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Abstract

The main reference for these notes is [Con78], which I find much more readable than [Ahl66].
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Chapter 1

Introduction

1.1 Preliminaries

Definition 1.1. Let {an} be a real sequence. Define the limit superior and the limit inferior of a se-
quence to be

lim inf
n→∞

an = lim
n→∞

inf{an, an+1, . . .}

lim sup
n→∞

an = lim
n→∞

sup{an, an+1, . . .}

Proposition 1.2. C is complete.

Proof. Let {zn = xn + ιyn} be a Cauchy sequence in C. For every ε > 0, there is N ∈ N such that for all
m, n ≥ N, |zn − zm| < ε, and thus, |xn − xm| < ε and |yn − ym| < ε. Consequently, both the sequences {xn}
and {yn} are Cauchy and converge and therefore, so does {zn}. ■

1.2 Power Series

Definition 1.3 (Power Series). Let a ∈ C. A power series about a is an infinite series of the form
∞
∑

n=0
an(z − a)n where {an} is an infinite sequence of complex numbers.

Example 1.4. The power series
∞
∑

n=0
zn converges if |z| < 1 and diverges if |z| > 1.

Proof. Suppose |z| < 1. We shall show that the sequence of partial sums is Cauchy. Indeed, for m ≥ n, we
have

|zn + · · ·+ zm| < |z|n 1
1 − |z|

On the other hand, if |z| > 1, we shall show that the sequence is not Cauchy. If sn denotes the n-th
partial sum of the series, we note that

|sn+1 − sn| = |z|n+1

This completes the proof. ■
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Theorem 1.5. For a given power series
∞
∑

n=0
an(z − a)n, define the number R ∈ [0, ∞] by

1
R

= lim sup
n→∞

|an|1/n

then

(a) if |z − a| < R, the series converges absolutely

(b) if |z − a| > R, the series diverges

(c) if 0 < r < R, then the series converges uniformly on B(a, r)

This R is known as the radius of convergence of the power series.

Proof. For simplicity, let a = 0 (this does not affect the correctness of the proof).

(a) Since |z| < R, there is a real number r such that |z| < r < R. Consequently, by definition, there is
N ∈ N such that for all n ≥ N, |an|1/n < 1

r . In other words, for all n ≥ N, |z|n|an| < 1. It is evident
from here that the partial sums form a Cauchy sequence.

(b) If |z| > R, there is a positive real number r such that |z| > r > R, consequently, there is a subsequence
{nk} such that |ank |1/nk r > 1. If An denotes the partial sums of the sequence, then |Ank − Ank−1| > 1
and thus, the sequence is not Cauchy, and therefore, divergent.

(c) There is a positive real number ρ such that r < ρ < R and a natural number N such that for all n ≥ N,

|an| < 1
ρn . Consequently, for all z ∈ B(0, r), |anzn| <

(
r
ρ

)n
and we are done due to the Weierstrass

M-test.

■

Theorem 1.6 (Mertens). Let {an}, {bn} and {cn} be complex sequences such that

(a) ∑ an converges absolutely and ∑ bn converges

(b) ∑ an = A and ∑ bn = B

(c) {cn} is the Cauchy product of {an} and {bn}

Then, ∑ cn converges to AB.

Proof. Define An, Bn and Cn in the obvious way. Further, let βn = Bn − B. Then, we have

Cn =
n

∑
k=0

akBn−k

=
n

∑
k=0

ak(B + βn−k)

= BAn +
n

∑
k=0

akβn−k

Let γn =
n
∑

k=0
akβn−k. We shall show lim

n→∞
γn = 0. Let ε > 0 be given. Let α =

∞
∑

n=0
|an| (since it is known

that it converges absolutely). From (b), we know that βn → 0, therefore, there is N such that |βn| < ε/α for
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all n ≥ N. Consequently, we have

|γn| ≤ |β0an + · · ·+ βN an−N |+ |βN+1an−N−1 + · · ·+ βna0|
≤ |β0an + · · ·+ βN an−N |+ εα

Which immediately gives us
lim sup

n→∞
|γn| ≤ εα

and since ε was arbitrary, we have the desired conclusion. ■

1.3 Analytic Functions

Definition 1.7. If G ⊂ C is open, and f : G → C then f is differentiable at a point a ∈ G if

lim
h→0

f (a + h)− f (a)
h

exists. The value of this limit is denoted by f ′(a) and is called the derivative of f at a. If f is differentiable
at each point of G we say that f is differentiable on G. If f ′ is continuous then we say that f is
continuously differentiable.

Proposition 1.8. If f : G → C is differentiable at a ∈ G, then f is continuous at a.

Proof. One line:

lim
z→a

| f (z)− f (a)| = lim
z→a

| f (z)− f (a)|
|z − a| |z − a| = lim

z→a

∣∣∣∣∣ f (z)− f (a)
z − a

∣∣∣∣∣ lim
z→a

|z − a| = 0

■

Definition 1.9 (Analytic Function). A function f : G → C is analytic if f is continuously differentiable
on G.

Theorem 1.10 (Chain Rule). Let f and g be analytic on G and Ω respectively and suppose f (G) ⊆ Ω. Then
g ◦ f is analytic on G and

(g ◦ f )′(z) = g′( f (z)) f ′(z)

for all z ∈ G.

Proof. Define the function h ≡ g ◦ f : G → C. We shall show that the function h is differentiable at every
point a ∈ G and that the derivative at a equals g′( f (a)) f ′(a). Notice that the latter implies analyticity.

Let z = f (a). Then, by definition, we have functions u : G → C and v : Ω → C with lim
x→a

u(x) = 0 and

lim
x→z

v(z) = 0 satisfying

f (x)− f (a) = (x − a)( f ′(a) + u(x))

g(x)− g(z) = (x − z)(g′(z) + v(x))

4



Note that

h(x)− h(a) = g( f (x))− g( f (a))

= ( f (x)− f (a))(g′(z) + v( f (x)))

= (x − a)( f ′(a) + u(x))(g′(z) + v( f (x)))

Taking the limit gives the desired result. ■

Theorem 1.11. Let f (z) =
∞
∑

n=0
an(z − a)n have radius of convergence R > 0. Then

(a) For each k ≥ 1, the series
∞

∑
n=k

n(n − 1) · · · (n − k + 1)an(z − a)n−k (⋆)

has radius of convergence R

(b) The function f is infinitely differentiable on B(a, R) and furthermore, f (k)(z) is given by the series (⋆) for
all k ≥ 1 and |z − a| < R

(c) For n ≥ 0,

an =
1
n!

f (n)(a)

Proof. It suffices to prove the theorem for a = 0.

(a) We shall prove it for k = 1 since the general case would follow inductively. Since lim
n→∞

n1/(n−1) = 1, it

suffices to show that
lim sup

n→∞
|an|1/n = lim sup

n→∞
|an|1/(n−1)

Note that we may write

f (z) = a0 + z
∞

∑
n=1

anzn−1

︸ ︷︷ ︸
g(z)

It is not hard to argue that both f (z) and g(z) have the same radius of convergence, and thus lim sup |an|1/n =

lim sup |an|1/(n−1).

(b) Again, we shall only show this for k = 1 since the general case would follow inductively. Define

sn =
n

∑
k=0

akzk and en =
∞

∑
k=n+1

akzk

Obviously, f = sn + en for all n ∈ N. Let g(z) :=
∞
∑

n=1
nanzn−1.

Let w ∈ B(0, R) and choose a positive real number r such that 0 < |w| < r < R. Let δ > 0 be chosen
such that B(w, δ) ⊆ B(0, r). Choose any ε > 0.

Then, we have

f (z)− f (w)

z − w
− g(w) =

(
sn(z)− sn(w)

z − w
− g(w)

)
+

en(z)− en(w)

z − w
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Note that ∣∣∣∣∣ en(z)− en(w)

z − w

∣∣∣∣∣ ≤ ∞

∑
k=n+1

|zk−1 + · · ·+ wk−1| ≤
∞

∑
k=n+1

krk−1

Since the series on the right is the trailing sum of a convergent series, there is N1 ∈ N such that for all

n ≥ N1,
∞
∑

k=n+1
krk−1 < ε/3.

Similarly, there is N2 ∈ N such that for all n ≥ N2, |s′n(w)− g(w)| < ε/3. Finally, there is δ′ > 0 such
that for all z ∈ B(w, δ′), ∣∣∣∣∣ sn(z)− sn(w)

z − w
− s′n(w)

∣∣∣∣∣ < ε

3

Putting these together, we see that for all z ∈ B(w, min{δ, δ′}), and n ≥ max{N1, N2}∣∣∣∣∣ f (z)− f (w)

z − w
− g(w)

∣∣∣∣∣ ≤
∣∣∣∣∣ sn(z)− sn(w)

z − w
− s′n(w)

∣∣∣∣∣+ |s′n(w)− g(w)|+
∣∣∣∣∣ en(z)− en(w)

z − w

∣∣∣∣∣ ≤ ε

And we are done.

(c) Straightforward.

■

Corollary 1.12. If the series f (z) =
∞
∑

n=0
an(z− a)n has radius of convergence R > 0 then f (z) is analytic

in B(a, R).

1.4 Cauchy Riemann Equations

Let f : G → C be analytic and let u(x, y) = ℜ f (x + iy) and v(x, y) = ℑ f (x + iy). Then, we must have, for
all z ∈ G,

lim
h→0

f (z + h)− f (z)
h

= lim
h→0

f (z + ih)− f (z)
ih

The analyticity of f implies the differentiability of u and v and thus, the above equality is equivalent to

ux + ivx = f ′(z) =
1
i

(
uy + ivy

)
or,

ux = vy and uy + vx = 0 (CR)

Suppose u and v have continuous partial derivatives, in which case, recall that second order mixed
derivatives exist and do not depend on the order of derivatives taken, that is, uxy = uyx and vxy = vyx.

Straightforward algebraic manipulation would yield

uxx + uyy = 0

In other words, u and v are harmonic conjugates.
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Theorem 1.13. Let G ⊆ C and u, v : G → R have continuous partial derivatives. Then f : G → C defined by
f (z) = u(z) + iv(z) is analytic if and only if u and v satisfy (CR).

Proof. Suppose the functions u and v satisfy the hypothesis of the theorem. Let z = x + iy. We shall show
that

lim
s+it→0

f (z + (s + it))− f (z)
s + it

exists.
Define

φ(s, t) =
(
u(x + s, y + t)− u(x, y)

)
−
(

ux(x, y)s + uy(x, y)t
)

ψ(s, t) =
(
v(x + s, y + t)− v(x, y)

)
−
(

vx(x, y)s + vy(x, y)t
)

It is not hard to see, using CR, that

φ(s, t) + iψ(s, t) = f (z + (s + it))− f (z)− (s + it)(ux(x, y) + ivx(x, y))

and hence, it would suffice to show that

lim
s+it→0

φ(s, t) + iψ(s, t)
s + it

= 0

We have

u(x + s, y + t)− u(x, y) = u(x + s, y + t)− u(x, y + t) + u(x, y + t)− u(x, y)

Due to the Mean Value Theorem, there are real numbers s1 and t1 with |s1| < s and |t1| < t such that

u(x + s, y + t)− u(x, y) = ux(x + s1, y + t)s + uy(x, y + t1)t

Thus,
φ(s, t) = (ux(x + s1, y + t)− ux(x, y))s + (uy(x, y + t1)− uy(x, y))t

Using continuity, it is not hard to see that

lim
s+it→0

φ(s, t)
s + it

= 0

and a similar result can be obtained for ψ(s, t).
This completes the proof. ■

Theorem 1.14. Let G be either the whole complex plane C or some open disk. If u : G → R is a harmonic
function then u has a harmonic conjugate.

Proof. ■

1.5 Analytic Functions as Mappings

We shall suppose in this section that all paths are continuously differentiable.

7



Theorem 1.15. If f : G → C is analytic, then f preserves angles at each point z0 ∈ G where f ′(z0) ̸= 0.

Proof. Straightforward. ■

Maps which preserve angles are known as conformal maps. Thus, if f is analytic on G ⊆ C and
f ′(z) ̸= 0 for all z ∈ G, it is conformal.

Definition 1.16. A mapping of the form S(z) =
az + b
cz + d

where S : C∞ → C∞ is called a linear fractional

transformation. If a, b, c, d are such that ad − bc ̸= 0, then S(z) is called a Möbius Transformation.

A Möbius Transformtion is invertible, where

S−1(z) =
dz − b
−cz + a
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Chapter 2

Complex Integration

2.1 Riemann Stieltjes Integral

The following definition is taken from [Rud53]

Definition 2.1. Let [a, b] be a given interval. By a partition P of [a, b] we mean a finite set of points
x0, x1, . . . , xn where

a = x0 ≤ x1 ≤ · · · ≤ xn = b

Let α : [a, b] → R be monotonically increasing. Corresponding to each partition P of [a, b], write

∆αi = α(xi)− α(xi−1) for 1 ≤ i ≤ n

Let f : [a, b] → R be bounded. For each partition [xi−1, xi], let

Mi = sup
xi−1≤x≤xi

f (x) mi = sup
xi−1≤x≤xi

f (x)

Define

U(P, f , α) =
n

∑
i=1

Mi∆αi L(P, f , α) =
n

∑
i=1

mi∆αi

and ∫ b

a
f dα = inf

P
U(P, f , α)

∫ b

a
f dα = sup

P∈P
L(P, f , α)

If the above two values are equal, we say that f is Riemann-Stieltjes integrable with respect to α on
[a, b] and denote the common value as

∫ b
a f dα.

Definition 2.2. A function γ : [a, b] → C for [a, b] ⊆ R is of bounded variation if there is a constant
M > 0 such that for any partition P = {a = t0 < t1 < · · · < tm = b} of [a, b]

v(γ, P) =
|

∑
k=1

γ(tk)− γ(tk−1)| ≤ M
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The total variation of γ, V(γ) is defined by

V(γ) = sup
P∈P([a,b])

v(γ, P)

Proposition 2.3. γ : [a, b] → C is of bounded variation if and only if ℜγ and ℑγ are of bounded variation.

Proof. Follows from the following inequality:

max{|u(tk)− u(tk−1)|, |v(tk)− v(tk−1)|} ≤ |γ(tk)− γ(tk−1)| ≤ |u(tk)− u(tk−1)|+ |v(tk)− v(tk−1)|

■

Proposition 2.4. Let γ : [a, b] → C be of bounded variation. Then

(a) If P and Q are partitions of [a, b] with Q a refinement of P, then v(γ, P) ≤ v(γ, Q)

(b) If σ : [a, b] → C is also of bounded variation and α, β ∈ C then αγ + βσ is of bounded variation and
V(αγ + βσ) ≤ |α|V(γ) + |β|V(σ)

Proof.

1. Let [ti−1, ti] be an interval in the partition of P. Let y ∈ Q\P such that y ∈ [ti−1, ti]. Then, note that

|γ(ti)− γ(ti−1)| ≤ |γ(ti)− γ(y)|+ |γ(y)− γ(ti)|

giving us the desired conclusion.

2. Similar to above, we have

|(αγ + βσ)(ti)− (αγ + βσ)(ti−1)| ≤ |α||γ(ti)− γ(ti−1)|+ |β||σ(ti)− σ(ti−1)|

Consequently,
v(αγ + βσ, P) ≤ |α|v(γ, P) + |β|v(σ, P)

The conclusion is obvious.

■

Definition 2.5 (Smooth, Piecewise Smooth). A path in a region G ⊆ C is a continuous function γ :
[a, b] → G for some [a, b, ] ⊆ R. If γ′(t) exists for each t ∈ [a, b] and γ′ : [a, b] → C is continuous, then
γ issaid to be smooth. γ Is said to be piecewise smooth if there is a partition a = t0 < t1 < · · · < tn = b
of [a, b] such that γ is smooth on each subinterval [ti−1, ti] for 1 ≤ i ≤ n.

Proposition 2.6. If γ : [a, b] → C is piecewise smooth then γ is of bounded variation and

V(γ) =
∫ b

a
|γ′(t)| dt
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Proof. We shall prove the statement in the case when γ is smooth on [a, b]. The general case follows from
applying our proof to each piecewise smooth subinterval of [a, b].

Let a = t0 < t1 < · · · < tm = b be a partition, denoted by P. Then,

v(γ, P) =
m

∑
k=1

|γ(tk)− γ(tk−1)|

=
m

∑
k=1

∣∣∣∣∣
∫ tk

tk−1

γ′(t) dt

∣∣∣∣∣
≤

m

∑
k=1

∫ tk

tk−1

|γ′(t)| dt

=
∫ b

a
|γ′(t)| dt

First, this shows that γ is of bounded variation and further, V(γ) ≤
∫ b

a |γ′(t)| dt. We shall show the
reverse inequality, which would prove the theorem.

Let ε > 0. Since γ′ is continuous on [a, b], it must be uniformly continuous, therefore, there is δ > 0 such
that whenever |s − t| < δ, we have |γ′(s)− γ′(t)| < ε.

Let a = t0 < t1 < · · · < tm = b be a partition with mesh smaller than δ. Consequently, for all 1 ≤ i ≤ m,
we have for all t ∈ [ti−1, ti],

|γ′(t)− γ′(ti)| < ε =⇒ |γ′(t)| < |γ′(ti)|+ ε

Hence, ∫ ti

ti−1

|γ′(t)| dt = |γ′(ti)|∆ti + ε∆ti

=

∣∣∣∣∣
∫ ti

ti−1

γ′(ti)− γ′(t) + γ′(t) dt

∣∣∣∣∣+ ε∆ti

≤
∣∣∣∣∣
∫ ti

ti−1

γ′(ti)− γ′(t) dt

∣∣∣∣∣+
∣∣∣∣∣
∫ ti

ti−1

γ′(t) dt

∣∣∣∣∣+ ε∆ti

≤ ε∆ti + |γ(ti)− γ(ti−1)|+ ε∆ti

=
∣∣γ(ti)− γ(ti−1)

∣∣+ 2ε∆ti

Adding together all these inequalities, we have∫ b

a
|γ′(t)| dt ≤ v(γ, P) + 2ε(b − a) ≤ V(γ) + 2ε(b − a)

Since ε was arbitrary, we have the desired conclusion. ■

Theorem 2.7. Let γ : [a, b] → C be of bounded variation and suppose that f : [a, b] → C is continuous. Then
there is a complex number I such that for every ε > 0 there is a δ > 0 such that when P is a partition of [a, b]
with ∥P∥ < δ, then ∣∣∣∣∣I − m

∑
k=1

f (τk)(γ(tk)− γ(tk−1))

∣∣∣∣∣ < ε

for whatever choice of points τk ∈ [tk−1, tk].

This number I is called the integral of f with respect to γ over [a, b] and is designated by

I =
∫

f dγ

We first need the following lemma due to Cantor:
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Lemma 2.8 (Cantor). Let A1, A2, . . . be a sequence of non-empty compact, closed subsets of a topological space
X such that A1 ⊇ A2 ⊇ · · · . Then,

∞⋂
k=0

Ak ̸= ∅

Proof. Suppose
∞⋂

k=0
Ak = ∅. Define Bi = X\Ai, then, {Bi} forms an open cover for A1, consequently, has a

finite subcover, say {Bn1 , . . . , Bnk}. Now, since

A1 ⊆
k⋃

i=1

Bni ⊆
nk⋃

j=1

Bj

This immediately implies that

Ank = A ∩
nk⋂

i=1

Bi = ∅

a contradiction. ■

Proof of Theorem 2.7. Since f is continuous, it must be uniformly continuous. Thus, we can find positive
numbers δ1 > δ2 > · · · such that if |s − t| < δm, then | f (s)− f (t)| < 1

m . Let Pm denote the colletion of all
partitions P of [a, b] with ∥P∥ < δm. Note that we have P1 ⊇ P2 ⊇ · · · . Finally define Fm to be the closure
of {

S(P) :=
n

∑
k=1

f (τk)(γ(tk)− γ(tk−1)) | P ∈ Pm, tk−1 ≤ τk ≤ tk

}
(⋄)

We shall show that the following hold:{
F1 ⊇ F2 ⊇ · · ·
diam Fm ≤ 2

m V(γ)

The first sequence of containments follows trivially from the definition of Pm. Recall that in a metric
space, diam E = diam E for all E ⊆ X. With this in mind, it suffices to show that the diameter of the set (⋄)
is at most 2

m V(γ).
We shall show that if P ∈ Pm and P ⊆ Q are partitions of [a, b], then |S(P)− S(Q)| < 1

m V(γ).
Choose any interval [tk−1, tk] in the partition P and let Q refine it as

tk−1 = s0 < s1 < · · · < sn = tk

Let χ1, . . . , χn be a tagging of the refinement. Then,∣∣∣∣∣ f (τk)
n

∑
i=1

γ(si)− γ(si−1)−
n

∑
i=1

f (χi)(γ(si)− γ(si−1))

∣∣∣∣∣
=

∣∣∣∣∣ n

∑
i=1

( f (τk)− f (χi))(γ(si)− γ(si−1))

∣∣∣∣∣
≤ 1

m

n

∑
i=1

|γ(si)− γ(si−1)|

Adding together these inequalities for each subinterval [tk−1, tk], we have that |S(P)− S(Q)| ≤ 1
m V(γ).

Let P, R ∈ Pm and Q be their common refinement. Then, we have

|S(P)− S(R)| ≤ |S(P)− S(Q)|+ |S(Q)− S(R)| ≤ 2
m

V(γ)

12



From this it follows that diam Fm ≤ 2
m V(γ). Now, since diam Fm → 0 as m → ∞, it must be the case that

∞⋂
m=1

Fm is a singleton set, containing a single complex number, say I.

Let ε > 0, choose m > 2
ε V(γ). Choose δ = δm. Since I ∈ Fm, it must be the case that Fm ⊆ B(I, ε), giving

us the desired conclusion. ■

Proposition 2.9. Let f , g : [a, b] → C be continuous functions and let γ, σ : [a, b] → C be functions of
bounded variation. Then for any scalars α and β,

1.
∫ b

a α f + βg dγ = α
∫ b

a f dγ + β
∫ b

a g dγ

2.
∫ b

a f d(αγ + βσ) = α
∫ b

a f dγ + β
∫ b

a f dσ

Proof. ■

Lemma 2.10. Let γ : [a, b] → C be of bounded variation and let f : [a, b] → C be continuous. If a = t0 < t1 <
· · · < tn = b then ∫ b

a
f dγ =

n

∑
k=1

∫ tk

tk−1

f dγ

Theorem 2.11. If γ is piecewise smooth and f : [a, b] → C is continuous, then∫ b

a
f dγ =

∫ b

a
f (t)γ′(t) dt

Proof. It suffices to consider the case where γ is smooth, since the general statement follows by applying
our result to each piecewise smooth component and adding them up using Lemma 2.10.

We have that γ = u + iv is smooth where u, v : [a, b] → R; thus, both u and v must be smooth, further-
more, γ′ = u′ + iv′. As a result, it suffices to prove the theorem for γ being real valued and smooth. We
shall require the fact that is it real valued to apply the Mean Value Theorem.

Let ε > 0 and δ > 0 be such that for any partition P = {a = t0 < t1 < · · · < tn = b},∣∣∣∣∣
∫ b

a
f dγ −

n

∑
k=1

f (τk)(γ(tk)− γ(tk−1))

∣∣∣∣∣ < ε

2∣∣∣∣∣
∫ b

a
f (t)γ′(t) dt −

n

∑
k=1

f (τk)γ
′(τk)(tk − tk−1)

∣∣∣∣∣ < ε

2

for any choice of τk ∈ [tk−1, tk]. Using the mean value theorem, choose τk such that

γ′(τk) =
γ(tk)− γ(tk−1)

tk − tk−1

Consequently, ∣∣∣∣∣
∫ b

a
f dγ −

∫ b

a
f (t)γ′(t) dt

∣∣∣∣∣ < ε

and we have the desired conclusion. ■
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Definition 2.12 (Bounded Variation). Let γ : [a, b] → C be a path. The set {γ(t) | a ≤ t ≤ b} is called
the trace of γ and is denoted by {γ}. The path γ is said to be rectifiable if it is of bounded variation.

Definition 2.13 (Line Integral). If γ : [a, b] → C is a rectifiable path and f is a function defined and
continuous on the trace of γ. Then, the line integral of f along γ is∫ b

a
f (γ(t)) dγ(t)

Theorem 2.14. If γ : [a, b] → C is a rectifiable path and φ : [c, d] → [a, b] is a continuous non-decreasing
function with φ(c) = a and φ(d) = b. Then, for any function f continuous on {γ},∫

γ
f =

∫
γ◦φ

f

Proof. Let ε > 0. Then, there is a δ1 such that for all partitions P = {c = s0 < s1 < · · · < sn = d} with
∥P∥ < δ, and a tagging, σk ∈ [sk−1, sk],∣∣∣∣∣

∫
γ◦φ

f −
n

∑
k=1

f (γ ◦ φ(σk))(γ ◦ φ(sk)− γ ◦ φ(sk−1))

∣∣∣∣∣ < ε

2

furthermore, whenever s, t ∈ [c, d] with |s − t| < δ1, |φ(s)− φ(t)| < δ2 (note that we can do this since
the function φ is uniformly continuous).

Choose δ2 > 0 such that if P = {a = t0 < t1 < · · · < tn = b} with ∥P∥ < δ2 and a tagging τk ∈ [tk−1tk],
then ∣∣∣∣∣

∫
γ

f −
n

∑
k=1

f (γ(τk))(γ(tk)− γ(tk−1))

∣∣∣∣∣ < ε

2

Finally, let σk = φ(τk), then we have through a trivial manipulation that∣∣∣∣∣
∫

γ
f −

∫
γ◦φ

f

∣∣∣∣∣ < ε

■

Definition 2.15. Let σ : [c, d] → C and γ[a, b] → C be rectifiable paths. The path σ is equivalent to γ
if there is a function φ : [c, d] → [a, b] which is continuous, strictly increasing, and with φ(c) = a and
φ(d) = b such that σ = γ ◦ φ.

A curve is an equivalence class of paths. A trace of a curve is the trace of any one of its members. A
curve is smooth (piecewise smooth) if and only if some one of its representatives is smooth (piecewise
smooth).

Definition 2.16. If γ is a rectifiable curve then denote by −γ : [−b,−a] → C the curve defined by
(−γ)(t) = γ(−t) for −b ≤ t ≤ −a. This may also be denoted by γ−1 (although the former is more
customary). For some c ∈ C, let γ + c : [a, b] → C denote the curve defined by (γ + c)(t) = γ(t) + c.

14



Definition 2.17. Let γ[a, b] → C be a rectifiable path and for a ≤ t ≤ b, let |γ|(t) be V(γ, [a, t]). That is,

|γ|(t) = sup

{
n

∑
k=1

|γ(tk)− γ(tk−1)| : {a = t0 < t1 < · · · < tn = t} is a partition of [a, t]

}

Define ∫
γ

f |dz| =
∫ b

a
f (γ(t)) d|γ|(t)

Proposition 2.18. Let γ be a rectifiable curve and suppose that f is a function continuous on {γ}. Then

(a)
∫

γ f = −
∫
−γ f

(b)
∣∣∣∫γ f

∣∣∣ ≤ ∫γ | f | |dz| ≤ V(γ) sup{| f (z)| : z ∈ {γ}}

(c) If c ∈ C, then
∫

γ f (z) dz =
∫

γ+c f (z − c) dz

Proof. All follow from definitions. ■

Theorem 2.19 (Fundamental Theorem of Calculus for Line Integrals). Let G be open in C and let γ be
a rectifiable path in G with initial and end points α and β respectively. If f : G → C is a continuous function
with a primitive F : G → C, then ∫

γ
f = F(β)− F(α)

We would require the following lemma in order to prove the above theorem

Lemma 2.20. If G is an open set in C, γ : [a, b] → G is a rectifiable path, and f : G → C is continuous then for
every ε > 0 there is a polygonal path Γ in G such that Γ(a) = γ(a), Γ(b) = γ(b) and |

∫
γ f −

∫
Γ f | < ε.

Proof. We shall divide the proof into two cases:

• Case I: G is an open disk, say B(c, r)

Since {γ} is compact, there is ρ > 0 such that {γ} ⊆ B(c, ρ) ⊆ G. Consequently, we shall proceed
with the assumption that G = B(c, ρ). Therefore, G is compact and f is uniformly continuous on G.

Let ε > 0. Then, there is a δ1 such that whenever |s − t| < δ1, | f (s)− f (t)| < ε. Similarly, there is
δ2 > 0 such that whenever |s − t| < δ2, |γ(s)− γ(t)| < δ1.

Furthermore, due to Theorem 2.7, there is a mesh size, δ3 such that for any partition P = {a = t0 <
t1 < · · · < tn = b} with ∥P∥ < δ3,∣∣∣∣∣

∫
γ

f −
n

∑
k=1

f (γ(τk))(γ(tk)− γ(tk−1))

∣∣∣∣∣
Let δ = min{δ2, δ3} and P = {a = t0 < t1 < · · · < tn = b} be a partition of [a, b] with ∥P∥ < δ. Define
the polygonal path Γ by

Γ(t) =
1

tk − tk−1

(
(tk − t)γ(tk−1) + (t − tk−1)γ(tk)

)
15



which is essentially the straight line joining the points γ(tk−1) and γ(tk).

First, note that ∫
Γ

f =
n

∑
k=1

γ(tk)− γ(tk−1)

tk − tk−1

∫ tk

tk−1

f (Γ(t)) dt

Then, we have∣∣∣∣∣
∫

γ
f −

∫
Γ

f

∣∣∣∣∣ ≤ ε +

∣∣∣∣∣ n

∑
k=1

f (γ(τk))(γ(tk)− γ(tk−1))−
n

∑
k=1

γ(tk)− γ(tk−1)

tk − tk−1

∫ tk

tk−1

f (Γ(t)) dt

∣∣∣∣∣
≤ ε +

∣∣∣∣∣ n

∑
k=1

γ(tk)− γ(tk−1)

tk − tk−1

∫ tk

tk−1

f (γ(tk))− f (Γ(t)) dt

∣∣∣∣∣
≤ ε +

n

∑
k=1

|γ(tk)− γ(tk−1)|
tk − tk−1

∣∣∣∣∣
∫ tk

tk−1

f (γ(tk))− f (Γ(t)) dt

∣∣∣∣∣
≤ ε + ε

n

∑
k=1

|γ(tk)− γ(tk−1)| ≤ ε(1 + V(γ))

This completes the proof for the first case.

• Case II: G is arbitrary

Since {γ} is compact, there is r > 0 such that for all z ∈ γ, B(z, r) ⊆ G. Using uniform continuity,
there is δ > 0 such that |γ(s)− γ(t)| < r whenever |s − t| < δ. Let P = {a = t0 < t1 < · · · < tn = b}
be a partition with ∥P∥ < δ. Define γk : [tk−1, tk] → C. Note that {γk} ⊆ B(γ(tk−1), r) and thus, we
can apply Case I to obtain a polygonal path Γk such that |

∫
γk

f −
∫

Γk
f | < ε/n. The conclusion is now

obvious by pasting together all the Γk’s.

■

Proof of Theorem 2.19. Again, we divide the proof into two cases:

• Case I: γ : [a, b] → C is piecewise smooth.

Then, we trivially have∫ b

a
f (γ(t))γ′(t) dt =

∫ b

a
F′(γ(t))γ′(t) dt =

∫ b

a
( f ◦ γ)′(t) dt = F(γ(b))− F(γ(a))

• Case II: General case

Recall that a polygonal path is piecewise smooth. That is, for any polygonal path Γ that begins at γ(a)
and ends at γ(b),

∫
Γ f = F(γ(b)) − F(γ(a)). Since any rectifiable curve can be approximated by a

polygonal path, we have a suitable Γ for every ε > 0 such that∣∣∣∣∣
∫

γ
f − (F(β)− F(α))

∣∣∣∣∣ =
∣∣∣∣∣
∫

γ
f −

∫
Γ

f

∣∣∣∣∣ < ε

giving us the desired conclusion.

■

Corollary 2.21. Let G, γ and f satisfy the same hypothesis as in Theorem 2.19. If γ is a closed curve,
then ∫

γ
f = 0
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Recall that the fundamental theorem of calculus in real analysis claimed that each continuous function
had a primitive. This is untrue in complex analysis. Consider the function f (z) = |z|2. That is, f (x + iy) =
x2 + y2. Suppose this has a primitive, say F = U + iV. Then, using CR, we must have

∂U
∂x

=
∂V
∂y

= x2 + y2 and
∂U
∂y

=
∂V
∂x

= 0

This implies that U(x, y) = u(x) for some function u, but this gives

u′(x) = x2 + y2

which is obviously not possible.

2.2 Power Series for Analytic Functions

Theorem 2.22 (Leibniz’s Rule). Let φ : [a, b]× [c, d] → C be a continuous function and define g : [c, d] → C

yb

g(t) =
∫ b

a
φ(s, t) ds

Then g is continuous. Moreover, if ∂φ
∂t exists and is a continuous function on [a, b]× [c, d] then g is contin-

uously differentiable and

g′(t) =
∫ b

a

∂φ

∂t
(s, t) ds

Proof. We shall first show that g is continuous. Since φ is continuous, it is uniformly continuous on [a, b]×
[c, d]. Choose some t0 ∈ [c, d]. Then, there is a δ such that whenever |(s, t)− (s′, t′)| < δ, |φ(s, t)− φ(s′, t′)| <
ε. Consequently, whenever |t − t0| < δ, |g(t)− g(t0)| < (b − a)ε. This implies continuity.

Fix a point t0 ∈ [c, d] and choose any ε > 0. Further, denote ∂φ
∂t by φ2, which is given to be continuous,

and thus, is uniformly continuous on [a, b]× [c, d]. Let δ > 0 be such that whenever |(s, t)− (s′, t′)| < δ,
|φ2(s′, t′)− φ(s, t)| < ε. That is,

|φ2(s, t)− φ2(s, t0)| < ε

whenever |t − t0| < δ and a ≤ s ≤ b. Therefore, we have∣∣∣∣∫ t

t0

φ2(s, τ)− φ2(s, t0) dτ

∣∣∣∣ < ε|t − t0|

Note that Φ(t) = φ(s, t)− tφ2(s, t0) is a primitive of φ2(s, t)− φ2(s, t0). Due to the fundamental theorem
of calculus, we must have ∣∣φ(s, t)− φ(s, t0)− (t − t0)φ2(s, t0)

∣∣ ≤ ε|t − t0|
for all s ∈ [a, b] whenever |t − t0| < δ. This is equivalent to writing

−ε ≥ φ(s, t)− φ(s, t0)

t − t0
− φ2(s, t0) ≤ ε

Integrating both sides with respect to s, we have∣∣∣∣∣ g(t)− g(t0)

t − t0
−
∫ b

a
φ2(s, t0) ds

∣∣∣∣∣ ≤ ε(b − a)

This shows that g is differentiable and

g′(t) =
∫ b

a
φ2(s, t) ds

Obviously the right hand side of the above equality is continuous and thus g is continuously differentiable.
■
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Example 2.23. Let z be a complex number with |z| < 1. Then,

∫ 2π

0

eis

eis − z
ds

and equivalently stated, if γ : [0, 2π] → C is a closed path given by γ(t) = eit, then∫
γ

1
x − z

dx = 2π

Proof. Define the function

g(t) =
∫ 2π

0

eis

eis − tz
ds

for 0 ≤ t ≤ 1. Note that in this region, the function

φ(s, t) =
eis

eis − tz

is well defined, since |eis| = 1 > |tz|.
Using Theorem 2.22, we have

g′(t) =
∫ 2π

0

zeis(
eis − tz

)2 ds

Consider the function
Φ(s) =

iz
eis − tz

Notice that

Φ′(s) =
zeis

eis − tz

Then, using Theorem 2.19, g′(t) = Φ(2π)− Φ(0) = 0. Therefore, g is constant. The conclusion follows
from calculating t = 0. ■

Proposition 2.24. Let f : G → C be analytic and suppose B(a, r) ⊆ G where r > 0. If γ(t) = a + reit,
0 ≤ t ≤ 2π, then

f (z) =
1

2πi

∫
γ

f (w)

w − z
dw

for |z − a| < r.

Proof. It is not hard to see that without loss of generality we may suppose that a = 0 and r = 1. Then, we
would like to show that

f (z) =
1

2π

∫ 2π

0

f (eis)eis

eis − z
ds

for |z| < 1. This is equivalent to showing

∫ 2π

0

(
f (eis)eis

eis − z
− f (z)

)
ds = 0

Define the function

φ(s, t) =
f (z + t(eis − z))eis

eis − z
− f (z)

18



and g(t) =
∫ 2π

0 φ(s, t) ds. We would like to show that g(1) = 0.
Note that the function φ(s, t) is well defined and continuously differentiable on the interval [0, 2π] ×

[0, 1] (it is here that we use the fact that |z| < 1). Then,

g′(t) =
∫ 2π

0
f (z + t(eis − z))eis ds

Consider the function Φ(s) = 1
it f (z + t(eis − z)). Trivially note that Φ′(s) = f (z + t(eis − z))eis. Using

the fundamental theorem of calculus, we have

g′(t) = Φ(2π)− Φ(0) = 0

Implying that g is constant on [0, 1]. Recall that we have already calculated

g(0) =
∫ 2π

0

f (z)
eis − z

− f (z) ds = 0

This completes the proof. ■

Lemma 2.25. Let γ be a rectifiable curve in C and suppose that Fn and F are continuous functions on {γ} such
that the sequence {Fn} converges uniformly to F. Then∫

γ
F = lim

n→∞

∫
γ

Fn

Proof. Let ε > 0 be given. Then, there is a positive integer N such that for all n ≥ N, |Fn − F| ≤ ε/V(γ).
Then, we have (for all n ≥ N) ∣∣∣∣∣

∫
γ

F − Fn

∣∣∣∣∣ ≤
∫

γ
|F − Fn| |dz| ≤ ε

This completes the proof. ■

Theorem 2.26. Let f be analytic in B(a, R); then f (z) =
∞
∑

n=0
an(z− a)n for |z− a| < R, where an = 1

n! f (n)(a)

and this series has radius of convergence ≥ R.

Proof. Let z ∈ B(a, R). Choose |z − a| < r < R and define γ to be the circle ∂B(a, r). Then, using Proposi-
tion 2.24,

f (z) =
1

2πi

∫
γ

f (w)

w − z
dw

Now, note that
1

w − z
=

1
w − a

· 1
1 − z−a

w−a
=

1
w − a

∞

∑
k=0

(
z − a
w − a

)k

Since w ∈ {γ}, there must exist M > 0 such that | f (w)| < M for all w ∈ {γ} and thus

| f (w)||z − a|n
|w − a|n+1 ≤ M

r

(
|z − a|

r

)n
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Due to the Weierstrass M-test, the power series converges uniformly for w ∈ {γ}. And due to the
Weierstrass M-test, the power series converges uniformly for w ∈ {γ}. Therefore, we may write

f (z) =
1

2πi

∫
γ

f (w)

w − z

=
1

2πi

∫
γ

f (w)

w − a

∞

∑
k=0

(
z − a
w − a

)

=
∞

∑
k=0

[
1

2πi

∫
γ

f (w)

(w − a)n+1 dw

]
(z − a)n

Define

an =
1

2πi

∫
γ

f (w)

(w − a)n+1 dw

Then, the power series ∑∞
n=0 an(z − a)n converges to f (z) on B(a, r). Consequently, f is infinitely differ-

entiable at z and thus,

an =
1
n!

f (n)(a)

Now, the characterization of an is independent of γ and therefore r. Consequently, this power series
converges to f (z) whenever |z − a| < R. Therefore, the radius of convergence must be at least R. ■

Corollary 2.27. If f : G → C is analytic adn a ∈ G. Then f (z) =
∞
∑

n=0
an(z − a)n for |z − a| < R where

R = d(a, ∂G).

Corollary 2.28. If f : G → C is analytic, then it is infinitely differentiable.

Corollary 2.29. If f : G → C is analytic and B(a, r) ⊆ G, then

f (n)(a) =
n!

2πi

∫
γ

f (w)

(w − a)n+1 dw

where γ(t) = a + reit for t ∈ [0, 2π].

Proposition 2.30 (Cauchy’s Estimate). Let f be analtic in B(a, R) and suppose | f (z)| ≤ M for all z ∈
B(a, R). Then

| f (n)(a)| ≤ n!M
Rn

Proof. Let r < R and γ(t) = a + reit for 0 ≤ t ≤ 2π.

| f (n)(a)| ≤ n!
2π

∣∣∣∣∣
∫

γ

f (w)

(w − a)n+1 ds

∣∣∣∣∣ ≤
∫

γ

∣∣∣∣∣ f (w)

(w − a)n+1

∣∣∣∣∣ |dw| ≤ n!M
rn

The result follows by letting r → R−. ■
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Proposition 2.31. Let f be analytic in the disk B(a, R) and suppose that γ is a closed rectifiable curve in B(a, R).
Then ∫

γ
f = 0

Proof. It suffices to show that f has a primitive on B(a, R) whence, we would be done by Theorem 2.19.
Due to Theorem 2.26, there is a power series representation for f ,

f (z) =
∞

∑
n=0

an(z − a)n

for z ∈ B(a, R).
Define the function

F(z) =
∞

∑
n=0

an

n + 1
(z − a)n+1

Notice that the radius of convergence of F is equal to that of f and F′ = f . As a result, F is a primitive
for f on B(a, R). ■

2.3 Zeros of Analytic Functions

Definition 2.32 (Entire Function). An entire function si a function which isd efined and analytic in the
whole complex plane C.

We immediately obtain the following result:

Proposition 2.33. If f is an entire function, then f has a power series expansion with infinite radius of conver-
gence.

Lemma 2.34. No non-constant polynomial is bounded. That is, if p(z) = zn + an−1zn−1 + · · ·+ a0 ∈ C[z].
Then, lim

z→∞
p(z) = ∞.

Proof. Trivial. ■

Theorem 2.35 (Liouville). If f is a bounded entire function, then f is constant.

In the proof of Liouville’s Theorem, we shall require the following lemma:

Lemma 2.36. If G is open and connected and f : G → C is differentiable with f ′(z) = 0 for all z ∈ G, then f
is constant on G.

Proof. Choose any z0 ∈ G and let ω0 = f (z0). Define A = f−1({z0}). Obviously, A is closed in G. Choose
a ∈ A and ε > 0 such that B(a, ε) ⊆ G. Pick any z ∈ B(a, ε) with a ̸= z. Define g(t) = f ((1 − t)a + tz).
Note that g′(s) = f ′((1 − t)a + tz)(z − a) = 0, consequently, g is constant and therefore, f (z) = g(1) =
g(0) = ω0. Therefore, B(a, ε) ⊆ A and thus A is open. This shows that A must be equal to G, completing
the proof. ■
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Prof of Theorem 2.35. Let M > 0 be such that | f (z)| ≤ M for all z ∈ C. Choose any a ∈ A. Then, for any
R > 0, applying Proposition 2.30, we have

| f ′(a)| ≤ M
R

Letting R → ∞, we have f ′(a) = 0 for all a ∈ C. We are now done due to the preceeding lemma. ■

We may now prove the fundamental theorem of algebra:

Theorem 2.37 (Fundamental Theorem of Algebra). If p(z) is a non-constant polyomial then there is a
complex number a with p(a) = 0.

Proof. Suppose not. Then, f (z) = 1
p(z) is entire. Since lim

z→∞
p(z) = ∞, lim

z→∞
f (z) = 0. Therefore, there is ε

such that whenever |z| > ε, | f (z)| < 1. This immediately implies that f is bounded on C, consequently is
constant. A contradiction. ■

Let us look at another application of Liouville’s Theorem.

Example 2.38. Let f be an entire function with ℜ( f ) bounded above. Then, f is constant.

Proof. Consider the entire function g(z) = exp( f (z)). Since |g(z)| = | exp(ℜ( f (z)))|, it is bounded and
therefore, constant. Hence, f (z) takes values in a discrete set and owing to it being a continuous map, it
must be constant. ■

Theorem 2.39. Let G ⊆ C be a region, and f : G → C be an analytic function. Then the following are
equivalent

(a) f ≡ 0

(b) there is a point a ∈ G succh that f (n)(a) = 0 for each n ≥ 0

(c) the set f−1({0}) has a limit point in G

Proof. It is clear that (a) =⇒ (b) ∧ (c). We shall show that (c) =⇒ (b) and (b) =⇒ (a).

• (c) =⇒ (b) : Let a be a limit point of the set f−1({0}). We shall show that f (n)(a) = 0 for all n ∈ N0.
Let n be the smallest integer ≥ 1 such that f (r)(a) = 0 for all r < n. Now, there is R > 0 such that
B(a, R) ⊆ G, and thus there is a power series expansion around a for all z ∈ B(a, R), given by

f (z) =
∞

∑
k=n

ak(z − a)k

Define the function

g(z) =
∞

∑
k=0

an+k(z − a)k

Then g(a) = an ̸= 0. It is not hard to see that g(z) is analytic in B(a, R), as a result, there is some
0 < r < R such that g(z) ̸= 0 for each z ∈ B(a, r). But since a is a limit point of the set f−1({0}),
there is some b ̸= a in f−1({0}) ∩ B(a, r), and we have 0 = f (b) = (b − a)ng(b), a contradiction. This
shows that no such n ∈ N can exist.
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• (c) =⇒ (b) : Let A = {z ∈ G | f (n)(z) = 0, ∀ n ∈ N}. We shall show that A is clopen in G. Indeed, let
a ∈ A. Since G is open, there is R > 0 such that B(a, R) ⊆ G. Let b ∈ B(a, R). Note that f has a power
series expansion around a that is valid for all z ∈ B(a, R). Since a ∈ A, this power series expansion is
identically zero, as a result, f (b) = 0 and B(a, R) ⊆ A and A is open.

Next, let {zk} be a sequence of points in A converging to a ∈ G. Then, using continuity of f (n), we
conclude that f (n)(a) = lim f (n)(zk) = 0 and A is closed. This completes the proof.

■

Lemma 2.40. Let G ⊆ C be a region and f : G → C is analytic such that f (G) is a subset of a circle. Then f is
constant.

Proof. ■

Theorem 2.41 (Maximum Modulus Theorem). Let G ⊆ C be a region and f : G → C be an analytic
function such that there is a ∈ G with | f (a)| ≥ | f (z)| for all z ∈ G. Then f is constant on G.

Proof. Let r > 0 be such that B(a, r) ⊆ G and let γ be the curve given by γ(t) = a + reit. Then, we have

f (a) =
1

2πi

∫
γ

f (w)

w − a
dw

=
1

2π

∫ 2π

0
f (a + reit)

and equivalently,

| f (a)| ≤ 1
2π

∫ 2π

0
| f (a + reit)| dt ≤ | f (a)|

As a result, ∫ 2π

0
| f (a)| − | f (a + reit)| dt = 0

since the integrand is a continuous nonnegative function of t, it must be identically zero. As a result, f
maps the ball B(a, r) to the circle |z| = | f (a)|. Due to Lemma 2.40, f is constant on B(a, r). Since B(a, r) has
at least one limit point in G (say a for example), it must be constant on G. ■

2.4 Cauchy’s Theorem

Definition 2.42 (Homotopy for Closed Curves). Let G ⊆ C and γ0, γ1 : [0, 1] → G be two closed
rectifiable curves. Then γ0 is homotopic to γ1 in G if there is a continuous function Gamma : [0, 1] ×
[0, 1] → G such that {

Γ(s, 0) = γ0(s) and γ(s, 1) = γ1(s) 0 ≤ s ≤ 1
Γ(0, t) = Γ(1, t) 0 ≤ t ≤ 1

We denote this by γ0 ≃ γ1 (mod G).
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Lemma 2.43. The relation ≃ is an equivalence relation over the set of all closed curves in G.

Proof. Standard proof from Algebraic Topology. ■

Theorem 2.44 (Cauchy). Let G ⊆ C be a region and f : G → C be analytic. Let γ0 and γ1 be homotopic
closed curves. Then ∫

γ0

f =
∫

γ1

f

Proof. Let Γ : I2 → G be the homotopy taking γ0 to γ1. Since I2 is compact, so is Γ(I2). Consequently, due
to the Lebesgue Number Lemma, there is r > 0 such that for all a ∈ Γ(I2), B(a, r) ⊆ G. Using the uniform
continuity of Γ, there is δ > 0 such that whenever |(s′, t′)− (s, t)| < δ, |Γ(s′, t′)− Γ(s, t)| < r. Choose n ∈ N

such that
√

2/n < δ. Finally, let γt denote the curve Γ(s, t) where t is fixed and 0 ≤ s ≤ 1.
Let Zi,j denote the point Γ

(
i
n , j

n

)
and Qi,j denote the square

(
i
n , j

n

)
→

(
i+1

n , j
n

)
→

(
i+1

n , j+1
n

)
→(

i
n , j+1

n

)
→
(

i
n , j

n

)
. We shall show that ∫

Γ(Qi,j)
f = 0

which would imply the desired conclusion through a straightforward inductive process.
But since |z1 − z2| <

√
2/n < δ for all z1, z2 ∈ Qi,j, we can conclude that Γ(Qi,j) ⊆ B

(
Zi,j, r

)
, whence

we are done due to Proposition 2.31. ■

Corollary 2.45. Let G ⊆ C be a region and γ a closed rectifiable curve in G which is nulhomotopic.
Then, ∫

γ
f = 0

for every analytic function f defined on G.

Corollary 2.46. Let G ⊆ C be a region and γ0, γ1 be path homotopic curves. Then,∫
γ0

f =
∫

γ1

f

for every analytic function f defined on G.

Corollary 2.47. If G ⊆ C is simply connected then
∫

γ f = 0 for every closed rectifiable curve γ ⊆ G
and every analytic function f : G → C.

Theorem 2.48. If G is simply connected and f : G → C is analytic in G, then f has a primitive in G.

Proof. Fix some basepoint a ∈ G and for each z ∈ G, define F : G → C as F(z) =
∫

γ f . Due to the previous
result, this function is well defined. We shall show that F is a primitive for f on G. Let z0 ∈ G. Since G is
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open, there is r > 0 such that B(z0, r) ⊆ G. Note that this is a convex set centered at z0, as a result, all line
segments between two points are contained in it. Choose some z ∈ B(z0, r). Then,

F(z)− F(z0)

z − z0
− f (z0) =

1
z − z0

∫
[z0,z]

( f (w)− f (z0)) dw

=⇒
∣∣∣∣∣ F(z)− F(z0)

z − z0
− f (z0)

∣∣∣∣∣ ≤
∣∣∣∣ 1
z − z0

∣∣∣∣ ∫
[z0,z]

∣∣( f (w)− f (z0))
∣∣ |dw|

Let ε > 0 be given. Note that B(z0, r) is compact in G and thus, f is uniformly continuous. As a result, there
is a small enough r > 0 such that for all z ∈ B(z0, r), | f (z)− f (z0)| < ε. And thus,∣∣∣∣∣ F(z)− F(z0)

z − z0
− f (z0)

∣∣∣∣∣ ≤ ε

which implies the desired conclusion. ■

Theorem 2.49 (Morera). Let G ⊆ C be an open set and f : G → C be a continuous function. If for every
triangular path ∆ in G, the value of

∫
∆ f = 0, then f is analytic over G.

Proof. Note that it suffices to show this in the case G = B(a, R) for some a ∈ C and R > 0, since for every
a ∈ G, there is an open ball containing it and showing the analyticity of f every such ball would imply the
analyticity of f on G.

Let [x, y] denote the straight line segment that begins at x and ends at y. Define the function F : G → C

by

F(z) =
∫
[a,z]

f

We shall show that F′ = f , which would imply the analyticity of F and therefore that of f . Choose some
z0 ∈ G. For any z ∈ G, we have

F(z)− F(z0) =
∫
[a,z]

f −
∫
[a,z0]

f =
∫
[z0,z]

f

Then,
F(z)− F(z0)

z − z0
− f (z0) =

1
z − z0

∫
[z0,z]

(
f − f (z0)

)
Choose r > 0 such that B(z0, r) ⊆ G. Since f is continuous on G, it is uniformly continuous on B(z0, r).

Let ε > 0 be given. There is δ > 0 such that whenever |z − z0| < δ, | f (z)− f (z0)| < ε. Consequently, for all
such z, we have ∣∣∣∣∣ F(z)− F(z0)

z − z0
− f (z0)

∣∣∣∣∣ ≤ 1
|z − z0|

∫
[z0,z]

∣∣ f (t)− f (z0)
∣∣ |dt| ≤ ε

This completes the proof. ■

Theorem 2.50 (Goursat). Let G ⊆ C be an open set and f : G → C be differentiable. Then, f is analytic over
G.
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Proof. Due to Morera’s Theorem, it suffices to show that for every triangular path ∆ = [a, b, c, a] ⊆ G, the
value

∫
∆ f = 0.

We shall define a sequence of closed triangular regions ∆ = ∆(0) ⊇ ∆(1) ⊇ · · · . Obviously, since each
triangular region is closed and bounded, it must be compact.

Divide the triangle ∆(i) into four congruent triangles using the midpoint of each side. Let the smaller
triangles be denoted by ∆1, . . . , ∆4. Define

j = argmaxj∈{1,...,4}

∣∣∣∣∣
∫

∆j

f

∣∣∣∣∣ and ∆(i+1) = ∆j

We have 
∣∣∣∫∆(i) f

∣∣∣ ≤ 4
∣∣∣∫∆(i+1) f

∣∣∣
2 diam ∆(i+1) = diam ∆(i)

2V(∆(i+1)) = V(∆(i))

Then, using Lemma 2.8,
∞⋂

i=0
∆(i) is singleton, say {z0}. Choose some ε > 0. Since f is differentiable at z0,

there is δ > 0 such that ∣∣∣∣∣ f (z)− f (z0)

z − z0
− f ′(z0)

∣∣∣∣∣ < ε

whenever |z − z0| < δ. Choose n ∈ N such that diam ∆(n) = 1
2n diam ∆ < δ. Therefore, ∆(n) ⊆ B(z0, δ).

Then, we have ∫
∆(n)

f =
∫

∆(n)
f (z)− f (z0)− (z − z0) f ′(z0) dz

whence ∣∣∣∣∫∆(n)
f
∣∣∣∣ = ∣∣∣∣∫∆(n)

f (z)− f (z0)− (z − z0) f ′(z0) dz
∣∣∣∣

≤
∫

∆(n)
| f (z)− f (z0)− (z − z0) f ′(z0)| |dz|

≤
∫

∆(n)
ε|z − z0| |dz|

≤ ε diam ∆(n)V(∆(n))

= ε(diam ∆)V(∆)
1
4n

from which it follows that ∣∣∣∣∫∆
f
∣∣∣∣ ≤ 4n

∣∣∣∣∫∆(n)
f
∣∣∣∣ ≤ ε(diam ∆)V(∆)

Since ε was arbitrary, we have the desired conclusion. ■

Due to Theorem 2.50, we may redefine an analytic function in its more accepted definition.

Definition 2.51 (Analytic). Let G ⊆ C be open. Then f : G → C is said to be analytic if it is differen-
tiable over G.

2.5 Winding Numbers
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Proposition 2.52. If γ : [0, 1] → C is a closed rectifiable curve and a /∈ {γ}, then

1
2πi

∫
γ

dz
z − a

is an integer.

Proof. The proof is divided into two parts. First, we prove the statement of the proposition for all piecewise
smooth curves.

• Case I: γ is piecewise smooth

• Case II: γ is an arbitrary rectifiable curve

■

Definition 2.53 (Winding Number). If γ is a closed rectifiable curve in C then for a /∈ {γ},

n(γ, a) =
1

2πi

∫
γ

1
z − a

dz

is called the winding number of γ around a.

Theorem 2.54 (Cauchy’s Integral Formula). Let f : G → C be analytic and γ ⊆ G be a nulhomotopic
rectifiable closed contour. Then, for a /∈ {γ},

1
2πi

∫
γ

f (z)
z − a

= n(γ; a) f (a)

Proof. Note that the function f (z)− f (a) is analytic and has a zero at z = a, therefore, there is an analytic
function g : G → C such that f (z)− f (a) = g(z)(z − a). From here, we have that

1
2πi

∫
γ

f (z)− f (a)
z − a

=
1

2πi

∫
γ

g(z) = 0

and therefore,
1

2πi

∫
γ

f (z)
z − a

=
1

2πi

∫
γ

f (a)
z − a

= n(γ; a) f (a)

where the last equality follows from the definition of the winding number. ■

Lemma 2.55. Let G ⊆ C be a region and γ ⊆ G be a closed rectifiable contour and φ : {γ} → C be continuous.
For each positive integer m, let

Fm(z) =
∫

γ

φ(w)

(w − z)m dw

Then Fm is analytic on C\{γ}. Furthermore, F′
m(z) = mFm+1(z).
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Proof. Fix some a ∈ C\{γ}. Now, there is R > 0 such that B(a, R) ⊆ C\{γ}. Consider some z ∈ B(a, R).
Then,

Fm(z)− Fm(a) =
1

2πi

∫
γ

φ(w)

[
1

(w − z)m − 1
(w − a)m

]
dw

=
1

2πi

∫
γ

φ(w)

(
1

w − z
− 1

w − a

)(m−1

∑
k=0

1
(w − z)k(w − a)m−k−1

)
dw

=
z − a
2πi

∫
γ

φ(w)

(
m

∑
k=1

1
(w − z)k(w − a)m+1−k

)
dw

From here, it follows that

Fm(z)− Fm(a)
z − a

=
1

2πi

∫
γ

φ(w)

(
m

∑
k=1

1
(w − z)k(w − a)m+1−k

)
dw

in the limit z → a, we get

F′
m(z) =

m
2πi

∫
γ

φ(w)

(w − a)m dw = mFm+1(z)

It is now easy to see that the function is analytic. ■

Theorem 2.56 (Extended Cauchy’s Integral Formula). Let f : G → C be an analytic function and γ ⊆ G
be a closed contour of bounded variation. Then, for every a ∈ G\{γ}, and every nonnegative integer n,

n(γ; a) f (n)(a) =
1

2πi

∫
γ

f (w)

(w − a)n+1 dw

Proof. Follows from the above lemma. ■

2.6 The Open Mapping Theorem

Theorem 2.57. Let G ⊆ C be a region and f : G → C be analytic having zeros a1, . . . , an counting multiplicity
in G. Then, for any closed curve γ ⊆ G, we have

1
2πi

∫
γ

f ′(z)
f (z)

=
n

∑
k=1

n(γ; ak)

Proof. Recall that if f has a zero at z = a, then there is an analytic function g : G → C such that f (z) =
(z− a)g(z). Continuing this way, we have an analytic function h : G → C such that f (z) = ∏n

k=1(z− a)h(z).
Then,

1
2πi

∫
γ

f ′(z)
f (z)

=
1

2πi

∫
γ

n

∑
k=1

1
z − ak

+
h′(z)
h(z)

Since the function h has no zeros in G, the function h′/h is analytic on G and therefore, the integral is 0. The
conclusion now follows. ■
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Lemma 2.58. Let f be analytic on B(a, R) for some R > 0. If f (z)− α has a zero of order m at z = a, then
there is an ε > 0 and δ > 0 such that for 0 < |ζ − α| < δ, the equation f (z) = ζ has exactly m simple roots in
B(a, ε).

Proof. ■

In particular, if m ≥ 1, then for each ζ ∈ B(α, δ), there is a corresponding ξ ∈ B(a, ε) such that f (ξ) = ζ.
Therefore, B(α, δ) ⊆ f (B(a, ε)).

Theorem 2.59 (Open Mapping Theorem). Let G ⊆ C be a region and f : G → C be analytic. Let U be
open in G. Then f (U) is open in C.

Proof. Choose some a ∈ U. Then, there is some R > 0 such that B(a, R) ⊆ U. Due to Theorem 2.57 and the
remark following it, there is ε > 0 and δ > 0 such that B( f (a), δ) ⊆ f (B(a, ε)). The conclusion is immediate
now. ■

Corollary 2.60. Suppose f : G → C is one-one, analytic and f (G) = Ω. Then f−1 : Ω → C is analytic
and ( f−1)′(ω) = f ′(z)−1 where ω = f (z).

Proof. From Theorem 2.59, it is immediate that f is a homeomorphism. Let g = f−1. We have g ◦ f = id,
from which the conclusion follows. ■

2.7 The Complex Logarithm

In this section, we shall construct the complex logarithm, which is an inverse function to the analytic func-
tion exp : C → C. In particular, we shall prove a more general theorem, which would immediately imply
the existence of the complex logarithm.

Theorem 2.61. Let Ω ⊆ C be a simply connected region and f : Ω → C be an analytic function which does
not vanish on Ω. Then, there is an analytic function g : Ω → C such that f (z) = eg(z) for all z ∈ Ω.

Proof. Fix a basepoint z0 ∈ Ω and define

g(z) =
∫

γ

f ′(z)
f (z)

dz + c0

where γ is any path from z0 to z and c0 ∈ C is such that ec0 = f (z0), which exists since f does not vanish
on Ω. Further, since f ′/ f is analytic on Ω, the function g is analytic on Ω.

Consider the analytic function h = f e−g on Ω. Differentiating this function, we have

h′(z) = f ′(z)e−g(z) − f (z)g′(z)e−g(z) = 0

whence h is constant on Ω. Since h(z0) = 1, we are done. ■

Note that the domain being simply connected is essential lest there be an analytic function g : C\{0} →
C such that eg(z) = 1/z, which is a contradiction, since the integral of the former over the unit circle is zero
while the integral of the latter is 2πi.

With the above theorem in hand, we may define arbitrary powers of an analytic function on a simply
connected region. Indeed, let α ∈ R, then, we may define

zα = eα log z

where log is a branch of the logarithm in the aforementioned simply connected region.
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Chapter 3

Singularities and Residue Calculus

3.1 Classification of Singularities

Definition 3.1. A function f has an isolated singularity at a point z = a if there is R > 0 such that f is
analytic on 0 < |z − a| < R. The point a is called a removable singularity if there is an analytic function
g : B(a, R) → C such that f (z) = g(z) for 0 < |z − a| < R.

Theorem 3.2. If f has an isolated singularity at a, then the point z = a is a removable singularity if and only if

lim
z→a

(z − a) f (z) = 0

Proof. The forward direction is obvious. We shall show the reverse direction, that is, suppose lim
z→a

(z −
a) f (z) = 0. There is R > 0 such that f is analytic in 0 < |z − a| < R. Now, define the function g : B(a, R) →
C such that g(z) = (z − a) f (z). It is obvious that g is continuous. It suffices to show that g is analytic, since
then, there would exist an analytic function h such that g(z) = (z− a)h(z), implying the desired conclusion.

To show that g is analytic, we shall use Morera’s Theorem. Let T be a triangle in B(a, R). Note that since
this region is convex, it suffices to choose any three points a, b, c in the interior and they would form a valid
triangle. Let ∆ denote the interior of T. If a /∈ ∆, then T is nulhomotopic and due to Theorem 2.44, the
integral

∫
T g must be zero.

Next, if a is a vertex of the triangle, say [a, b, c, a], then for any points x and y on the line segments [a, b]
and [a, c], ∫

[a,b,c,a]
g =

∫
[a,x,y]

g +
∫
[x,b,c,y]

g =
∫
[a,x,y]

g

where the last equality follows from Theorem 2.44. Since g is continuous, there is r > 0 such that for all
t ∈ B(a, r), |g(t)| < ε. And thus, |

∫
[a,x,y] g| < εℓ where ℓ is the permieter of T. It is now obvious that the

integral must be zero.
Finally, suppose a ∈ ∆ where T = [b, c, d, b]. The integral is now given by∫

[b,c,d,a]
g =

∫
[a,b,c,a]

g +
∫
[a,c,d,a]

g +
∫
[a,d,b,a]

g = 0

This completes the proof. ■

Definition 3.3 (Pole, Essential Singularity). If z = a is an isolated singularity of f , then a is a pole of
f if lim

z→a
| f (z)| = ∞. If an isolated singularity is niether a pole nor a removable singularity, it is then
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called an essential singularity.

Theorem 3.4. Let f : G\{a} → C be analytic with a pole at z = a. Then there is an analytic function
g : G → C and a positive integer m such that

f (z) =
g(z)

(z − a)m on G\{a}

and g(a) ̸= 0.

Proof. Consider the analytic function h : G\{a} → C given by h = 1
f . Then it is obvious that lim

z→a
f (z) = 0,

as a result, f has a removable singularity at z = a, and thus, there is an analytic function h̃ : G → C such
that h = h̃ on G. Now, since h̃(a) = 0, there is a positive integer m and an analytic function g : G → C such
that h̃(z) = (z − a)mg(z). As a result, we see that

f (z) =
1

(z − a)m
1

g(z)

and the conclusion follows. ■

Definition 3.5. If f has a pole at z = a, and m is the smallest positive integer such that f (z)(z − a)m

has a removable singularity at z = a, then f is said to have a pole of order m at z = a.

Definition 3.6. Let {zn}n∈Z be a doubly infinite sequence of complex numbers. We say that
∞
∑

n=−∞
zn is

absolutely convergent if both
∞
∑

n=0
zn and

∞
∑

n=1
z−n are absolutely convergent.

We denote the annular region R1 < |z − a| < R2 by ann(a, R1, R2).

Theorem 3.7 (Laurent Series Development). Let f be analytic on ann(a, R1, R2). Then

f (z) =
∞

∑
n=−∞

an(z − a)n

where the convergence is absolute and uniform over ann(a, r1, r2) for R1 < r1 < r2 < R2. Also the coefficients
an are given by the formula

an =
1

2πi

∫
γ

f (z)
(z − a)n+1 dz

where γ is the circle |z − a| = r for all R1 < r < R2. Furthermore, this series is unique.

Proof. ■

3.2 Residues
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Definition 3.8. Let f have an isolated singularity at z = a and let

f (z) =
∞

∑
n=−∞

an(z − a)n

be its Laurent expansion about z = a. Then the residue of f at z = a is defined as a−1.

Theorem 3.9 (Weak Residue Theorem). Let f be analytic in the region G except for isolated poles a1, . . . , an ∈
G. If γ is a closed rectifiable curve in G which does not pass through any of the points ak and if γ is nulhomotopic
in G, then

1
2πi

∫
γ

f =
n

∑
k=1

n(γ, ak)Res( f , ak)

Proof. Let Sj denote the singular part of f at aj. Then, g = f − ∑n
k=1 Sk has removable singularities at

a1, . . . , an. As a result,

0 =
∫

γ
g =

∫
γ

f −
n

∑
k=1

∫
γ

Sk

and the conclusion follows. ■

There is a stronger version of the above theorem wherein the word poles is replaced by singularities. We
shall prove this later.

Proposition 3.10. Suppose f has a pole of order m at z = a and let g(z) = (z − a)m f (z). Then,

Res( f , a) =
1

(m − 1)!
g(m−1)(a)

Proof. Follows from the definition. ■

Evaluating Integrals using the Residue Theorem

Example 3.11. Evaluate: ∫ ∞

−∞

x2

1 + x4 dx

Solution. Define the contour

γ := [−R, R] ∪ {Reit | t ∈ [0, π]}︸ ︷︷ ︸
Γ

R > 1

and the function f (z) = z2

1+z4 , which has poles of order 1 at

cis
(

π

4

)
, cis

(
3π

4

)
, cis

(
5π

4

)
, cis

(
7π

4

)
Within our contour, we have only a1 = cis

(
π
4

)
and a2 = cis

(
3π
4

)
and

Res( f , a1) = lim
z→a1

(z − a1) f (z) =
1

4a1
=

1
4

cis
(
−π

4

)
Res( f , a2) = lim

z→a2
(z − a2) f (z) =

1
4a2

=
1
4

cis
(
−3π

4

)
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∫
γ

f (z) dz =
πi
2

(
cis
(
−π

4

)
+ cis

(
−3π

4

))
=

π√
2

Now,

0 ≤
∫

Γ
f ≤

∫
Γ

R2

|1 + z4| |dz| ≤
∫

Γ

πR3

R4 − 1

And in the limit R → ∞,
∫

Γ f = 0. The conclusion follows. ■

Example 3.12. Show that ∫ ∞

−∞

eax

1 + ex dx =
π

sin πa

for 0 < a < 1.

Proof. Consider the function f (z) = eaz

1+ez , which is analytic except for poles at (2k + 1)πi for all k ∈ Z. Let
γ denote the rectangular contour:

−R −→ R −→ R + 2πi −→ −R + 2πi −→ −R

We note that

n(γ, (2k + 1)πi) =

{
1 k = 0
0 otherwise

Furthermore,

lim
z→πi

(z − πi)
eaz

1 + ez = −eaπi

Therefore, we have, due to Theorem 3.9, that

1
2πi

∫
γ

eaz

1 + ez dz = −eaπi

It is not hard to argue that the integral on the segments R → R + 2πi and −R + 2πi → −R both tend to 0
as R → ∞. Thus, in the limit R → ∞, we have∫ R

−R
f +

∫ −R+2πi

R+2πi
f = −eaπi

Further, ∫ −R+2πi

R+2πi
f = e2aπi

∫ −R

R

eax

1 + ex dx

Thus,

(1 − e2aπi)
∫ ∞

−∞
f = (−2πi)eaπi

Thus, ∫ ∞

−∞
f =

2πi
eaπi − e−aπi =

π

sin πa
■

The next example has a rather unmotivated solution but we present it anyways since it is an important
result to keep in mind.
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Example 3.13. Let u ∈ R\Z. Then, show that

∞

∑
n=−∞

1
(u + n)2 =

π

sin2 πu

Proof. Consider the meromorphic function

f (z) =
π cot πz
(u + z)2

It has poles at k for k ∈ Z and −u. Let N be an integer such that N > |u| and let R = N + 1/2. This contour
contains the following poles:

{−u} ∪ {k ∈ Z | −N ≤ k ≤ N}
The residue at z = k ∈ Z is given by

lim
z→k

(z − k)
π cot πz
(u + z)2 =

π

(u + k)2

On the other hand, the residue at z = −u is the coefficient a−1 in the Laurent expansion of f (z) around
z = −u. Since u is not an integer, π cot πz is analytic in a ball around u, and the required coefficient is given
by f ′(u) = − π2

sin2 πu
. Hence,

N

∑
n=−N

π

(u + n)2 =
∫
|z|=R

f (z) dz +
π2

sin2 πu

Therefore, it suffices to show that the integral on the circle is zero. TODO: Add in later ■

3.3 Argument Principle

Definition 3.14 (Meromorphic). A function which is analytic on a region except for poles is said to be
meromorphic on that region.

Theorem 3.15 (Argument Principle). Let f be meromorphic in G with poles p1, . . . , pm and zeros z1, . . . , zn
counted according to multiplicity. If γ is a closed rectifiable curve which is nulhomotopic and not passing
through any of the aforementioned points, then

1
2πi

∫
γ

f ′(z)
f (z)

dz =
n

∑
k=1

n(γ, zk)−
m

∑
k=1

n(γ, pk)

Proof. It is not hard to argue that there is an analytic function g on G that does not vanish anywhere such
that

f ′

f
=

n

∑
k=1

1
z − zk

−
m

∑
k=1

1
z − pk

+
g′

g

Note that g′/g is an analytic function and due to Cauchy’s Theorem,∫
γ

f ′

f
=

n

∑
k=1

n(γ, zk)−
m

∑
k=1

n(γ, pk)

This completes the proof. ■
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Corollary 3.16. Let f be meromorphic in G with poles p1, . . . , pm and zeros z1, . . . , zn counted according
to multiplicity. If γ is a closed rectifiable curve which is nulhomotopic and not passing through any of
the aforementioned points, then for an analytic function g on G,

1
2πi

∫
γ

g
f ′(z)
f (z)

dz =
n

∑
k=1

g(zk)n(γ, zk)−
m

∑
k=1

g(pk)n(γ, pk)

Theorem 3.17 (Rouché). Suppose f and g are meromorphic in the region G and B(a, R) ⊆ G. If f and g have
no zeros or poles on the circle γ := {z : |z − a| = R} and | f (z)− g(z)| < |g(z)| on γ, then

Z f − Pf = Zg − Pg

where Z f , Zg denote the zeros of f and g in B(a, R) and Pf , Pg denote the poles of f and g in B(a, R).

First Proof. First, note that ∣∣∣∣∣1 − f (z)
g(z)

∣∣∣∣∣ < 1

for all z ∈ {γ}. Since ( f /g)({γ}) ⊆ B(1, 1), there is a neighborhood of {γ} that is mapped into B(1, 1). As
a result, on this neighborhood, log( f /g), the principal branch is a primitive for ( f /g)′/( f /g). As a result,
we have

0 =
1

2πi

∫
γ

( f /g)′

( f /g)
=

1
2πi

∫
γ

(
f ′

f
− g′

g

)
The conclusion follows. ■

Proof 2. Define the function ht(z) = t f (z) + (1 − t)g(z) for all t ∈ [0, 1]. Then, h0(z) = g(z) and h1(z) =
f (z), further, note that on γ,

|ht(z)| = |g(z) + t( f (z)− g(z))| > 0.

Let

nt =
1

2πi

∫
γ

h′t(z)
h(z)

dz

Then, nt is obviously an integer. We contend that the map t 7→ nt is continuous. Indeed, h′t(z)/ht(z) is a
joint continuous function of t and z since both the numerator and denominator are continuous in t and z,
and the denominator does not vanish on γ as we have argued above.

Now, since nt only takes integral values, it must be a constant function of t and the conclusion follows.
■

We now give an alternate proof of the open mapping theorem using Theorem 3.17

Alternate proof of Theorem 2.59. ■ Add proof
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3.4 Runge’s Theorem

This section is taken from [Con78].

Theorem 3.18. Let K ⊆ C be compact and E ⊆ C∞\K which meets every component of C∞\K. If f is analytic
in an open set Ω containing K and ε > 0, then there is a rational function R(z) with poles only in E such that

| f (z)− R(z)| < ε

for all z ∈ K.

We prove this result through a series of lemmas. The setup is as mentioned in the statement of Theo-
rem 3.18 and shall not be repeated.

Lemma 3.19. There are straight line segments γ1, . . . , γn in Ω\K such that

f (z) =
n

∑
k=1

1
2πi

∫
γk

f (w)

w − z
dw

for all z ∈ K. The line segments form a finite number of closed polygons.
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Chapter 4

Conformal Maps

Definition 4.1 (Conformal Map). A conformal map is a bijective holomorphis function f : U → V where
U and V are open sets in C. In this case, U and V are said to be conformally equivalent.

We have seen, as a corollary to Theorem 2.59, that a bijective holomorphic function has a holomorphic
inverse. That is, f−1 : V → U is also conformal.

Example 4.2. Define H to be the upper half plane, that is, the set of complex numbers with positive
imaginary part. We contend that H is conformally equivalent to D, the unit disk. Consider the map
F : D → H given by

F(z) = i
1 − z
1 + z

Indeed, for z = u + iv, we have

Im(F(z)) = Re
(

1 − u − iv
1 + u + iv

)
=

1 − u2 − v2

(1 + u)2 + v2 > 0

Define the map G : H → D given by

F(z) =
i − z
i + z

It is not hard to see that F ◦ G = idH and G ◦ F = idD. This completes the proof.

4.1 Schwarz Lemma and applications

Lemma 4.3 (Schwarz). Let f : D → D be holomorphic with f (0) = 0. Then,

(a) | f (z)| ≤ |z| for all z ∈ D.

(b) if for some z0 ̸= 0 we have | f (z0)| = |z0|, then f is a rotation.

(c) | f ′(0)| ≤ 1 and if equality holds, then f is a rotation.

Proof. The function f (z)/z has a removable singularity at 0, and consequently is holomorphic on D. Pick
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some 0 < r < 1. Then, for all |z| = r, we have ∣∣∣∣∣ f (z)
z

∣∣∣∣∣ ≤ 1
r

Then, due to the maximum modulus principle, | f (z)/z| ≤ 1/r for all z ∈ D whence (a) follows.
As for (b), we would have | f (z0)/z0| = 1 for some z0 ∈ D\{0}, and due to the maximum modulus

principle, f (z)/z must be constant, and the conclusion follows.
Finally, for (c), note that g(0) = f ′(0), consequently, if g(0) = 1, then due to the maximum modulus

principle, g is constant, thereby completing the proof. ■

Proposition 4.4. Let f : D → D be a holomorphic function. If f is non-constant, then it has atmost one fixed
point.

Proof. ■

4.1.1 Automorphisms of D and H

Throughout this section, an automorophism of a domain U refers to a conformal map f : U → U.

Disk

First, we shall study the automorphisms of D. Pick some α ∈ D and consider the map ψα : D → D given
by

ψα(z) =
α − z

1 − αz
.

Notice that both maps z 7→ α − z and z 7→ 1 − αz are holomorphic and since |α| < 1, their quotient is
also holomorphic on D. Finally, for any z ∈ D,

|ψα(z)|2 =

∣∣∣∣ α − z
1 − αz

∣∣∣∣2
=

αα + zz − αz − zα

1 − αz − zα + ααzz

= 1 − (1 − αα)(1 − zz)
1 − αz − zα + ααzz

< 1

whence ψα is a biholomorphic map from D to D. These are called the “Blaschke Factors”. These are
automorphisms of order two, that is, ψα ◦ ψα = idD.

Theorem 4.5. Let f : D → D be a holomorphic automorphism. Then there is θ ∈ R and α ∈ D such that

f (z) = eiθψα(z)

Proof. Since f is bijective, there is a unique α ∈ D such that f (α) = 0. Define g = f ◦ ψα. Then g : D → D is
a biholomorphic map such that g(0) = 0. We shall show that g is a rotation. Let h : D → D be the inverse
of g, which is also biholomorphic. We have due to Lemma 4.3, that |g(z)| ≤ |z| and |h(z)| ≤ |z| for all
z ∈ D. Putting these two together, we have

|z| = |h ◦ g(z)| ≤ |g(z)| ≤ |z| ∀ z ∈ D

Thus, |g(z)| = |z| for all z ∈ D, whence, due to Lemma 4.3, g is a rotation and the proof is complete. ■
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4.1.2 Upper Half Plane

4.2 The Riemann Mapping Theorem

Theorem 4.6 (Riemann). Suppose Ω ⊆ C is open and simply connected. Given z0 ∈ Ω, there is a unique
conformal map F : Ω → D such that F(z0) = 0 and F′(z0) > 0.

4.2.1 Montel’s Theorem

Definition 4.7. Let G ⊆ C be open. A family F of holomorphic functions on G is said to be normal if
every sequence in F has a subsequence that converges uniformly on every compact subset of G.

The family F is said to be uniformly bounded on compact subsets of G if for each compact set K ⊆ G,
there is M > 0 such that | f (z)| ≤ M for all z ∈ K and f ∈ F .

The family F is said to be equicontinuous on a compact set K ⊆ G, for every ε > 0, there is δ > 0
such that whenever w, z ∈ K with |z − w| < δ, | f (z)− f (w)| < ε for all f ∈ F .

Note that there is a more general definition of equicontinuity, but in the case of a compact metric space,
it is equivalent to the above.

Theorem 4.8 (Montel). Suppose F ⊆ H(C) is a family of holomorphic functions on G ⊆ C that is uniformly
bounded on compact subsets of G. Then,

(a) F is equicontinuous on every compact subset of G

(b) F is a normal family

Note that (b) is a consequence of the Arzelà-Ascoli Theorem from topology, a proof of which can be
found in this document.

Definition 4.9. A sequence {Kℓ}∞
ℓ=1 of compact subsets of G is said to be an exhaustion if

(a) Kℓ is contained in the interior of Kℓ+1 for all ℓ ∈ N

(b) Any compact set K ⊆ G is contained in Kℓ for some ℓ. In particular,

G =
∞⋃
ℓ=1

Kℓ

Lemma 4.10. Any open set G ⊆ C has an exhaustion.

Proof. ■

Proof of Theorem 4.8. (a) Ket K ⊆ G be compact. Now, there is δ > 0 such that for all z ∈ K, B(z, δ) ⊆ G.
Let r = δ/3. For a, b ∈ K with |a − b| < r, we have

f (a)− f (b) =
1

2πi

∫
|z−a|=2r

f (z)
(

1
z − a

− 1
z − b

)
dz

Consequently, we have

| f (a)− f (b)| ≤ 1
2π

∫
|z−a|=2r

| f (z)| |a − b|
|z − a||z − b| |dz|
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We now use the inequality |z − b| ≥ r and |a − b| ≤ r, which gives us

| f (a)− f (b)| ≤ 1
2π

· 4πr · M|a − b|
2r2 =

M|a − b|
r

Since this inequality holds for every f ∈ F , we have equicontinuity.

(b) Let {Kn}∞
n=1 be an exhaustion of G and { fn}∞

n=1 a sequence of functions in F . We now work induc-
tively by repeatedly applying Arzelà’s theorem.

First, there is a subsequence {gn,1}∞
n=1 of { fn}∞

n=1 that converges uniformly on K1. From this subse-
quence, extract {gn,2}∞

n=1 that converges uniformly on K2 and continue in this fashion. It is not hard
to show that {gn,n}∞

n=1 converges uniformly on every compact subset of G. This completes the proof.
■

Proposition 4.11. Let G ⊆ C be a region and { fn}∞
n=1 a sequence of holomorphic functions that converge

uniformly on every compact subset of G to the function f : G → C. Then f is holomorphic. Further, if each
{ fn} is injective, then f is either injective or constant.

Proof. The holomorphicity of f follows from Theorem 2.49. We shall show that f is injective. Suppose there
are two distinct z1, z2 ∈ G such that f (z1) = f (z2). Define the function g : G → C by g(z) = f (z)− f (z1).
Then, define the sequence of functions {gn}∞

n=1 by gn(z) = fn(z) − fn(z1). Obviously, gn converges to g
uniformly on every compact subset of G. If g is not identically zero, then there z2 is an isolated zero, due to
the Identity Theorem. Therefore, we may choose a circle γ centered at z2 such that the only zero of g in the
interior of γ is z2.

Then, we have

1 =
1

2πi

∫
γ

g′(z)
g(z)

dz

Since g does not vanish on γ, and gn → g uniformly on γ, we must have that 1/gn → 1/g uniformly on
γ. Further, g′n → g′ uniformly on γ. Therefore,

1
2πi

∫
γ

g′n(z)
g(z)

dz → 1
2πi

∫
γ

g′(z)
g(z)

dz

but this is absurd since every integral on the left is zero. This completes the proof. ■

4.2.2 Proof of the Riemann Mapping Theorem

Step I. We shall show that Ω is conformally equivalent to an open subset of D.

Since Ω is a proper subset of C, there is some α ∈ C\Ω. Define the holomorphic function f (z) =
log(z − α), which makes sense since z − α never vanishes on Ω.

Now, pick some point w ∈ Ω. We contend that f (w) + 2πi is contained in an open disk that is disjoint
from f (Ω). For if not, then there is a sequence {zn}∞

n=1 of points in Ω that converge to f (w) + 2πi.
Since ez is a continuous function, we see that zn must converge to w, which would imply that f (zn)
converges to f (w), a contradiction.

Now, consider the map F : Ω → C

F(z) =
1

f (z)− ( f (w) + 2πi)

First, for each z ∈ Ω, since | f (z)− ( f (w) + 2πi)| is bounded from below, |F(z)| is bounded. Further,
since f is injective, so is F. By translation and scaling of F, since it is bounded, we may embed Ω into
D.
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Step II. In this step we shall construct our candidate for the required biholomorphic map.

Now, we may suppose without loss of generality that Ω is a domain contained in D. We shall now
construct a conformal map from Ω to D. Define

F = { f : Ω → D | f is holomorphic, injective and f (0) = 0}

Obviously, F is nonempty, since it contains the identity map and by construction, F is uniformly
bounded. Due to Proposition 2.30, we see that | f ′(0)| must also be bounded for every f ∈ F .

Let s = sup
f∈F

| f ′(0)|

Step III. We shall show that our chosen candidate f : Ω → D is in fact a biholomorphic map.

According to our construction, f is injective. It suffices to show that it is surjective. Suppose not
and there is α ∈ D which is not in the image of f . Let ψα be the Blaschke factor and consider the
composition ψα ◦ f : Ω → D. This is a holomorphic injective function whose image does not contain
the origin. Let U = (ψα ◦ f )(Ω). Since U is open, simply connected (owing to it being a biholomorphic
image of Ω) and does not contain the origin, we may define a complex logarithm on U, whence by
composing, we can define a holomorphic function g : U → C given by

g(z) = e
1
2 log z

Now, consider the function
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Chapter 5

Series and Product Developments

Lemma 5.1. Let Ω ⊆ C be an open set and fn : Ω → C be a sequence of holomorphic functions converging
uniformly on every compact subset of K to a function f : Ω → C. Then f is holomorphic and the sequence { f ′n}
converges uniformly on every compact subset of Ω to f ′.

5.1 Weierstrass’ Theorem

Theorem 5.2. Let { fn}∞
n=1 be a sequence of holomorphic functions on an open set Ω ⊆ C. If there is a sequence

of positive constants {cn} such that

∞

∑
n=1

cn < ∞ and | fn(z)− 1| ≤ cn ∀z ∈ Ω

then

(a) The product
∞

∏
n=1

fn(z) converges uniformly in Ω to a holomorphic function F : Ω → C.

(b) If fn(z) does not vanish for any n, then

F′(z)
F(z)

=
∞

∑
n=1

f ′n(z)
f ′n(z)

Proof. Define an : Ω → C given by an(z) = fn(z) − 1. First, by disregarding finitely many terms of the
product, we may suppose without loss of generality that cn < 1/2. For any N ∈ N, we have

N

∏
n=1

(1 + an(z)) =
n

∏
n=1

elog(1+an(z)) = e∑N
n=1 log(1+an(z)).

In the above manipulation, we take log to be the principal branch of the logarithm which makes sense since
for all z ∈ Ω, 1 + an(z) ∈ B(1, 1/2) ⊆ C\{z ∈ R | z < 0}.

Now, it is not hard to see, using the power series expansion of the principal branch of log that | log(1 +
z)| ≤ 2|z| if |z| < 1/2, and thus | log(1 + an(z))| ≤ 2|an(z)| ≤ 2cn on Ω. Let bN(z) = ∑N

n=1 log(1 + an(z)).
Since |bn(z)| is bounded on Ω and converges uniformly to some analytic function b : Ω → C.

The sequence ebn converges pointwise to eb but since this is a uniformly bounded sequence, the conver-
gence is uniform and eb is analytic. This proves (a).
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Define Gn(z) = ∏n
k=1 fk(z). Then, using the product rule,

G′
n(z)

Gn(z)
=

n

∑
k=1

f ′n(z)
fn(z)

.

We have shown in part (a) that Gn converges uniformly to F. Let K ⊆ Ω be a compact subset. Due to
Lemma 5.1, G′

n converges uniformly to F′ on K. Further, since 1/Gn is uniformly bounded, above on K1

and thus G′
n/Gn converges to F′/F uniformly on K which finishes the proof. ■

Definition 5.3. Define the entire maps En : C → C for n ≥ 0 by

E0(z) = 1 − z En(z) = (1 − z) exp

(
z +

z2

2
+ · · ·+ zn

n

)
for n ≥ 1

These are called the elementary factors.

Theorem 5.4 (Weierstrass). Given any sequence {an}∞
n=1 of complex numbers with |an| → ∞ as n → ∞,

there exists an entire function f vanishing at exactly {an}∞
n=1 and nowhere else. Any other such entire function

is of the form f (z)eg(z) where g is entire.

First, we prove the second part of the theorem. Let f1, f2 be two entire functions satisfying the statement
of the theorem. Then, f2/ f1 has removable singularities at each an whence is entire. Using this entire
function,

1This is because each fn does not vanish on K and eventually, | fn| < 1 since the sum of cn’s converges.
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TODO List

1. Complete proof of Riemann Mapping Theorem

2. Complete the write up of Runge’s Theorem

3. After Runge’s Theorem, Mittag-Leffler

4. Phragmén-Lindelöf Theorem

5. Weierstrass Product Theorem

6. Hadamard Product Theorem
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