue in complex analysis. Consider the function $f(z) = |z|^2$. That is, $f(x + iy) = x^2 + y^2$. Suppose this has a primitive, say F = U + iV. Then, using **CR**, we must have

$$\frac{\partial U}{\partial x} = \frac{\partial V}{\partial y} = x^2 + y^2$$
 and $\frac{\partial U}{\partial y} = \frac{\partial V}{\partial x} = 0$

This implies that U(x,y) = u(x) for some function u, but this gives

$$u'(x) = x^2 + y^2$$

which is obviously not possible.

2.2 Power Series for Analytic Functions

Theorem 2.22 (Leibniz's Rule). *Let* $\varphi : [a,b] \times [c,d] \to \mathbb{C}$ *be a continuous function and define* $g : [c,d] \to \mathbb{C}$ *yb*

$$g(t) = \int_{a}^{b} \varphi(s, t) \, ds$$

Then g is continuous. Moreover, if $\frac{\partial \varphi}{\partial t}$ exists and is a continuous function on $[a,b] \times [c,d]$ then g is continuously differentiable and

$$g'(t) = \int_a^b \frac{\partial \varphi}{\partial t}(s, t) ds$$

Proof. We shall first show that g is continuous. Since φ is continuous, it is uniformly continuous on $[a,b] \times [c,d]$. Choose some $t_0 \in [c,d]$. Then, there is a δ such that whenever $|(s,t)-(s',t')| < \delta$, $|\varphi(s,t)-\varphi(s',t')| < \varepsilon$. Consequently, whenever $|t-t_0| < \delta$, $|g(t)-g(t_0)| < (b-a)\varepsilon$. This implies continuity.

Fix a point $t_0 \in [c,d]$ and choose any $\varepsilon > 0$. Further, denote $\frac{\partial \varphi}{\partial t}$ by φ_2 , which is given to be continuous, and thus, is uniformly continuous on $[a,b] \times [c,d]$. Let $\delta > 0$ be such that whenever $|(s,t) - (s',t')| < \delta$, $|\varphi_2(s',t') - \varphi(s,t)| < \varepsilon$. That is,

$$|\varphi_2(s,t)-\varphi_2(s,t_0)|<\varepsilon$$

whenever $|t - t_0| < \delta$ and $a \le s \le b$. Therefore, we have

$$\left| \int_{t_0}^t \varphi_2(s,\tau) - \varphi_2(s,t_0) \, d\tau \right| < \varepsilon |t - t_0|$$

Note that $\Phi(t) = \varphi(s,t) - t\varphi_2(s,t_0)$ is a primitive of $\varphi_2(s,t) - \varphi_2(s,t_0)$. Due to the fundamental theorem of calculus, we must have

$$|\varphi(s,t) - \varphi(s,t_0) - (t-t_0)\varphi_2(s,t_0)| \le \varepsilon |t-t_0|$$

for all $s \in [a, b]$ whenever $|t - t_0| < \delta$. This is equivalent to writing

$$-\varepsilon \ge \frac{\varphi(s,t) - \varphi(s,t_0)}{t - t_0} - \varphi_2(s,t_0) \le \varepsilon$$

Integrating both sides with respect to s, we have

$$\left| \frac{g(t) - g(t_0)}{t - t_0} - \int_a^b \varphi_2(s, t_0) \, ds \right| \le \varepsilon (b - a)$$

This shows that *g* is differentiable and

$$g'(t) = \int_a^b \varphi_2(s,t) \, ds$$

Obviously the right hand side of the above equality is continuous and thus *g* is continuously differentiable.

Example 2.23. Let z be a complex number with |z| < 1. Then,

$$\int_0^{2\pi} \frac{e^{is}}{e^{is} - z} \, ds$$

and equivalently stated, if $\gamma:[0,2\pi]\to\mathbb{C}$ is a closed path given by $\gamma(t)=e^{it}$, then

$$\int_{\gamma} \frac{1}{x - z} \, dx = 2\pi$$

Proof. Define the function

$$g(t) = \int_0^{2\pi} \frac{e^{is}}{e^{is} - tz} ds$$

for $0 \le t \le 1$. Note that in this region, the function

$$\varphi(s,t) = \frac{e^{is}}{e^{is} - tz}$$

is well defined, since $|e^{is}| = 1 > |tz|$.

Using Theorem 2.22, we have

$$g'(t) = \int_0^{2\pi} \frac{ze^{is}}{(e^{is} - tz)^2} \, ds$$

Consider the function

$$\Phi(s) = \frac{iz}{e^{is} - tz}$$

Notice that

$$\Phi'(s) = \frac{ze^{is}}{e^{is} - tz}$$

Then, using Theorem 2.19, $g'(t) = \Phi(2\pi) - \Phi(0) = 0$. Therefore, g is constant. The conclusion follows from calculating t = 0.

Proposition 2.24. Let $f: G \to \mathbb{C}$ be analytic and suppose $\overline{B}(a,r) \subseteq G$ where r > 0. If $\gamma(t) = a + re^{it}$, $0 \le t \le 2\pi$, then

$$f(z) = \frac{1}{2\pi i} \int_{\gamma} \frac{f(w)}{w - z} \, dw$$

for |z - a| < r.

Proof. It is not hard to see that without loss of generality we may suppose that a = 0 and r = 1. Then, we would like to show that

$$f(z) = \frac{1}{2\pi} \int_0^{2\pi} \frac{f(e^{is})e^{is}}{e^{is} - z} ds$$

for |z| < 1. This is equivalent to showing

$$\int_0^{2\pi} \left(\frac{f(e^{is})e^{is}}{e^{is}-z} - f(z) \right) \, ds = 0$$

Define the function

$$\varphi(s,t) = \frac{f(z + t(e^{is} - z))e^{is}}{e^{is} - z} - f(z)$$

and $g(t) = \int_0^{2\pi} \varphi(s,t) \, ds$. We would like to show that g(1) = 0. Note that the function $\varphi(s,t)$ is well defined and continuously differentiable on the interval $[0,2\pi] \times$ [0,1] (it is here that we use the fact that |z|<1). Then,

$$g'(t) = \int_0^{2\pi} f(z + t(e^{is} - z))e^{is} ds$$

Consider the function $\Phi(s) = \frac{1}{it}f(z + t(e^{is} - z))$. Trivially note that $\Phi'(s) = f(z + t(e^{is} - z))e^{is}$. Using the fundamental theorem of calculus, we have

$$g'(t) = \Phi(2\pi) - \Phi(0) = 0$$

Implying that g is constant on [0,1]. Recall that we have already calculated

$$g(0) = \int_0^{2\pi} \frac{f(z)}{e^{is} - z} - f(z) \, ds = 0$$

This completes the proof.

Lemma 2.25. Let γ be a rectifiable curve in $\mathbb C$ and suppose that F_n and F are continuous functions on $\{\gamma\}$ such that the sequence $\{F_n\}$ converges uniformly to F. Then

$$\int_{\gamma} F = \lim_{n \to \infty} \int_{\gamma} F_n$$

Proof. Let $\varepsilon > 0$ be given. Then, there is a positive integer N such that for all $n \geq N$, $|F_n - F| \leq \varepsilon / V(\gamma)$. Then, we have (for all $n \ge N$)

$$\left| \int_{\gamma} F - F_n \right| \le \int_{\gamma} |F - F_n| \, |dz| \le \varepsilon$$

This completes the proof.

Theorem 2.26. Let f be analytic in B(a,R); then $f(z) = \sum_{n=0}^{\infty} a_n(z-a)^n$ for |z-a| < R, where $a_n = \frac{1}{n!}f^{(n)}(a)$ and this series has radius of convergence $\geq R$.

Proof. Let $z \in B(a, R)$. Choose |z - a| < r < R and define γ to be the circle $\partial B(a, r)$. Then, using Proposition 2.24,

$$f(z) = \frac{1}{2\pi i} \int_{\gamma} \frac{f(w)}{w - z} \, dw$$

Now, note that

$$\frac{1}{w-z} = \frac{1}{w-a} \cdot \frac{1}{1 - \frac{z-a}{w-a}} = \frac{1}{w-a} \sum_{k=0}^{\infty} \left(\frac{z-a}{w-a}\right)^k$$

Since $w \in \{\gamma\}$, there must exist M > 0 such that |f(w)| < M for all $w \in \{\gamma\}$ and thus

$$\frac{|f(w)||z-a|^n}{|w-a|^{n+1}} \le \frac{M}{r} \left(\frac{|z-a|}{r}\right)^n$$

Due to the Weierstrass M-test, the power series converges uniformly for $w \in \{\gamma\}$. And due to the Weierstrass M-test, the power series converges uniformly for $w \in \{\gamma\}$. Therefore, we may write

$$f(z) = \frac{1}{2\pi i} \int_{\gamma} \frac{f(w)}{w - z}$$

$$= \frac{1}{2\pi i} \int_{\gamma} \frac{f(w)}{w - a} \sum_{k=0}^{\infty} \left(\frac{z - a}{w - a}\right)$$

$$= \sum_{k=0}^{\infty} \left[\frac{1}{2\pi i} \int_{\gamma} \frac{f(w)}{(w - a)^{n+1}} dw\right] (z - a)^n$$

Define

$$a_n = \frac{1}{2\pi i} \int_{\gamma} \frac{f(w)}{(w-a)^{n+1}} dw$$

Then, the power series $\sum_{n=0}^{\infty} a_n(z-a)^n$ converges to f(z) on B(a,r). Consequently, f is infinitely differentiable at z and thus,

 $a_n = \frac{1}{n!} f^{(n)}(a)$

Now, the characterization of a_n is independent of γ and therefore r. Consequently, this power series converges to f(z) whenever |z - a| < R. Therefore, the radius of convergence must be at least R.

Corollary 2.27. If $f: G \to \mathbb{C}$ is analytic adn $a \in G$. Then $f(z) = \sum_{n=0}^{\infty} a_n (z-a)^n$ for |z-a| < R where $R = d(a, \partial G)$.

Corollary 2.28. If $f: G \to \mathbb{C}$ is analytic, then it is infinitely differentiable.

Corollary 2.29. If $f: G \to \mathbb{C}$ is analytic and $\overline{B}(a,r) \subseteq G$, then

$$f^{(n)}(a) = \frac{n!}{2\pi i} \int_{\gamma} \frac{f(w)}{(w-a)^{n+1}} dw$$

where $\gamma(t) = a + re^{it}$ for $t \in [0, 2\pi]$.

Proposition 2.30 (Cauchy's Estimate). Let f be analtic in B(a,R) and suppose $|f(z)| \leq M$ for all $z \in B(a,R)$. Then

$$|f^{(n)}(a)| \le \frac{n!M}{R^n}$$

Proof. Let r < R and $\gamma(t) = a + re^{it}$ for $0 \le t \le 2\pi$.

$$|f^{(n)}(a)| \le \frac{n!}{2\pi} \left| \int_{\gamma} \frac{f(w)}{(w-a)^{n+1}} \, ds \right| \le \int_{\gamma} \left| \frac{f(w)}{(w-a)^{n+1}} \right| \, |dw| \le \frac{n!M}{r^n}$$

The result follows by letting $r \to R^-$.

Proposition 2.31. *Let* f *be analytic in the disk* B(a, R) *and suppose that* γ *is a closed rectifiable curve in* B(a, R). *Then*

$$\int_{\gamma} f = 0$$

Proof. It suffices to show that f has a primitive on B(a,R) whence, we would be done by Theorem 2.19. Due to Theorem 2.26, there is a power series representation for f,

$$f(z) = \sum_{n=0}^{\infty} a_n (z - a)^n$$

for $z \in B(a, R)$.

Define the function

$$F(z) = \sum_{n=0}^{\infty} \frac{a_n}{n+1} (z-a)^{n+1}$$

Notice that the radius of convergence of F is equal to that of f and F' = f. As a result, F is a primitive for f on B(a, R).

2.3 Zeros of Analytic Functions

Definition 2.32 (Entire Function). An *entire function* si a function which isd efined and analytic in the whole complex plane \mathbb{C} .

We immediately obtain the following result:

Proposition 2.33. *If f is an entire function, then f has a power series expansion with infinite radius of convergence.*

Lemma 2.34. No non-constant polynomial is bounded. That is, if $p(z) = z^n + a_{n-1}z^{n-1} + \cdots + a_0 \in \mathbb{C}[z]$. Then, $\lim_{z \to \infty} p(z) = \infty$.

Proof. Trivial.

Theorem 2.35 (Liouville). *If f is a bounded entire function, then f is constant.*

In the proof of Liouville's Theorem, we shall require the following lemma:

Lemma 2.36. If G is open and connected and $f: G \to \mathbb{C}$ is differentiable with f'(z) = 0 for all $z \in G$, then f is constant on G.

Proof. Choose any $z_0 \in G$ and let $\omega_0 = f(z_0)$. Define $A = f^{-1}(\{z_0\})$. Obviously, A is closed in G. Choose $a \in A$ and $\varepsilon > 0$ such that $B(a,\varepsilon) \subseteq G$. Pick any $z \in B(a,\varepsilon)$ with $a \neq z$. Define g(t) = f((1-t)a+tz). Note that g'(s) = f'((1-t)a+tz)(z-a) = 0, consequently, g is constant and therefore, $f(z) = g(1) = g(0) = \omega_0$. Therefore, $B(a,\varepsilon) \subseteq A$ and thus A is open. This shows that A must be equal to G, completing the proof.

Prof of Theorem 2.35. Let M > 0 be such that $|f(z)| \le M$ for all $z \in \mathbb{C}$. Choose any $a \in A$. Then, for any R > 0, applying Proposition 2.30, we have

$$|f'(a)| \le \frac{M}{R}$$

Letting $R \to \infty$, we have f'(a) = 0 for all $a \in \mathbb{C}$. We are now done due to the preceding lemma.

We may now prove the fundamental theorem of algebra:

Theorem 2.37 (Fundamental Theorem of Algebra). *If* p(z) *is a non-constant polyomial then there is a complex number a with* p(a) = 0.

Proof. Suppose not. Then, $f(z) = \frac{1}{p(z)}$ is entire. Since $\lim_{z \to \infty} p(z) = \infty$, $\lim_{z \to \infty} f(z) = 0$. Therefore, there is ε such that whenever $|z| > \varepsilon$, |f(z)| < 1. This immediately implies that f is bounded on \mathbb{C} , consequently is constant. A contradiction.

Let us look at another application of Liouville's Theorem.

Example 2.38. Let f be an entire function with $\Re(f)$ bounded above. Then, f is constant.

Proof. Consider the entire function $g(z) = \exp(f(z))$. Since $|g(z)| = |\exp(\Re(f(z)))|$, it is bounded and therefore, constant. Hence, f(z) takes values in a discrete set and owing to it being a continuous map, it must be constant.

Theorem 2.39. Let $G \subseteq \mathbb{C}$ be a region, and $f: G \to \mathbb{C}$ be an analytic function. Then the following are equivalent

- (a) $f \equiv 0$
- (b) there is a point $a \in G$ succh that $f^{(n)}(a) = 0$ for each $n \ge 0$
- (c) the set $f^{-1}(\{0\})$ has a limit point in G

Proof. It is clear that $(a) \Longrightarrow (b) \land (c)$. We shall show that $(c) \Longrightarrow (b)$ and $(b) \Longrightarrow (a)$.

• $\underline{(c) \Longrightarrow (b)}$: Let a be a limit point of the set $f^{-1}(\{0\})$. We shall show that $f^{(n)}(a) = 0$ for all $n \in \mathbb{N}_0$. Let n be the smallest integer ≥ 1 such that $f^{(r)}(a) = 0$ for all r < n. Now, there is R > 0 such that $B(a,R) \subseteq G$, and thus there is a power series expansion around a for all $z \in B(a,R)$, given by

$$f(z) = \sum_{k=n}^{\infty} a_k (z - a)^k$$

Define the function

$$g(z) = \sum_{k=0}^{\infty} a_{n+k} (z - a)^k$$

Then $g(a) = a_n \neq 0$. It is not hard to see that g(z) is analytic in B(a, R), as a result, there is some 0 < r < R such that $g(z) \neq 0$ for each $z \in B(a, r)$. But since a is a limit point of the set $f^{-1}(\{0\})$, there is some $b \neq a$ in $f^{-1}(\{0\}) \cap B(a, r)$, and we have $0 = f(b) = (b - a)^n g(b)$, a contradiction. This shows that no such $n \in \mathbb{N}$ can exist.

• $\underline{(c) \Longrightarrow (b)}$: Let $A = \{z \in G \mid f^{(n)}(z) = 0, \ \forall \ n \in \mathbb{N}\}$. We shall show that A is clopen in G. Indeed, let $\overline{a \in A}$. Since G is open, there is R > 0 such that $B(a,R) \subseteq G$. Let $b \in B(a,R)$. Note that f has a power series expansion around a that is valid for all $z \in B(a,R)$. Since $a \in A$, this power series expansion is identically zero, as a result, f(b) = 0 and $B(a,R) \subseteq A$ and A is open.

Next, let $\{z_k\}$ be a sequence of points in A converging to $a \in G$. Then, using continuity of $f^{(n)}$, we conclude that $f^{(n)}(a) = \lim_{n \to \infty} f^{(n)}(z_k) = 0$ and A is closed. This completes the proof.

Lemma 2.40. Let $G \subseteq \mathbb{C}$ be a region and $f : G \to \mathbb{C}$ is analytic such that f(G) is a subset of a circle. Then f is constant.

Proof.

Theorem 2.41 (Maximum Modulus Theorem). *Let* $G \subseteq \mathbb{C}$ *be a region and* $f : G \to \mathbb{C}$ *be an analytic function such that there is* $a \in G$ *with* $|f(a)| \ge |f(z)|$ *for all* $z \in G$. *Then* f *is constant on* G.

Proof. Let r > 0 be such that $B(a,r) \subseteq G$ and let γ be the curve given by $\gamma(t) = a + re^{it}$. Then, we have

$$f(a) = \frac{1}{2\pi i} \int_{\gamma} \frac{f(w)}{w - a} dw$$
$$= \frac{1}{2\pi} \int_{0}^{2\pi} f(a + re^{it})$$

and equivalently,

$$|f(a)| \le \frac{1}{2\pi} \int_0^{2\pi} |f(a + re^{it})| dt \le |f(a)|$$

As a result,

$$\int_0^{2\pi} |f(a)| - |f(a + re^{it})| dt = 0$$

since the integrand is a continuous nonnegative function of t, it must be identically zero. As a result, f maps the ball B(a,r) to the circle |z| = |f(a)|. Due to Lemma 2.40, f is constant on B(a,r). Since B(a,r) has at least one limit point in G (say a for example), it must be constant on G.

2.4 Cauchy's Theorem

Definition 2.42 (Homotopy for Closed Curves). Let $G \subseteq \mathbb{C}$ and $\gamma_0, \gamma_1 : [0,1] \to G$ be two closed rectifiable curves. Then γ_0 is *homotopic* to γ_1 in G if there is a continuous function $Gamma : [0,1] \times [0,1] \to G$ such that

$$\begin{cases} \Gamma(s,0) = \gamma_0(s) \text{ and } \gamma(s,1) = \gamma_1(s) & 0 \le s \le 1\\ \Gamma(0,t) = \Gamma(1,t) & 0 \le t \le 1 \end{cases}$$

We denote this by $\gamma_0 \simeq \gamma_1 \pmod{G}$.

Lemma 2.43. The relation \simeq is an equivalence relation over the set of all closed curves in G.

Proof. Standard proof from Algebraic Topology.

Theorem 2.44 (Cauchy). Let $G \subseteq \mathbb{C}$ be a region and $f: G \to \mathbb{C}$ be analytic. Let γ_0 and γ_1 be homotopic closed curves. Then

 $\int_{\gamma_0} f = \int_{\gamma_1} f$

Proof. Let $\Gamma: I^2 \to G$ be the homotopy taking γ_0 to γ_1 . Since I^2 is compact, so is $\Gamma(I^2)$. Consequently, due to the Lebesgue Number Lemma, there is r>0 such that for all $a\in\Gamma(I^2)$, $B(a,r)\subseteq G$. Using the uniform continuity of Γ , there is $\delta>0$ such that whenever $|(s',t')-(s,t)|<\delta, |\Gamma(s',t')-\Gamma(s,t)|< r$. Choose $n\in\mathbb{N}$ such that $\sqrt{2}/n<\delta$. Finally, let γ_t denote the curve $\Gamma(s,t)$ where t is fixed and $0\leq s\leq 1$.

Let $Z_{i,j}$ denote the point $\Gamma\left(\frac{i}{n},\frac{j}{n}\right)$ and $Q_{i,j}$ denote the square $\left(\frac{i}{n},\frac{j}{n}\right) \to \left(\frac{i+1}{n},\frac{j}{n}\right) \to \left(\frac{i+1}{n},\frac{j}{n}\right) \to \left(\frac{i+1}{n},\frac{j}{n}\right) \to \left(\frac{i}{n},\frac{j+1}{n}\right) \to \left(\frac{i}{n},\frac{j+1}{n}\right) \to \left(\frac{i}{n},\frac{j}{n}\right)$. We shall show that

$$\int_{\Gamma(Q_{i,j})} f = 0$$

which would imply the desired conclusion through a straightforward inductive process.

But since $|z_1 - z_2| < \sqrt{2}/n < \delta$ for all $z_1, z_2 \in Q_{i,j}$, we can conclude that $\Gamma(Q_{i,j}) \subseteq B\left(Z_{i,j}, r\right)$, whence we are done due to Proposition 2.31.

Corollary 2.45. Let $G \subseteq \mathbb{C}$ be a region and γ a closed rectifiable curve in G which is nulhomotopic. Then,

$$\int_{\gamma} f = 0$$

for every analytic function *f* defined on *G*.

Corollary 2.46. Let $G \subseteq \mathbb{C}$ be a region and γ_0, γ_1 be path homotopic curves. Then,

$$\int_{\gamma_0} f = \int_{\gamma_1} f$$

for every analytic function *f* defined on *G*.

Corollary 2.47. If $G \subseteq \mathbb{C}$ is simply connected then $\int_{\gamma} f = 0$ for every closed rectifiable curve $\gamma \subseteq G$ and every analytic function $f : G \to \mathbb{C}$.

Theorem 2.48. *If* G *is simply connected and* $f: G \to \mathbb{C}$ *is analytic in* G*, then* f *has a primitive in* G*.*

Proof. Fix some basepoint $a \in G$ and for each $z \in G$, define $F : G \to \mathbb{C}$ as $F(z) = \int_{\gamma} f$. Due to the previous result, this function is well defined. We shall show that F is a primitive for f on G. Let $z_0 \in G$. Since G is

24

open, there is r > 0 such that $\overline{B}(z_0, r) \subseteq G$. Note that this is a convex set centered at z_0 , as a result, all line segments between two points are contained in it. Choose some $z \in B(z_0, r)$. Then,

$$\frac{F(z) - F(z_0)}{z - z_0} - f(z_0) = \frac{1}{z - z_0} \int_{[z_0, z]} (f(w) - f(z_0)) dw$$

$$\implies \left| \frac{F(z) - F(z_0)}{z - z_0} - f(z_0) \right| \le \left| \frac{1}{z - z_0} \right| \int_{[z_0, z]} \left| (f(w) - f(z_0)) \right| |dw|$$

Let $\varepsilon > 0$ be given. Note that $\overline{B}(z_0, r)$ is compact in G and thus, f is uniformly continuous. As a result, there is a small enough r > 0 such that for all $z \in B(z_0, r)$, $|f(z) - f(z_0)| < \varepsilon$. And thus,

$$\left| \frac{F(z) - F(z_0)}{z - z_0} - f(z_0) \right| \le \varepsilon$$

which implies the desired conclusion.

Theorem 2.49 (Morera). Let $G \subseteq \mathbb{C}$ be an open set and $f : G \to \mathbb{C}$ be a continuous function. If for every triangular path Δ in G, the value of $\int_{\Lambda} f = 0$, then f is analytic over G.

Proof. Note that it suffices to show this in the case G = B(a, R) for some $a \in \mathbb{C}$ and R > 0, since for every $a \in G$, there is an open ball containing it and showing the analyticity of f every such ball would imply the analyticity of f on G.

Let [x,y] denote the straight line segment that begins at x and ends at y. Define the function $F:G\to\mathbb{C}$ by

$$F(z) = \int_{[a,z]} f$$

We shall show that F' = f, which would imply the analyticity of F and therefore that of f. Choose some $z_0 \in G$. For any $z \in G$, we have

$$F(z) - F(z_0) = \int_{[a,z]} f - \int_{[a,z_0]} f = \int_{[z_0,z]} f$$

Then,

$$\frac{F(z) - F(z_0)}{z - z_0} - f(z_0) = \frac{1}{z - z_0} \int_{[z_0, z]} (f - f(z_0))$$

Choose r>0 such that $\overline{B}(z_0,r)\subseteq G$. Since f is continuous on G, it is uniformly continuous on $\overline{B}(z_0,r)$. Let $\varepsilon>0$ be given. There is $\delta>0$ such that whenever $|z-z_0|<\delta$, $|f(z)-f(z_0)|<\varepsilon$. Consequently, for all such z, we have

$$\left| \frac{F(z) - F(z_0)}{z - z_0} - f(z_0) \right| \le \frac{1}{|z - z_0|} \int_{[z_0, z]} |f(t) - f(z_0)| \ |dt| \le \varepsilon$$

This completes the proof.

Theorem 2.50 (Goursat). *Let* $G \subseteq \mathbb{C}$ *be an open set and* $f : G \to \mathbb{C}$ *be differentiable. Then,* f *is analytic over* G.

Proof. Due to Morera's Theorem, it suffices to show that for every triangular path $\Delta = [a, b, c, a] \subseteq G$, the value $\int_{\Lambda} f = 0$.

We shall define a sequence of closed triangular regions $\Delta = \Delta^{(0)} \supseteq \Delta^{(1)} \supseteq \cdots$. Obviously, since each triangular region is closed and bounded, it must be compact.

Divide the triangle $\Delta^{(i)}$ into four congruent triangles using the midpoint of each side. Let the smaller triangles be denoted by $\Delta_1, \ldots, \Delta_4$. Define

$$j = \operatorname{argmax}_{j \in \{1, \dots, 4\}} \left| \int_{\Delta_j} f \right|$$
 and $\Delta^{(i+1)} = \Delta_j$

We have

$$\begin{cases} \left| \int_{\Delta^{(i)}} f \right| \leq 4 \left| \int_{\Delta^{(i+1)}} f \right| \\ 2 \operatorname{diam} \Delta^{(i+1)} = \operatorname{diam} \Delta^{(i)} \\ 2V(\Delta^{(i+1)}) = V(\Delta^{(i)}) \end{cases}$$

Then, using Lemma 2.8, $\bigcap_{i=0}^{\infty} \Delta^{(i)}$ is singleton, say $\{z_0\}$. Choose some $\varepsilon > 0$. Since f is differentiable at z_0 , there is $\delta > 0$ such that

$$\left| \frac{f(z) - f(z_0)}{z - z_0} - f'(z_0) \right| < \varepsilon$$

whenever $|z - z_0| < \delta$. Choose $n \in \mathbb{N}$ such that diam $\Delta^{(n)} = \frac{1}{2^n} \operatorname{diam} \Delta < \delta$. Therefore, $\Delta^{(n)} \subseteq B(z_0, \delta)$. Then, we have

$$\int_{\Lambda^{(n)}} f = \int_{\Lambda^{(n)}} f(z) - f(z_0) - (z - z_0) f'(z_0) dz$$

whence

$$\begin{split} \left| \int_{\Delta^{(n)}} f \right| &= \left| \int_{\Delta^{(n)}} f(z) - f(z_0) - (z - z_0) f'(z_0) \, dz \right| \\ &\leq \int_{\Delta^{(n)}} \left| f(z) - f(z_0) - (z - z_0) f'(z_0) \right| \, |dz| \\ &\leq \int_{\Delta^{(n)}} \varepsilon |z - z_0| \, |dz| \\ &\leq \varepsilon \operatorname{diam} \Delta^{(n)} V(\Delta^{(n)}) \\ &= \varepsilon (\operatorname{diam} \Delta) V(\Delta) \frac{1}{4^n} \end{split}$$

from which it follows that

$$\left| \int_{\Delta} f \right| \leq 4^n \left| \int_{\Delta^{(n)}} f \right| \leq \varepsilon(\operatorname{diam} \Delta) V(\Delta)$$

Since ε was arbitrary, we have the desired conclusion.

Due to Theorem 2.50, we may redefine an analytic function in its more accepted definition.

Definition 2.51 (Analytic). Let $G \subseteq \mathbb{C}$ be open. Then $f : G \to \mathbb{C}$ is said to be analytic if it is differentiable over G.

2.5 Winding Numbers

Proposition 2.52. *If* $\gamma : [0,1] \to \mathbb{C}$ *is a closed rectifiable curve and* $a \notin \{\gamma\}$ *, then*

$$\frac{1}{2\pi i} \int_{\gamma} \frac{dz}{z - a}$$

is an integer.

Proof. The proof is divided into two parts. First, we prove the statement of the proposition for all piecewise smooth curves.

- Case I: γ is piecewise smooth
- Case II: γ is an arbitrary rectifiable curve

Definition 2.53 (Winding Number). If γ is a closed rectifiable curve in \mathbb{C} then for $a \notin \{\gamma\}$,

$$n(\gamma, a) = \frac{1}{2\pi i} \int_{\gamma} \frac{1}{z - a} dz$$

is called the *winding number* of γ around a.

Theorem 2.54 (Cauchy's Integral Formula). *Let* $f: G \to \mathbb{C}$ *be analytic and* $\gamma \subseteq G$ *be a nulhomotopic rectifiable closed contour. Then, for* $a \notin \{\gamma\}$ *,*

$$\frac{1}{2\pi i} \int_{\gamma} \frac{f(z)}{z - a} = n(\gamma; a) f(a)$$

Proof. Note that the function f(z) - f(a) is analytic and has a zero at z = a, therefore, there is an analytic function $g: G \to \mathbb{C}$ such that f(z) - f(a) = g(z)(z - a). From here, we have that

$$\frac{1}{2\pi i} \int_{\gamma} \frac{f(z) - f(a)}{z - a} = \frac{1}{2\pi i} \int_{\gamma} g(z) = 0$$

and therefore,

$$\frac{1}{2\pi i} \int_{\gamma} \frac{f(z)}{z-a} = \frac{1}{2\pi i} \int_{\gamma} \frac{f(a)}{z-a} = n(\gamma; a) f(a)$$

where the last equality follows from the definition of the winding number.

Lemma 2.55. *Let* $G \subseteq \mathbb{C}$ *be a region and* $\gamma \subseteq G$ *be a closed rectifiable contour and* $\varphi : \{\gamma\} \to \mathbb{C}$ *be continuous. For each positive integer m, let*

$$F_m(z) = \int_{\gamma} \frac{\varphi(w)}{(w-z)^m} dw$$

Then F_m is analytic on $\mathbb{C}\setminus\{\gamma\}$. Furthermore, $F'_m(z)=mF_{m+1}(z)$.

Proof. Fix some $a \in \mathbb{C} \setminus \{\gamma\}$. Now, there is R > 0 such that $B(a, R) \subseteq \mathbb{C} \setminus \{\gamma\}$. Consider some $z \in B(a, R)$. Then,

$$F_{m}(z) - F_{m}(a) = \frac{1}{2\pi i} \int_{\gamma} \varphi(w) \left[\frac{1}{(w-z)^{m}} - \frac{1}{(w-a)^{m}} \right] dw$$

$$= \frac{1}{2\pi i} \int_{\gamma} \varphi(w) \left(\frac{1}{w-z} - \frac{1}{w-a} \right) \left(\sum_{k=0}^{m-1} \frac{1}{(w-z)^{k} (w-a)^{m-k-1}} \right) dw$$

$$= \frac{z-a}{2\pi i} \int_{\gamma} \varphi(w) \left(\sum_{k=1}^{m} \frac{1}{(w-z)^{k} (w-a)^{m+1-k}} \right) dw$$

From here, it follows that

$$\frac{F_m(z) - F_m(a)}{z - a} = \frac{1}{2\pi i} \int_{\gamma} \varphi(w) \left(\sum_{k=1}^{m} \frac{1}{(w - z)^k (w - a)^{m+1-k}} \right) dw$$

in the limit $z \rightarrow a$, we get

$$F'_m(z) = \frac{m}{2\pi i} \int_{\gamma} \frac{\varphi(w)}{(w-a)^m} dw = mF_{m+1}(z)$$

It is now easy to see that the function is analytic.

Theorem 2.56 (Extended Cauchy's Integral Formula). *Let* $f : G \to \mathbb{C}$ *be an analytic function and* $\gamma \subseteq G$ *be a closed contour of bounded variation. Then, for every* $a \in G \setminus \{\gamma\}$ *, and every nonnegative integer* n,

$$n(\gamma; a) f^{(n)}(a) = \frac{1}{2\pi i} \int_{\gamma} \frac{f(w)}{(w-a)^{n+1}} dw$$

Proof. Follows from the above lemma.

2.6 The Open Mapping Theorem

Theorem 2.57. *Let* $G \subseteq \mathbb{C}$ *be a region and* $f : G \to \mathbb{C}$ *be analytic having zeros* a_1, \ldots, a_n *counting multiplicity in* G. *Then, for any closed curve* $\gamma \subseteq G$, *we have*

$$\frac{1}{2\pi i} \int_{\gamma} \frac{f'(z)}{f(z)} = \sum_{k=1}^{n} n(\gamma; a_k)$$

Proof. Recall that if f has a zero at z=a, then there is an analytic function $g:G\to\mathbb{C}$ such that f(z)=(z-a)g(z). Continuing this way, we have an analytic function $h:G\to\mathbb{C}$ such that $f(z)=\prod_{k=1}^n(z-a)h(z)$. Then,

$$\frac{1}{2\pi i} \int_{\gamma} \frac{f'(z)}{f(z)} = \frac{1}{2\pi i} \int_{\gamma} \sum_{k=1}^{n} \frac{1}{z - a_k} + \frac{h'(z)}{h(z)}$$

Since the function h has no zeros in G, the function h'/h is analytic on G and therefore, the integral is 0. The conclusion now follows.

Lemma 2.58. Let f be analytic on B(a,R) for some R>0. If $f(z)-\alpha$ has a zero of order m at z=a, then there is an $\varepsilon>0$ and $\delta>0$ such that for $0<|\zeta-\alpha|<\delta$, the equation $f(z)=\zeta$ has exactly m simple roots in $B(a,\varepsilon)$.

Proof.

In particular, if $m \ge 1$, then for each $\zeta \in B(\alpha, \delta)$, there is a corresponding $\xi \in B(a, \varepsilon)$ such that $f(\xi) = \zeta$. Therefore, $B(\alpha, \delta) \subseteq f(B(a, \varepsilon))$.

Theorem 2.59 (Open Mapping Theorem). Let $G \subseteq \mathbb{C}$ be a region and $f : G \to \mathbb{C}$ be analytic. Let U be open in G. Then f(U) is open in \mathbb{C} .

Proof. Choose some $a \in U$. Then, there is some R > 0 such that $B(a,R) \subseteq U$. Due to Theorem 2.57 and the remark following it, there is $\varepsilon > 0$ and $\delta > 0$ such that $B(f(a),\delta) \subseteq f(B(a,\varepsilon))$. The conclusion is immediate now.

Corollary 2.60. Suppose $f: G \to \mathbb{C}$ is one-one, analytic and $f(G) = \Omega$. Then $f^{-1}: \Omega \to \mathbb{C}$ is analytic and $(f^{-1})'(\omega) = f'(z)^{-1}$ where $\omega = f(z)$.

Proof. From Theorem 2.59, it is immediate that f is a homeomorphism. Let $g = f^{-1}$. We have $g \circ f = \mathbf{i}d$, from which the conclusion follows.

2.7 The Complex Logarithm

In this section, we shall construct the complex logarithm, which is an inverse function to the analytic function $\exp : \mathbb{C} \to \mathbb{C}$. In particular, we shall prove a more general theorem, which would immediately imply the existence of the complex logarithm.

Theorem 2.61. Let $\Omega \subseteq \mathbb{C}$ be a simply connected region and $f:\Omega \to \mathbb{C}$ be an analytic function which does not vanish on Ω . Then, there is an analytic function $g:\Omega \to \mathbb{C}$ such that $f(z)=e^{g(z)}$ for all $z\in\Omega$.

Proof. Fix a basepoint $z_0 \in \Omega$ and define

$$g(z) = \int_{\gamma} \frac{f'(z)}{f(z)} dz + c_0$$

where γ is any path from z_0 to z and $c_0 \in \mathbb{C}$ is such that $e^{c_0} = f(z_0)$, which exists since f does not vanish on Ω . Further, since f'/f is analytic on Ω , the function g is analytic on Ω .

Consider the analytic function $h = fe^{-g}$ on Ω . Differentiating this function, we have

$$h'(z) = f'(z)e^{-g(z)} - f(z)g'(z)e^{-g(z)} = 0$$

whence *h* is constant on Ω . Since $h(z_0) = 1$, we are done.

Note that the domain being simply connected is essential lest there be an analytic function $g: \mathbb{C} \setminus \{0\} \to \mathbb{C}$ such that $e^{g(z)} = 1/z$, which is a contradiction, since the integral of the former over the unit circle is zero while the integral of the latter is $2\pi i$.

With the above theorem in hand, we may define arbitrary powers of an analytic function on a simply connected region. Indeed, let $\alpha \in \mathbb{R}$, then, we may define

$$z^{\alpha} = e^{\alpha \log z}$$

where log is a branch of the logarithm in the aforementioned simply connected region.

Chapter 3

Singularities and Residue Calculus

3.1 Classification of Singularities

Definition 3.1. A function f has an *isolated singularity* at a point z = a if there is R > 0 such that f is analytic on 0 < |z - a| < R. The point a is called a *removable singularity* if there is an analytic function $g: B(a, R) \to \mathbb{C}$ such that f(z) = g(z) for 0 < |z - a| < R.

Theorem 3.2. If f has an isolated singularity at a, then the point z = a is a removable singularity if and only if

$$\lim_{z \to a} (z - a) f(z) = 0$$

Proof. The forward direction is obvious. We shall show the reverse direction, that is, suppose $\lim_{z\to a}(z-a)f(z)=0$. There is R>0 such that f is analytic in 0<|z-a|< R. Now, define the function $g:B(a,R)\to \mathbb{C}$ such that g(z)=(z-a)f(z). It is obvious that g is continuous. It suffices to show that g is analytic, since then, there would exist an analytic function h such that g(z)=(z-a)h(z), implying the desired conclusion.

To show that g is analytic, we shall use Morera's Theorem. Let T be a triangle in B(a, R). Note that since this region is convex, it suffices to choose any three points a, b, c in the interior and they would form a valid triangle. Let Δ denote the interior of T. If $a \notin \Delta$, then T is nulhomotopic and due to Theorem 2.44, the integral $\int_T g$ must be zero.

Next, if a is a vertex of the triangle, say [a, b, c, a], then for any points x and y on the line segments [a, b] and [a, c],

$$\int_{[a,b,c,a]} g = \int_{[a,x,y]} g + \int_{[x,b,c,y]} g = \int_{[a,x,y]} g$$

where the last equality follows from Theorem 2.44. Since g is continuous, there is r>0 such that for all $t\in B(a,r), |g(t)|<\varepsilon$. And thus, $|\int_{[a,x,y]}g|<\varepsilon\ell$ where ℓ is the permieter of T. It is now obvious that the integral must be zero.

Finally, suppose $a \in \Delta$ where T = [b, c, d, b]. The integral is now given by

$$\int_{[b,c,d,a]} g = \int_{[a,b,c,a]} g + \int_{[a,c,d,a]} g + \int_{[a,d,b,a]} g = 0$$

This completes the proof.

Definition 3.3 (Pole, Essential Singularity). If z = a is an isolated singularity of f, then a is a *pole* of f if $\lim_{z \to a} |f(z)| = \infty$. If an isolated singularity is niether a pole nor a removable singularity, it is then

called an essential singularity.

Theorem 3.4. Let $f: G \setminus \{a\} \to \mathbb{C}$ be analytic with a pole at z = a. Then there is an analytic function $g: G \to \mathbb{C}$ and a positive integer m such that

$$f(z) = \frac{g(z)}{(z-a)^m}$$
 on $G \setminus \{a\}$

and $g(a) \neq 0$.

Proof. Consider the analytic function $h: G\setminus\{a\}\to\mathbb{C}$ given by $h=\frac{1}{f}$. Then it is obvious that $\lim_{z\to a}f(z)=0$, as a result, f has a removable singularity at z=a, and thus, there is an analytic function $\tilde{h}: G\to\mathbb{C}$ such that $h=\tilde{h}$ on G. Now, since $\tilde{h}(a)=0$, there is a positive integer m and an analytic function $g:G\to\mathbb{C}$ such that $\tilde{h}(z)=(z-a)^mg(z)$. As a result, we see that

$$f(z) = \frac{1}{(z-a)^m} \frac{1}{g(z)}$$

and the conclusion follows.

Definition 3.5. If f has a pole at z = a, and m is the smallest positive integer such that $f(z)(z - a)^m$ has a removable singularity at z = a, then f is said to have a *pole of order* m at z = a.

Definition 3.6. Let $\{z_n\}_{n\in\mathbb{Z}}$ be a doubly infinite sequence of complex numbers. We say that $\sum_{n=-\infty}^{\infty} z_n$ is absolutely convergent if both $\sum_{n=0}^{\infty} z_n$ and $\sum_{n=1}^{\infty} z_{-n}$ are absolutely convergent.

We denote the annular region $R_1 < |z - a| < R_2$ by ann (a, R_1, R_2) .

Theorem 3.7 (Laurent Series Development). *Let* f *be analytic on* ann(a, R_1 , R_2). *Then*

$$f(z) = \sum_{n = -\infty}^{\infty} a_n (z - a)^n$$

where the convergence is absolute and uniform over $\overline{\text{ann}}(a, r_1, r_2)$ for $R_1 < r_1 < r_2 < R_2$. Also the coefficients a_n are given by the formula

$$a_n = \frac{1}{2\pi i} \int_{\gamma} \frac{f(z)}{(z-a)^{n+1}} dz$$

where γ is the circle |z - a| = r for all $R_1 < r < R_2$. Furthermore, this series is unique.

Proof.

3.2 Residues

Definition 3.8. Let f have an isolated singularity at z = a and let

$$f(z) = \sum_{n = -\infty}^{\infty} a_n (z - a)^n$$

be its Laurent expansion about z = a. Then the *residue* of f at z = a is defined as a_{-1} .

Theorem 3.9 (Weak Residue Theorem). Let f be analytic in the region G except for isolated **poles** $a_1, \ldots, a_n \in G$. If γ is a closed rectifiable curve in G which does not pass through any of the points a_k and if γ is nulhomotopic in G, then

$$\frac{1}{2\pi i} \int_{\gamma} f = \sum_{k=1}^{n} n(\gamma, a_k) \operatorname{Res}(f, a_k)$$

Proof. Let S_j denote the singular part of f at a_j . Then, $g = f - \sum_{k=1}^n S_k$ has removable singularities at a_1, \ldots, a_n . As a result,

$$0 = \int_{\gamma} g = \int_{\gamma} f - \sum_{k=1}^{n} \int_{\gamma} S_k$$

and the conclusion follows.

There is a stronger version of the above theorem wherein the word *poles* is replaced by *singularities*. We shall prove this later.

Proposition 3.10. Suppose f has a pole of order m at z=a and let $g(z)=(z-a)^m f(z)$. Then,

Res
$$(f,a) = \frac{1}{(m-1)!}g^{(m-1)}(a)$$

Proof. Follows from the definition.

Evaluating Integrals using the Residue Theorem

Example 3.11. Evaluate:

$$\int_{-\infty}^{\infty} \frac{x^2}{1+x^4} \, dx$$

Solution. Define the contour

$$\gamma := [-R, R] \cup \underbrace{\{Re^{it} \mid t \in [0, \pi]\}}_{\Gamma} \qquad R > 1$$

and the function $f(z) = \frac{z^2}{1+z^4}$, which has poles of order 1 at

$$\operatorname{cis}\left(\frac{\pi}{4}\right)$$
, $\operatorname{cis}\left(\frac{3\pi}{4}\right)$, $\operatorname{cis}\left(\frac{5\pi}{4}\right)$, $\operatorname{cis}\left(\frac{7\pi}{4}\right)$

Within our contour, we have only $a_1 = \operatorname{cis}\left(\frac{\pi}{4}\right)$ and $a_2 = \operatorname{cis}\left(\frac{3\pi}{4}\right)$ and

$$\operatorname{Res}(f, a_1) = \lim_{z \to a_1} (z - a_1) f(z) = \frac{1}{4a_1} = \frac{1}{4} \operatorname{cis}\left(-\frac{\pi}{4}\right)$$

Res
$$(f, a_2) = \lim_{z \to a_2} (z - a_2) f(z) = \frac{1}{4a_2} = \frac{1}{4} \operatorname{cis} \left(-\frac{3\pi}{4} \right)$$

$$\int_{\gamma} f(z) dz = \frac{\pi i}{2} \left(\operatorname{cis} \left(-\frac{\pi}{4} \right) + \operatorname{cis} \left(-\frac{3\pi}{4} \right) \right) = \frac{\pi}{\sqrt{2}}$$

Now,

$$0 \le \int_{\Gamma} f \le \int_{\Gamma} \frac{R^2}{|1 + z^4|} |dz| \le \int_{\Gamma} \frac{\pi R^3}{R^4 - 1}$$

And in the limit $R \to \infty$, $\int_{\Gamma} f = 0$. The conclusion follows.

Example 3.12. Show that

$$\int_{-\infty}^{\infty} \frac{e^{ax}}{1 + e^x} \, dx = \frac{\pi}{\sin \pi a}$$

for 0 < a < 1.

Proof. Consider the function $f(z) = \frac{e^{az}}{1+e^z}$, which is analytic except for poles at $(2k+1)\pi i$ for all $k \in \mathbb{Z}$. Let γ denote the rectangular contour:

$$-R \longrightarrow R \longrightarrow R + 2\pi i \longrightarrow -R + 2\pi i \longrightarrow -R$$

We note that

$$n(\gamma, (2k+1)\pi i) = \begin{cases} 1 & k=0\\ 0 & \text{otherwise} \end{cases}$$

Furthermore,

$$\lim_{z \to \pi i} (z - \pi i) \frac{e^{az}}{1 + e^z} = -e^{a\pi i}$$

Therefore, we have, due to Theorem 3.9, that

$$\frac{1}{2\pi i} \int_{\gamma} \frac{e^{az}}{1 + e^z} dz = -e^{a\pi i}$$

It is not hard to argue that the integral on the segments $R \to R + 2\pi i$ and $-R + 2\pi i \to -R$ both tend to 0 as $R \to \infty$. Thus, in the limit $R \to \infty$, we have

$$\int_{-R}^{R} f + \int_{R+2\pi i}^{-R+2\pi i} f = -e^{a\pi i}$$

Further,

$$\int_{R+2\pi i}^{-R+2\pi i} f = e^{2a\pi i} \int_{R}^{-R} \frac{e^{ax}}{1+e^{x}} dx$$

Thus,

$$(1 - e^{2a\pi i}) \int_{-\infty}^{\infty} f = (-2\pi i)e^{a\pi i}$$

Thus,

$$\int_{-\infty}^{\infty} f = \frac{2\pi i}{e^{a\pi i} - e^{-a\pi i}} = \frac{\pi}{\sin \pi a}$$

The next example has a rather unmotivated solution but we present it anyways since it is an important result to keep in mind.

Example 3.13. Let $u \in \mathbb{R} \setminus \mathbb{Z}$. Then, show that

$$\sum_{n=-\infty}^{\infty} \frac{1}{(u+n)^2} = \frac{\pi}{\sin^2 \pi u}$$

Proof. Consider the meromorphic function

$$f(z) = \frac{\pi \cot \pi z}{(u+z)^2}$$

It has poles at k for $k \in \mathbb{Z}$ and -u. Let N be an integer such that N > |u| and let R = N + 1/2. This contour contains the following poles:

$$\{-u\} \cup \{k \in \mathbb{Z} \mid -N \le k \le N\}$$

The residue at $z = k \in \mathbb{Z}$ is given by

$$\lim_{z \to k} (z - k) \frac{\pi \cot \pi z}{(u + z)^2} = \frac{\pi}{(u + k)^2}$$

On the other hand, the residue at z=-u is the coefficient a_{-1} in the Laurent expansion of f(z) around z=-u. Since u is not an integer, $\pi\cot\pi z$ is analytic in a ball around u, and the required coefficient is given by $f'(u)=-\frac{\pi^2}{\sin^2\pi u}$. Hence,

$$\sum_{n=-N}^{N} \frac{\pi}{(u+n)^2} = \int_{|z|=R} f(z) \, dz + \frac{\pi^2}{\sin^2 \pi u}$$

Therefore, it suffices to show that the integral on the circle is zero. TODO: Add in later

3.3 Argument Principle

Definition 3.14 (Meromorphic). A function which is analytic on a region except for poles is said to be *meromorphic* on that region.

Theorem 3.15 (Argument Principle). Let f be meromorphic in G with poles p_1, \ldots, p_m and zeros z_1, \ldots, z_n counted according to multiplicity. If γ is a closed rectifiable curve which is nulhomotopic and not passing through any of the aforementioned points, then

$$\frac{1}{2\pi i} \int_{\gamma} \frac{f'(z)}{f(z)} dz = \sum_{k=1}^{n} n(\gamma, z_k) - \sum_{k=1}^{m} n(\gamma, p_k)$$

Proof. It is not hard to argue that there is an analytic function *g* on *G* that does not vanish anywhere such that

$$\frac{f'}{f} = \sum_{k=1}^{n} \frac{1}{z - z_k} - \sum_{k=1}^{m} \frac{1}{z - p_k} + \frac{g'}{g}$$

Note that g'/g is an analytic function and due to Cauchy's Theorem,

$$\int_{\gamma} \frac{f'}{f} = \sum_{k=1}^{n} n(\gamma, z_k) - \sum_{k=1}^{m} n(\gamma, p_k)$$

This completes the proof.

Corollary 3.16. Let f be meromorphic in G with poles p_1, \ldots, p_m and zeros z_1, \ldots, z_n counted according to multiplicity. If γ is a closed rectifiable curve which is nulhomotopic and not passing through any of the aforementioned points, then for an analytic function g on G,

$$\frac{1}{2\pi i} \int_{\gamma} g \frac{f'(z)}{f(z)} dz = \sum_{k=1}^{n} g(z_k) n(\gamma, z_k) - \sum_{k=1}^{m} g(p_k) n(\gamma, p_k)$$

Theorem 3.17 (Rouché). Suppose f and g are meromorphic in the region G and $\overline{B}(a,R) \subseteq G$. If f and g have no zeros or poles on the circle $\gamma := \{z : |z-a| = R\}$ and |f(z)-g(z)| < |g(z)| on γ , then

$$Z_f - P_f = Z_g - P_g$$

where Z_f , Z_g denote the zeros of f and g in B(a,R) and P_f , P_g denote the poles of f and g in B(a,R).

First Proof. First, note that

$$\left|1 - \frac{f(z)}{g(z)}\right| < 1$$

for all $z \in \{\gamma\}$. Since $(f/g)(\{\gamma\}) \subseteq B(1,1)$, there is a neighborhood of $\{\gamma\}$ that is mapped into B(1,1). As a result, on this neighborhood, $\log(f/g)$, the principal branch is a primitive for (f/g)'/(f/g). As a result, we have

$$0 = \frac{1}{2\pi i} \int_{\gamma} \frac{(f/g)'}{(f/g)} = \frac{1}{2\pi i} \int_{\gamma} \left(\frac{f'}{f} - \frac{g'}{g} \right)$$

The conclusion follows.

Proof 2. Define the function $h_t(z) = tf(z) + (1-t)g(z)$ for all $t \in [0,1]$. Then, $h_0(z) = g(z)$ and $h_1(z) = f(z)$, further, note that on γ ,

$$|h_t(z)| = |g(z) + t(f(z) - g(z))| > 0.$$

Let

$$n_t = \frac{1}{2\pi i} \int_{\gamma} \frac{h_t'(z)}{h(z)} dz$$

Then, n_t is obviously an integer. We contend that the map $t \mapsto n_t$ is continuous. Indeed, $h'_t(z)/h_t(z)$ is a joint continuous function of t and z since both the numerator and denominator are continuous in t and z, and the denominator does not vanish on γ as we have argued above.

Now, since n_t only takes integral values, it must be a constant function of t and the conclusion follows.

We now give an alternate proof of the open mapping theorem using Theorem 3.17

Alternate proof of Theorem **2.59**.

Add proof

3.4 Runge's Theorem

This section is taken from [Con78].

Theorem 3.18. Let $K \subseteq \mathbb{C}$ be compact and $E \subseteq \mathbb{C}_{\infty} \setminus K$ which meets every component of $\mathbb{C}_{\infty} \setminus K$. If f is analytic in an open set Ω containing K and $\varepsilon > 0$, then there is a rational function R(z) with poles only in E such that

$$|f(z) - R(z)| < \varepsilon$$

for all $z \in K$.

We prove this result through a series of lemmas. The setup is as mentioned in the statement of Theorem 3.18 and shall not be repeated.

Lemma 3.19. There are straight line segments $\gamma_1, \ldots, \gamma_n$ in $\Omega \setminus K$ such that

$$f(z) = \sum_{k=1}^{n} \frac{1}{2\pi i} \int_{\gamma_k} \frac{f(w)}{w - z} dw$$

for all $z \in K$. The line segments form a finite number of closed polygons.

Chapter 4

Conformal Maps

Definition 4.1 (Conformal Map). A *conformal map* is a bijective holomorphis function $f: U \to V$ where U and V are open sets in \mathbb{C} . In this case, U and V are said to be conformally equivalent.

We have seen, as a corollary to Theorem 2.59, that a bijective holomorphic function has a holomorphic inverse. That is, $f^{-1}: V \to U$ is also conformal.

Example 4.2. Define $\mathbb H$ to be the upper half plane, that is, the set of complex numbers with positive imaginary part. We contend that $\mathbb H$ is conformally equivalent to $\mathbb D$, the unit disk. Consider the map $F:\mathbb D\to\mathbb H$ given by

$$F(z) = i\frac{1-z}{1+z}$$

Indeed, for z = u + iv, we have

$$Im(F(z)) = Re\left(\frac{1 - u - iv}{1 + u + iv}\right)$$
$$= \frac{1 - u^2 - v^2}{(1 + u)^2 + v^2} > 0$$

Define the map $G : \mathbb{H} \to \mathbb{D}$ given by

$$F(z) = \frac{i - z}{i + z}$$

It is not hard to see that $F \circ G = id_{\mathbb{H}}$ and $G \circ F = id_{\mathbb{D}}$. This completes the proof.

4.1 Schwarz Lemma and applications

Lemma 4.3 (Schwarz). *Let* $f : \mathbb{D} \to \mathbb{D}$ *be holomorphic with* f(0) = 0*. Then,*

- (a) $|f(z)| \le |z|$ for all $z \in \mathbb{D}$.
- (b) if for some $z_0 \neq 0$ we have $|f(z_0)| = |z_0|$, then f is a rotation.
- (c) $|f'(0)| \le 1$ and if equality holds, then f is a rotation.

Proof. The function f(z)/z has a removable singularity at 0, and consequently is holomorphic on \mathbb{D} . Pick

some 0 < r < 1. Then, for all |z| = r, we have

$$\left|\frac{f(z)}{z}\right| \le \frac{1}{r}$$

Then, due to the maximum modulus principle, $|f(z)/z| \le 1/r$ for all $z \in \mathbb{D}$ whence (a) follows.

As for (b), we would have $|f(z_0)/z_0| = 1$ for some $z_0 \in \mathbb{D} \setminus \{0\}$, and due to the maximum modulus principle, f(z)/z must be constant, and the conclusion follows.

Finally, for (c), note that g(0) = f'(0), consequently, if g(0) = 1, then due to the maximum modulus principle, g is constant, thereby completing the proof.

Proposition 4.4. *Let* $f : \mathbb{D} \to \mathbb{D}$ *be a holomorphic function. If* f *is non-constant, then it has atmost one fixed point.*

Proof.

4.1.1 Automorphisms of $\mathbb D$ and $\mathbb H$

Throughout this section, an *automorophism* of a domain U refers to a conformal map $f: U \to U$.

Disk

First, we shall study the automorphisms of \mathbb{D} . Pick some $\alpha \in \mathbb{D}$ and consider the map $\psi_{\alpha} : \mathbb{D} \to \mathbb{D}$ given by

$$\psi_{\alpha}(z) = \frac{\alpha - z}{1 - \overline{\alpha}z}.$$

Notice that both maps $z \mapsto \alpha - z$ and $z \mapsto 1 - \overline{\alpha}z$ are holomorphic and since $|\alpha| < 1$, their quotient is also holomorphic on \mathbb{D} . Finally, for any $z \in \mathbb{D}$,

$$|\psi_{\alpha}(z)|^{2} = \left|\frac{\alpha - z}{1 - \overline{\alpha}z}\right|^{2}$$

$$= \frac{\overline{\alpha}\alpha + \overline{z}z - \overline{\alpha}z - \overline{z}\alpha}{1 - \overline{\alpha}z - \overline{z}\alpha + \overline{\alpha}\alpha\overline{z}z}$$

$$= 1 - \frac{(1 - \overline{\alpha}\alpha)(1 - \overline{z}z)}{1 - \overline{\alpha}z - \overline{z}\alpha + \overline{\alpha}\alpha\overline{z}z} < 1$$

whence ψ_{α} is a biholomorphic map from $\mathbb D$ to $\mathbb D$. These are called the "Blaschke Factors". These are automorphisms of order two, that is, $\psi_{\alpha} \circ \psi_{\alpha} = \mathbf{id}_{\mathbb D}$.

Theorem 4.5. Let $f: \mathbb{D} \to \mathbb{D}$ be a holomorphic automorphism. Then there is $\theta \in \mathbb{R}$ and $\alpha \in \mathbb{D}$ such that

$$f(z) = e^{i\theta} \psi_{\alpha}(z)$$

Proof. Since f is bijective, there is a unique $\alpha \in \mathbb{D}$ such that $f(\alpha) = 0$. Define $g = f \circ \psi_{\alpha}$. Then $g : \mathbb{D} \to \mathbb{D}$ is a biholomorphic map such that g(0) = 0. We shall show that g is a rotation. Let $h : \mathbb{D} \to \mathbb{D}$ be the inverse of g, which is also biholomorphic. We have due to Lemma 4.3, that $|g(z)| \leq |z|$ and $|h(z)| \leq |z|$ for all $z \in \mathbb{D}$. Putting these two together, we have

$$|z| = |h \circ g(z)| \le |g(z)| \le |z|$$
 $\forall z \in \mathbb{D}$

Thus, |g(z)| = |z| for all $z \in \mathbb{D}$, whence, due to Lemma 4.3, g is a rotation and the proof is complete.

4.1.2 Upper Half Plane

4.2 The Riemann Mapping Theorem

Theorem 4.6 (Riemann). Suppose $\Omega \subseteq \mathbb{C}$ is open and simply connected. Given $z_0 \in \Omega$, there is a unique conformal map $F: \Omega \to \mathbb{D}$ such that $F(z_0) = 0$ and $F'(z_0) > 0$.

4.2.1 Montel's Theorem

Definition 4.7. Let $G \subseteq \mathbb{C}$ be open. A family \mathcal{F} of holomorphic functions on G is said to be *normal* if every sequence in \mathcal{F} has a subsequence that converges uniformly on every compact subset of G.

The family \mathcal{F} is said to be *uniformly bounded on compact subsets of* G if for each compact set $K \subseteq G$, there is M > 0 such that $|f(z)| \leq M$ for all $z \in K$ and $f \in \mathcal{F}$.

The family \mathcal{F} is said to be *equicontinuous* on a compact set $K \subseteq G$, for every $\varepsilon > 0$, there is $\delta > 0$ such that whenever $w, z \in K$ with $|z - w| < \delta$, $|f(z) - f(w)| < \varepsilon$ for all $f \in \mathcal{F}$.

Note that there is a more general definition of equicontinuity, but in the case of a compact metric space, it is equivalent to the above.

Theorem 4.8 (Montel). *Suppose* $\mathcal{F} \subseteq H(\mathbb{C})$ *is a family of holomorphic functions on* $G \subseteq \mathbb{C}$ *that is uniformly bounded on compact subsets of* G. *Then,*

- (a) \mathcal{F} is equicontinuous on every compact subset of G
- (b) \mathcal{F} is a normal family

Note that (b) is a consequence of the Arzelà-Ascoli Theorem from topology, a proof of which can be found in this document.

Definition 4.9. A sequence $\{K_\ell\}_{\ell=1}^{\infty}$ of compact subsets of *G* is said to be an *exhaustion* if

- (a) K_{ℓ} is contained in the interior of $K_{\ell+1}$ for all $\ell \in \mathbb{N}$
- (b) Any compact set $K \subseteq G$ is contained in K_{ℓ} for some ℓ . In particular,

$$G = \bigcup_{\ell=1}^{\infty} K_{\ell}$$

Lemma 4.10. *Any open set* $G \subseteq \mathbb{C}$ *has an exhaustion.*

Proof.

Proof of Theorem **4.8**. (a) Ket $K \subseteq G$ be compact. Now, there is $\delta > 0$ such that for all $z \in K$, $B(z, \delta) \subseteq G$. Let $r = \delta/3$. For $a, b \in K$ with |a - b| < r, we have

$$f(a) - f(b) = \frac{1}{2\pi i} \int_{|z-a|=2r} f(z) \left(\frac{1}{z-a} - \frac{1}{z-b} \right) dz$$

Consequently, we have

$$|f(a) - f(b)| \le \frac{1}{2\pi} \int_{|z-a|=2r} |f(z)| \frac{|a-b|}{|z-a||z-b|} |dz|$$

We now use the inequality $|z - b| \ge r$ and $|a - b| \le r$, which gives us

$$|f(a) - f(b)| \le \frac{1}{2\pi} \cdot 4\pi r \cdot \frac{M|a - b|}{2r^2} = \frac{M|a - b|}{r}$$

Since this inequality holds for every $f \in \mathcal{F}$, we have equicontinuity.

(b) Let $\{K_n\}_{n=1}^{\infty}$ be an exhaustion of G and $\{f_n\}_{n=1}^{\infty}$ a sequence of functions in \mathcal{F} . We now work inductively by repeatedly applying Arzelà's theorem.

First, there is a subsequence $\{g_{n,1}\}_{n=1}^{\infty}$ of $\{f_n\}_{n=1}^{\infty}$ that converges uniformly on K_1 . From this subsequence, extract $\{g_{n,2}\}_{n=1}^{\infty}$ that converges uniformly on K_2 and continue in this fashion. It is not hard to show that $\{g_{n,n}\}_{n=1}^{\infty}$ converges uniformly on every compact subset of G. This completes the proof.

Proposition 4.11. Let $G \subseteq \mathbb{C}$ be a region and $\{f_n\}_{n=1}^{\infty}$ a sequence of holomorphic functions that converge uniformly on every compact subset of G to the function $f: G \to \mathbb{C}$. Then f is holomorphic. Further, if each $\{f_n\}$ is injective, then f is either injective or constant.

Proof. The holomorphicity of f follows from Theorem 2.49. We shall show that f is injective. Suppose there are two distinct $z_1, z_2 \in G$ such that $f(z_1) = f(z_2)$. Define the function $g: G \to \mathbb{C}$ by $g(z) = f(z) - f(z_1)$. Then, define the sequence of functions $\{g_n\}_{n=1}^{\infty}$ by $g_n(z) = f_n(z) - f_n(z_1)$. Obviously, g_n converges to g uniformly on every compact subset of G. If g is not identically zero, then there z_2 is an isolated zero, due to the Identity Theorem. Therefore, we may choose a circle g centered at g such that the only zero of g in the interior of g is g.

Then, we have

$$1 = \frac{1}{2\pi i} \int_{\gamma} \frac{g'(z)}{g(z)} dz$$

Since g does not vanish on γ , and $g_n \to g$ uniformly on γ , we must have that $1/g_n \to 1/g$ uniformly on γ . Further, $g'_n \to g'$ uniformly on γ . Therefore,

$$\frac{1}{2\pi i} \int_{\gamma} \frac{g'_n(z)}{g(z)} dz \to \frac{1}{2\pi i} \int_{\gamma} \frac{g'(z)}{g(z)} dz$$

but this is absurd since every integral on the left is zero. This completes the proof.

4.2.2 Proof of the Riemann Mapping Theorem

Step I. We shall show that Ω is conformally equivalent to an open subset of \mathbb{D} .

Since Ω is a proper subset of \mathbb{C} , there is some $\alpha \in \mathbb{C} \setminus \Omega$. Define the holomorphic function $f(z) = \log(z - \alpha)$, which makes sense since $z - \alpha$ never vanishes on Ω .

Now, pick some point $w \in \Omega$. We contend that $f(w) + 2\pi i$ is contained in an open disk that is disjoint from $f(\Omega)$. For if not, then there is a sequence $\{z_n\}_{n=1}^{\infty}$ of points in Ω that converge to $f(w) + 2\pi i$. Since e^z is a continuous function, we see that z_n must converge to w, which would imply that $f(z_n)$ converges to f(w), a contradiction.

Now, consider the map $F: \Omega \to \mathbb{C}$

$$F(z) = \frac{1}{f(z) - (f(w) + 2\pi i)}$$

First, for each $z \in \Omega$, since $|f(z) - (f(w) + 2\pi i)|$ is bounded from below, |F(z)| is bounded. Further, since f is injective, so is F. By translation and scaling of F, since it is bounded, we may embed Ω into \mathbb{D} .

Step II. In this step we shall construct our candidate for the required biholomorphic map.

Now, we may suppose without loss of generality that Ω is a domain contained in \mathbb{D} . We shall now construct a conformal map from Ω to \mathbb{D} . Define

$$\mathcal{F} = \{ f : \Omega \to \mathbb{D} \mid f \text{ is holomorphic, injective and } f(0) = 0 \}$$

Obviously, \mathcal{F} is nonempty, since it contains the identity map and by construction, \mathcal{F} is uniformly bounded. Due to Proposition 2.30, we see that |f'(0)| must also be bounded for every $f \in \mathcal{F}$.

Let
$$s = \sup_{f \in \mathcal{F}} |f'(0)|$$

Step III. We shall show that our chosen candidate $f: \Omega \to \mathbb{D}$ is in fact a biholomorphic map.

According to our construction, f is injective. It suffices to show that it is surjective. Suppose not and there is $\alpha \in \mathbb{D}$ which is not in the image of f. Let ψ_{α} be the Blaschke factor and consider the composition $\psi_{\alpha} \circ f : \Omega \to \mathbb{D}$. This is a holomorphic injective function whose image does not contain the origin. Let $U = (\psi_{\alpha} \circ f)(\Omega)$. Since U is open, simply connected (owing to it being a biholomorphic image of Ω) and does not contain the origin, we may define a complex logarithm on U, whence by composing, we can define a holomorphic function $g: U \to \mathbb{C}$ given by

$$g(z) = e^{\frac{1}{2}\log z}$$

Now, consider the function

Chapter 5

Series and Product Developments

Lemma 5.1. Let $\Omega \subseteq \mathbb{C}$ be an open set and $f_n : \Omega \to \mathbb{C}$ be a sequence of holomorphic functions converging uniformly on every compact subset of K to a function $f : \Omega \to \mathbb{C}$. Then f is holomorphic and the sequence $\{f'_n\}$ converges uniformly on every compact subset of Ω to f'.

5.1 Weierstrass' Theorem

Theorem 5.2. Let $\{f_n\}_{n=1}^{\infty}$ be a sequence of holomorphic functions on an open set $\Omega \subseteq \mathbb{C}$. If there is a sequence of positive constants $\{c_n\}$ such that

$$\sum_{n=1}^{\infty} c_n < \infty \quad and \quad |f_n(z) - 1| \le c_n \ \forall z \in \Omega$$

then

- (a) The product $\prod_{n=1}^{\infty} f_n(z)$ converges uniformly in Ω to a holomorphic function $F: \Omega \to \mathbb{C}$.
- (b) If $f_n(z)$ does not vanish for any n, then

$$\frac{F'(z)}{F(z)} = \sum_{n=1}^{\infty} \frac{f'_n(z)}{f'_n(z)}$$

Proof. Define $a_n: \Omega \to \mathbb{C}$ given by $a_n(z) = f_n(z) - 1$. First, by disregarding finitely many terms of the product, we may suppose without loss of generality that $c_n < 1/2$. For any $N \in \mathbb{N}$, we have

$$\prod_{n=1}^{N} (1 + a_n(z)) = \prod_{n=1}^{n} e^{\log(1 + a_n(z))} = e^{\sum_{n=1}^{N} \log(1 + a_n(z))}.$$

In the above manipulation, we take log to be the principal branch of the logarithm which makes sense since for all $z \in \Omega$, $1 + a_n(z) \in B(1, 1/2) \subseteq \mathbb{C} \setminus \{z \in \mathbb{R} \mid z < 0\}$.

Now, it is not hard to see, using the power series expansion of the principal branch of log that $|\log(1+z)| \le 2|z|$ if |z| < 1/2, and thus $|\log(1+a_n(z))| \le 2|a_n(z)| \le 2c_n$ on Ω . Let $b_N(z) = \sum_{n=1}^N \log(1+a_n(z))$. Since $|b_n(z)|$ is bounded on Ω and converges uniformly to some analytic function $b: \Omega \to \mathbb{C}$.

The sequence e^{b_n} converges pointwise to e^b but since this is a uniformly bounded sequence, the convergence is uniform and e^b is analytic. This proves (a).

Define $G_n(z) = \prod_{k=1}^n f_k(z)$. Then, using the product rule,

$$\frac{G'_n(z)}{G_n(z)} = \sum_{k=1}^n \frac{f'_n(z)}{f_n(z)}.$$

We have shown in part (a) that G_n converges uniformly to F. Let $K \subseteq \Omega$ be a compact subset. Due to Lemma 5.1, G'_n converges uniformly to F' on K. Further, since $1/G_n$ is uniformly bounded, above on K^1 and thus G'_n/G_n converges to F'/F uniformly on K which finishes the proof.

Definition 5.3. Define the entire maps $E_n : \mathbb{C} \to \mathbb{C}$ for $n \ge 0$ by

$$E_0(z) = 1 - z$$
 $E_n(z) = (1 - z) \exp\left(z + \frac{z^2}{2} + \dots + \frac{z^n}{n}\right)$ for $n \ge 1$

These are called the *elementary factors*.

Theorem 5.4 (Weierstrass). Given any sequence $\{a_n\}_{n=1}^{\infty}$ of complex numbers with $|a_n| \to \infty$ as $n \to \infty$, there exists an entire function f vanishing at exactly $\{a_n\}_{n=1}^{\infty}$ and nowhere else. Any other such entire function is of the form $f(z)e^{g(z)}$ where g is entire.

First, we prove the second part of the theorem. Let f_1 , f_2 be two entire functions satisfying the statement of the theorem. Then, f_2/f_1 has removable singularities at each a_n whence is entire. Using this entire function,

¹This is because each f_n does not vanish on K and eventually, $|f_n| < 1$ since the sum of c_n 's converges.

TODO List

- 1. Complete proof of Riemann Mapping Theorem
- 2. Complete the write up of Runge's Theorem
- 3. After Runge's Theorem, Mittag-Leffler
- 4. Phragmén-Lindelöf Theorem
- 5. Weierstrass Product Theorem
- 6. Hadamard Product Theorem

Bibliography

- [Ahl66] L. V. Ahlfors. Complex Analysis. McGraw-Hill Book Company, 2 edition, 1966.
- [Con78] John B. Conway. *Functions of one complex variable*, volume 11 of *Graduate Texts in Mathematics*. Springer-Verlag, New York, second edition, 1978.
- [Rud53] Walter Rudin. *Principles of mathematical analysis*. McGraw-Hill Book Company, Inc., New York-Toronto-London, 1953.