
Commutative Algebra

Swayam Chube
Mentor: Aryaman Maithani

January 18, 2024



Abstract

Throughout this report, unless mentioned otherwise, all rings are assumed to be commutative. The term
noethering is a portmanteau that is used in place of “noetherian ring” and is attributed to the accidental
genius of Aryaman Maithani.

The main reference for this report is [AM69]. The section on projective modules and modules over a
PID has been taken from [Lan02]. Some additional results about Dedekind domains have been taken from
[Mil20]. The chapter on Completions has mainly been taken from [Gop84]. The section on Dimension
Theory of Polynomial Algebras has been taken from [Ser12].

https://www.youtube.com/live/RrjJfyEF7Ak?feature=share&t=102
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Chapter 1

Rings and Ideals

Definition 1.1 (Krull Dimension). A sequence {p0, . . . , pn} of prime ideals in A is said to be strictly
ascending of length n if p0 ⊊ · · · ⊊ pn. The Krull dimension of A is defined to be the supremum of the
lengths of all strictly ascending sequences of prime ideals in A and is denoted by dim A.

Proposition 1.2. Let A and B be rings. Then, every prime ideal in A× B is of the form p× B where p ⊆ A is
a prime ideal or A× q where q ⊆ B is a prime ideal.

Proof. It is known that ideals in A× B are of the form a× b where a and b are ideals in A and B respectively.
Consequently, the quotient

A× B/a× b ∼= A/a× B/b

For a× b we require A/a× B/b to be an integral domain. This is possible if and only if either a is a prime
and b = B or a = A and b is a prime. This completes the proof. ■

Theorem 1.3 (Chinese Remainder Theorem). Let {ai}n
i=1 be comaximal ideals in A. Then,

(a)
n⋂

i=1

ai =
n

∏
i=1

ai

(b) A
/ n⋂

i=1

ai
∼=

n

∏
i=1

A/ai

1.1 Nilradical and Jacobson radical

Definition 1.4 (Multiplicatively Closed). A subset S ⊆ A is said to be multiplicatively closed if

(a) 1 ∈ S

(b) for all x, y ∈ S, xy ∈ S
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Proposition 1.5. Let S ⊊ A\{0} be a multiplicatively closed subset. Then, there is a prime ideal p disjoint from
S.

1.2 Local Rings

Definition 1.6. A commutative ring A is said to be local if it has a unique maximal ideal.

Proposition 1.7. A is local if and only if the subset of non-units form an ideal.

Obviously, a field k is a local ring. On the other hand, the polynomial ring k[x] is not local, since both x
and 1− x are non-units but their sum is a unit.

We contend that the ring A = k[x1, x2, . . .]/(x1, x2, . . .)2 is local. Indeed, let π denote the canonical
map k[x1, x2, . . .] → A and m be maximal in A. Then, π−1(m) is maximal in k[x1, x2, . . .] and contains
(x1, x2, . . .)2, therefore, contains (x1, x2, . . .). But the latter is maximal and therefore, π−1(m) = (x1, x2, . . .)
whence the maximal ideal is unique. Thus A is local.

1.3 Operations on Ideals

Obviously, the intersection a ∩ b of two ideals is an ideal. The sum of ideals is defined as the following
collection

∑
i∈I

ai =

 ∑
finite i∈I

ai

∣∣∣∣∣ ai ∈ ai


It is not hard to argue that the sum is the smallest ideal containing the ideals {ai}i∈I . The product of two
ideals is defined as

ab =

 ∑
finite

aibi

∣∣∣∣∣ ai ∈ a, bi ∈ b


Inductively, we may define powers of an ideal as an = aan−1 with the convention that a0 = (1) = A.

Proposition 1.8. Let a, b, c ⊆ A be ideals. Then,

a(b+ c) = ab+ ac

Proof. Obviously, ab ⊆ a(b+ c) and ac ⊆ a(b+ c) and thus, ab+ ac ⊆ a(b+ c). On the other hand, any
element of a(b+ c) is a finite sum of the form ∑i ai(bi + ci) which can be rearranged as ∑i aibi + ∑i aici ∈
ab+ ac. This completes the proof. ■

Proposition 1.9. (a) Let p1, . . . , pn be prime ideals and let a be an ideal contained in
⋃n

i=1 pi. Then a ⊆ pi
for some 1 ≤ i ≤ n.

(b) Let a1, . . . , an be ideals and let p be a prime ideal containing
⋂n

i=1 ai. Then ai ⊆ p for some i.

For ideals a, b ⊆ A, define their ideal quotient as

(a : b) = {x ∈ A | xb ⊆ a}
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Proposition 1.10. Let a, b, c ⊆ A be ideals. Then

1. (a : b)b ⊆ a

2. ((a : b) : c) = (a : bc)

3. (
⋂

i∈I ai : b) =
⋂

i∈I(ai : b)

Proposition 1.11. If every prime ideal in A is principal, then A is a principal ring.

Proof. Suppose not. Let Σ be the poset of ideals in A that are not principal, ordered by inclusion and {ai}i∈I
be a chain in Σ. Let a =

⋃
i∈I ai. We claim that a is not principal, for if it were, then a = (a) for some a ∈ A.

Then, a ∈ ai for some i ∈ I whence ai = (a), a contradiction. Hence, every chain in Σ has an upper bound,
therefore, Σ has a maximal element, say p.

We contend that p is a prime ideal. Suppose not, then there are a, b /∈ p such that ab ∈ p. Add in later ■

Proposition 1.12. Let A be a UFD. Then A is a PID if and only if dim A ≤ 1.

1.3.1 Radical Ideals

Definition 1.13 (Radical Ideal). For an ideal a ⊆ A, we define its radical as
√
a = {x ∈ A | xn ∈ a for some n ∈N}

An ideal which is the radical of some ideal is called a radical ideal.

Obviously, a ⊆
√
a. From our definition, it is not hard to see that the radical is the smallest radical ideal

that contains a certain ideal. As a result, if a ⊆ b are ideals, then
√
a ⊆
√
b.

Proposition 1.14. Let a, b ⊆ A be ideals. Then,

(i)
√√

a =
√
a

(ii)
√
ab =

√
a∩ b =

√
a∩
√
b

(iii)
√
an =

√
a for every n ∈N

(iv)
√
a+ b =

√√
a+
√
b

Proof. (i) Trivial.

(ii) Since ab ⊆ a ∩ b, we must have
√
ab ⊆

√
a∩ b. On the other hand, if x ∈

√
a∩ b, there is a positive

integer n such that xn ∈ a∩ b, therefore, x2n ∈ ab, and x ∈
√
ab. This establishes the first equality.

As for the second inequality, if x ∈
√
a∩ b, then there is a positive integer n such that xn ∈ a ∩ b,

therefore, x ∈
√
a and x ∈

√
b. Conversely, if x ∈

√
a ∩
√
b, then there are positive integers m and n

such that xm ∈ a and xn ∈ b, consequently, xm+n ∈ a∩ b, and the conclusion follows.

(iii) Immediate from (ii).
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(iv) Obviously,
√
a+ b ⊆

√√
a+
√
b. On the other hand, note that

√
a+ b is a radical ideal containing

√
a and

√
b, therefore, contains

√
a+
√
b. Hence,

√
a+ b ⊇

√√
a+
√
b and the conclusion follows.

■

Corollary 1.15. Ideals a and b are comaximal if and only if
√
a and

√
b are comaximal.

For a prime ideal p, note that
√
p = p and due to (iii),

√
pn = p for every positive integer n.

Proposition 1.16. Let a ⊆ A be an ideal with maximal radical. Then A/a is a local ring of dimension 0.

Proof. Let m be a maximal ideal in A/a. Since m is prime, its preimage in A is a prime ideal m containing
a, thus, it must contain

√
a, which is maximal, whence m =

√
a. Consequently m =

√
a/a and is uniquely

determined.
On the other hand, if p is a prime ideal in A/a, using a similar argument as above, one may conclude

that p is maximal and thus dim(A/a) = 0. ■

1.4 Extension and Contraction of Ideals

Definition 1.17. Let ϕ : A → B be a ring homomorphism. If a ⊆ A is an ideal, then we define its
extension ae = ϕ(a)A. If b ⊆ B is an ideal, then we define its contraction bc = ϕ−1(b).

Proposition 1.18. (a) a ⊆ aec and b ⊇ bce

(b) bc = bcec and ae = aece

(c) If C is the set of contracted ideals in A and E is the set of extended ideals in B, then a 7→ ae is a bijection
from C to E.

Proof. (a) Trivial.

(b) We have ae ⊆ (aec)e and ae ⊇ (ae)ce. Similarly, bc ⊇ (bc)ec and bc ⊆ (bc)ec whence bc = bcec.

(c) Simply note that the maps a 7→ ae and b 7→ bc from C to E and E to C are inverses to one another.
■

1.5 The Zariski Topology

Definition 1.19 (Prime Spectrum). For a commutative ring A, define

Spec A = {p | p is a prime ideal in A}

This is called the prime spectrum of the ring. Similarly, define

MaxSpec A = {m | m is a maximal ideal in A}

For each E ⊆ A, define
V(E) = {p ∈ Spec A | E ⊆ p}
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Proposition 1.20. (a) If a is the ideal generated by E, then V(E) = V(a) = V(
√
a)

(b) V(0) = X and V(1) = ∅

(c) If {Ei}i∈I is a family of subsets of A, then

V

⋃
i∈I

Ei

 =
⋂
i∈I

V(Ei)

It is not hard to see that the collection

T = {Spec A\V(E) | E ⊆ A}

is a topology on Spec A. This is known as the Zariski Topology. In particular, V(E) form closed subsets in
Spec A under the Zariski topology.

Proposition 1.21. For each f ∈ A, let D( f ) = Spec A\V( f ). Then, the collection {D( f )} f∈A forms a basis
for the Zariski topology on Spec A.

Proposition 1.22. Let f : A → B be a ring homomorphism. Then, the map f∗ : Spec B → Spec A given by
f∗(q) = f−1(p) is a continuous map. Further, if g : B→ C is a ring homomorphism, then (g ◦ f )∗ = f∗ ◦ g∗.

Proof. Let a ⊆ A be an ideal. We shall show that f−1
∗ (V(a)) is closed in B. Note that

f−1
∗ (VA(a)) = {p | a ⊆ f∗(p)}

= {p ∈ Spec B | a ⊆ f−1(p)}
= VB(( f (a)))

whence the conclusion follows.
Next, for any p ∈ Spec C, we have

( f∗ ◦ g∗)(p) = f∗(g−1(p)) = f−1(g−1(p)) = (g ◦ f )−1(p)

This completes the proof. ■

This shows that Spec is a contravariant functor from CRing to Top.

1.5.1 On the Topological Properties

Proposition 1.23. Spec A is Hausdorff if and only if dim A = 0.

Proof. (=⇒) We shall show that if Spec A is T1, then dim A = 0. Indeed, if Spec A is T1, then {p} is a closed
set for very prime ideal p, therefore, there is an ideal I ⊆ A such that V(I) = {p}. As a result, V(p) = {p}
and p is maximal.

(⇐=) Suppose dim A = 0. Let p and q be distinct ideals. We contend that there are f /∈ p and g /∈ q such
that f g is contained in every prime ideal in A, equivalently, f g is contained in N(A). Suppose not, that is,
for every pair f /∈ p and g /∈ q, there is a prime ideal p disjoint from { f , g}.

Let X = A\(p∩ q). Let Σ be the collection of ideals a contained in p∩ q such that for every finite subset
F ⊆ X, there is a prime ideal P containing a that is disjoint from F. It is not hard to see that (0) ∈ Σ and
that every ascending chain has an upper bound given by the union of all elements in the chain.
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Let J be a maximal element in Σ whose existence is guaranteed due to Zorn’s Lemma. We shall show
that J is prime. Indeed, let xy ∈ J with y /∈ J. Then, J + (y) /∈ Σ, therefore, there is a finite subset F0 ⊆ X
such that for each prime ideal P containing J + (y), P∩ F0 ̸= ∅.

Now, let F ⊆ X be finite, then so is F ∪ F0, therefore, there is a prime ideal I containing J such that
I ∩ (F ∪ F0) = ∅, which implies that y /∈ I, lest J + (y) ⊆ I. But since xy ∈ J ⊆ I, we must have that
x ∈ I. This shows that J + (x) ⊆ I, therefore, (J + (x)) ∩ F = ∅ whence J + (x) ∈ Σ and x ∈ J due to the
maximality. This shows that J is prime.

Finally, we see that if there is a prime ideal J contained in p ∩ q, contradicting dim A = 0. Thus, there
is f /∈ p and g /∈ q such that f g is contained in N(A). Consider the basic open sets D( f ) and D(g),
which contain p and q respectively and their intersection D( f ) ∩ D(g) = D( f g) is the empty set since f g is
contained in ever prime ideal, thus, Spec A is Hausdorff. ■

Corollary 1.24. If Spec A is T1, then Spec A is Hasudorff.

1.6 Polynomial Rings
Add those
exercises
from AM
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Chapter 2

Modules

2.1 Introduction

Throughout this section, R denotes a general ring which need not be commutative.

Definition 2.1 (Module). A left R-module is an abelian group (M,+) along with a ring action, that is,
a ring homomorphism µ : R→ End(M). Similarly, a right R-module is an abelian group (M,+) along
with a ring homomorphism µ : Rop → End(M) where Rop is the opposite ring.

Henceforth, unless specified otherwise, an R-module refers to a left R-module. Trivially note that R is an
R-module, so is any ideal in R and so is every quotient ring R/I where I is an ideal in R. When R is a field,
an R-module is the same as a vector space.

Every abelian group G trivially forms a Z-module. Using this and the forthcoming Structure Theorem for
Finitely Generated Modules over a PID, we obtain the Structure Theorem for Finitely Generated Abelian Groups.

There is also the notion of a bimodule:

Definition 2.2. For

Definition 2.3 (Submodule). Let M be an R-module. An R-submodule of M is a subgroup N of M
which is closed under the action of R.

Proposition 2.4 (Submodule Criteria). Let M be an R-module. Then ∅ ⊊ N ⊆ M is a submodule if and
only if for all x, y ∈ N and r ∈ R, x + ry ∈ N.

Proof. Straightforward definition pushing. ■

Definition 2.5 (Module Homomorphism). Let M, N be R-modules. A module homomorphism is a group
homomorphism ϕ : M→ N such that for all x ∈ M and r ∈ R, ϕ(rx) = rϕ(x).

In other words, a module homomorphism is simply an R-linear map.

Proposition 2.6 (Homomorphism Criteria). Let M, N be R-modules. Then ϕ : M → N is an R-module
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homomorphism if and only if for all x, y ∈ M and r ∈ R, ϕ(x + ry) = ϕ(x) + rϕ(y).

Proof. Straightforward definition pushing. ■

It is not hard to see, using the above proposition and the submodule criteria that the image of an R-
module under a homomorphism is a submodule.

Definition 2.7 (Kernel, Cokernel). Let ϕ : M→ N be an R-module homomorphism. We define

ker ϕ = {x ∈ M | ϕ(x) = 0} coker ϕ = N/ϕ(M)

For an R-module M, define the annihilator of M in R as

AnnR(M) = {r ∈ R | rx = 0 ∀x ∈ M}

It is trivial to check that AnnR(M) is a left ideal in R, and if R were commutative, it would be an ideal.
When AnnA(M) = 0, M is said to be a faithful A-module.

Proposition 2.8. If I is an ideal contained in AnnA(M), then M is naturally an A/I-module.

Proof. Define the action (a + I) ·m = a ·m. It is easy to check that this action is well defined. Further,

(a + I) · ((b + I) ·m) = (a + I) · (bm) = (ab) ·m = ((a + I)(b + I)) ·m

This completes the proof. ■

Proposition 2.9. N is an A-submodule of M if and only if it is an A/ AnnA(M) submodule of M.

Proof. Straightforward. ■

In particular, if I = m for some maximal ideal m, then M forms a vector space over A/m.

2.2 Free Modules

Throughout this section, R denotes a general ring which need not be commutative.
We define the free module using a universal property and then provide a construction for it. This should

establish uniqueness.

Definition 2.10 (Universal Property of Free Modules). Let S be a non-empty set. A free module on S is
an R-module F together with a mapping f : S→ F such that for every R-module M and every set map
g : S → M, there is a unique R-module homomorphism h : F → M such that the following diagram
commutes:

S
g
//

f
��

M

F
∃!h

??

10



Let F be the set of all set functions ϕ : S→ R which takes nonzero values at finitely many elements of S.
This has the structure of an R-module. Define the set map f : S→ F by

f (s)(t) =

{
1 s = t
0 otherwise

We contend that (F, f ) is a free module on S. Indeed, let g : S → M be a set map where M is an
R-module. Define the linear map h : F → M by

h( f (s)) = g(s)

Since every element in F can uniquely be written as a linear combination of elements in { f (s)}s∈S, we
have successfully defined a module homomorphism h : F → M such that g = h ◦ f . The uniqueness of this
map is quite obvious. Hence, (F, f ) is a free module on S.

Definition 2.11 (Basis). Let M be an R-module. Then S ⊆ M is said to be a basis if it is linearly
independent and generates M.

It is important to note that not every minimal generating set is a basis. Take for example the Z-module
Z. Notice that {2, 3} is a minimal generating set but is not a basis for it is not linearly independent.

2.2.1 Over a PID

Throughout this (sub)section, let R denote a PID.

Theorem 2.12. Let F be a free R-module. If M ≤ F is a submodule, then M is free and dim M ≤ dim F.

Proof. Let F have basis {xi}i∈I and πi : F → R denote the natural projection. Using the Well Ordering
Theorem, we may suppose that (I,≦) has a well order, in particular, we may suppose that I is a segment of
ordinals. For each i ∈ I, denote

Mi := M ∩
〈
{xj | j ≦ i}

〉
.

We shall show, using transfinite induction that each Mα is free module with rank less than or equal to |α|.
Consider the base case, α = 1. Now, M1 is a submodule of Rx1 whence is isomorphic to an ideal of R, which
is either the zero ideal of principal, i.e. free of rank 1.

We now move to the induction step. First, we consider the case when i is a successor ordinal and due to
the induction hypothesis, Mi−1 is a free R-module of rank less than or equal to |i− 1|. Let

a = {πi(x) | x ∈ Mi}.

Note that a is an R-submodule of R whence an ideal of R. Thus, either a = 0 or a = (a) for some a ∈ R\{0}.
In the former case, Mi = Mi−1 which completes the induction step. In the latter case, there is some w ∈ Mi
such that πi(w) = a.

Now, consider any element x ∈ Mi. Then, x can be written as a linear combination

x = ∑
j<i

ajxj + bxi.

According to our choice of x, b ∈ (a) whence, there is a suitable r ∈ R suchthat x − rw ∈ Mi−1. That is,
Mi = Mi−1 + (w). We contend that this sum is direct. To see this, suppose cw ∈ Mi−1 for some c ∈ R and
suppose w = ∑j≦i αjxj. Then,

∑
j≦i

cαjxj = ∑
j<i

β jαj,
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for some β j ∈ R, implying that cxi = 0, i.e. c = 0. Hence, Mi = Mi−1 ⊕ (w).
Next, we deal with the case of limit ordinals. Suppose λ is a limit ordinal in I. Then, we have a function

f : λ → M such that for each i < λ, the module Mi is free, generated by { f (j) | j ≦ i}. Whence, Mλ is
generated by { f (j) | j < λ} and is obviously free. This completes the inductive step and thus the proof of
the theorem. ■

2.3 Finitely Generated Modules

Definition 2.13 (Finitely Generated Module). An R-module M is said to be finitely generated if there
is a finite subset S of M which generates M. That is, there is no proper submodule N of M containing
S.

A submodule of a finitely generated module need not be finitely generated, let A = Z[x1, x2, . . .] and
consider A as an A-module. The ideal (x1, x2, . . .) is not finitely generated.

Proposition 2.14. An R-module M is finitely generated if and only if M is isomorphic to a quotient of R⊕n for
some positive integer n.

Proof. We shall only prove the forward direction since the converse is trivial to prove. Suppose M is finitely
generated. Then, it is generated by a finite subset S = {x1, . . . , xm}. Define the R-module homomorphism
ϕ : R⊕n → M by (r1, . . . , rn) 7→ r1x1 + · · · + rnxn. From the first isomorphism theorem, we have M ∼=
R⊕n/ ker ϕ. ■

Proposition 2.15. Let M be a finitely generated A-module and a an ideal of A. Let ϕ ∈ End(M) such that
ϕ(M) ⊆ aM. Then, there are a0, . . . , an−1 ∈ a such that

ϕn + an−1ϕn−1 + · · ·+ a0 = 0

as an element of End(M), where ak is treated as the homomorphism x 7→ akx in End(M).

Proof. Let {x1, . . . , xn} be a generating set for M. Then, for all 1 ≤ i ≤ n, there are coefficients {ai1, . . . , ain}
in a such that

ϕ(xi) =
n

∑
j=1

aijxj

We may rewrite this as
n

∑
j=1

(ϕδij − aij)xj = 0

Let B denote the matrix (ϕδij − aij)1≤i,j≤n. Then, multiplying by adj(B), we see that det(B)(xj) = 0 for all
1 ≤ j ≤ n where det(B) is viewed as an element in End(M) and thus, is the zero map in End(M). It is not
hard to see that det(B) is in the required form. ■

Corollary 2.16. Let M be a finitely generated A-module and a an ideal of A such that aM ⊆ M, then
there is a ∈ a such that (1 + a)M = 0.

Proof. Substitute ϕ = id in the above proposition. ■
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Lemma 2.17 (Nakayama). Let M be a finitely generated module and a ⊆ R be an ideal such that M = aM.
Then, M = 0.

Proof. Let ϕ = id be the identity homomorphism in End(M). Using Proposition 2.15, there are coefficients
a0, . . . , an−1 ∈ a satisfying the statement of the proposition. As a result, x = 1 + an−1 + . . . + a0 is the zero
endomorphism. But since an−1 + . . . + a0 ∈ a ⊆ R, x is a unit and hence, M = 0. ■

Corollary 2.18. Let M be a finitely generated A-module, N a submodule of M and a ⊆ R an ideal. If
M = aM + N then M = N.

Proof. We have M/N = aM/N, consequently, M/N = 0 and M = N due to Lemma 2.17. ■

A surprising application of Nakayama is the following.

Proposition 2.19. Let M be a finitely generated A-module and φ : M→ M a surjective homomorphism. Then,
φ is an isomorphism.

Proof. Notice that M also has the structure of an A[x]-module where the action of x is given by

x ·m = φ(m).

Further, note that M is still finitely generated as an A[x] module. Due to the surjectivity of φ, we have
(x)M = M. Due to Corollary 2.16, there is some f (x) ∈ A[x] such that (1 + x f (x))M = 0, that is, for each
m ∈ M, (1 + x f (x))m = 0. If m ∈ ker φ, then it is immediate that 0 = m + f (φ)(φ(m)) = m and thus φ is
injective. This completes the proof. ■

Lemma 2.20. Let (A,m) be local and k = A/m. Let M be a finitely generated A-module. Let {x1, . . . , xn} be
elements in M/mM that form a basis for M/mM as a k-vector space. Then, {x1, . . . , xn} generates M.

Proof. Let N be the submodule generated by {x1, . . . , xn}. Then, the composition N ↪→ M ↠ M/mM is
surjective, consequently, M = N +mM whence, it follows that M = N. ■

Proposition 2.21. Let a� A be a finitely generated ideal. If a is idempotent, then it is principal.

Proof. We have a2 = a and viewing a as an A-module, due to Corollary 2.16, there is some a ∈ a such that
(1− a)a = 0. In particular, a ⊆ (a), and thus, a = (a). ■

2.4 Hom Modules and Functors

For R-modules M, N, we denote the set of all R-module homomorphisms from M to N by HomR(M, N).
When the choice of the ring R is clear from the context, we shall denote this set by Hom(M, N).

Proposition 2.22. Let M, N be A-modules. Then Hom(M, N) has the structure of an A-module.

Proof. It is obvious that Hom(M, N) has the structure of an abelian group. Define the natural action by
(a f )(x) = a f (x). It is not hard to see that this action is well defined. ■
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Proposition 2.23. Let {Mλ}λ∈Λ be a collection of A-modules. Then, for any A-module N, we have a natural
isomorphism

HomA

⊕
λ∈Λ

Mλ, N

 ∼= ∏
λ∈Λ

HomA(Mλ, N)

Proof. Since the direct sum is the coproduct in A−Mod, the conclusion follows from the universal property.
■

Proposition 2.24. If M is a finitely generated A-module and {Ni}i∈I is a collection of A-modules, then there is
a natural isomorphism

HomA

M,
⊕
i∈I

Ni

 ∼=⊕
i∈I

HomA(M, Ni)

Proof. Consider the map

Φ : HomA

M,
⊕
i∈I

Ni

→⊕
i∈I

HomA(M, Ni)

given by Φ( f ) = (πi ◦ f )i∈I . That this map is well-defined follows from the fact that M is a finitely gener-
ated A-module. The rest is a routine verification of injectivity and surjectivity. ■

Theorem 2.25. Let ϕ : M → N be an A-module homomorphism. Then, for every R-module P, there is an
induced A-module homomorphism ϕ : Hom(N, P)→ Hom(M, P) and an induced A-module homomorphism
ϕ̃ : Hom(P, M)→ Hom(P, N).

Equivalently phrased, Hom(−, P) is a contravariant functor while Hom(P,−) is a covariant functor.

Proof. We shall prove only the first half of the assertion since the second half follows from a similar proof.
Define ϕ using the following commutative diagram:

M
ϕ
//

f ◦ϕ
  

N

f
��

P

To see that this is indeed an R-module homomorphism, we need only verify that for all f , g ∈ Hom(N, P)
and all r ∈ R, ( f + rg) ◦ ϕ = f ◦ ϕ + rg ◦ ϕ which is trivial to check. ■

Theorem 2.26. Hom(M,−) is a left exact functor.

Proof. Let 0 → N′
f→ N

g→ N′′ be an exact sequence. First, we shall show that f is injective. Indeed,
let u ∈ ker f . Then, f ◦ u is the zero morphism. But since f is injective, we must have that u is the zero
morphism.

Next, we shall show that im f = ker g. Obviously, g ◦ f = 0 and thus it suffices to show ker g ⊆ ker f .
Let u ∈ ker g. That is, g ◦ u = 0. Then, we may define v : M → N′ by v(m) = f−1(u(m)), which is well
defined since f is injective. It is not hard to see that v is a module homomorphism, implying the desired
conclusion. ■
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2.5 Exact Sequences

Definition 2.27. A sequence of module homomorphisms

M
f−→ N

g−→ P

is said to be exact at N if im f = ker g. A short exact sequence is a sequence of module homomor-
phisms:

0 −→ M
f−→ N

g−→ P −→ 0

which is exact at M, N and P.

It is not hard to see that the sequence in the definition is short exact if and only if f is injective, g is
surjective and im f = ker g.

2.5.1 Diagram Chasing Poster Children

Throughout this (sub)section, A, B, C are R-modules where R is a commutative ring.

Lemma 2.28 (Splitting Lemma). Let 0 −→ A ι−→ B π−→ C −→ 0 be a short exact sequence. Then the
following are equivalent.

(a) There is φ : C → B such that π ◦ φ = idC

(b) There is ψ : B→ A such that ψ ◦ ι = idA

(c) There is an isomorphism Φ : B→ A⊕ C making the following diagram commute.

0 // A

idA
��

ι // B π //

Φ
��

C

idC
��

// 0

0 // A // A⊕ C // C // 0

Proof. (a) =⇒ (b). Define ψ(b) = ι−1(b− φ(π(b))). That this map is well defined follows from im ι =
ker π and that it is a homomorphism is trivial. It is not hard to see that ψ ◦ ι = idA.

(b) =⇒ (c). Define the map Φ : B → A⊕ C by Φ(b) = (ψ(b), π(b− ι ◦ ψ(b))). It is trivial to check that
this is an R-module homomorphism. From the Short Five Lemma, it now follows that Φ is an isomorphism.

(c) =⇒ (a). Trivial. ■

2.6 Tensor Product

Definition 2.29 (Bilinear Map). Let M, N, P be A-modules. A map T : M×N → P is said to be bilinear
if for each x ∈ M, the mapping Tx : N → P given by y 7→ T(x, y) is A-linear and for each y ∈ N, the
mapping Ty : M→ P given by x 7→ T(x, y) is A-linear.

Fix two A-modules M and N. Let C denote the category of bilinear maps T : M× N → P where P is
any A-module. A morphism between two bilinear maps f : M × N → P1 and g : M × N → P2 in this
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category is a module homomorphism ϕ : P1 → P2 such that the following diagram commutes:

M× N
f
//

g
��

P1

ϕ
{{

P2

A universal object in C is called the tensor product of M and N and is denoted by M ⊗ N. In other
words, the tensor product is an initial object in the category C .

Definition 2.30 (Universal Property of the Tensor Product). Let M, N, P be A-modules and T : M×
N → P be a bilinear map. Then, there is a unique A-module homomorphism ϕ : M ⊗ N → P such
that the following diagram commutes:

M× N T //

φ

��

P

M⊗A N
∃!ϕ

;;

Of course, having the universal property would imply that the tensor product, if it exists, is unique upto
a unique isomorphism. We shall now construct a tensor product of M and N.

Constructing the Tensor Product

Let F be the free A-module on M × N. Let us denote the basis elements of F by e(x,y) where x ∈ M and
y ∈ N. Now, for all x, x1, x2 ∈ M, y, y1, y2 ∈ N and a ∈ A, let D denote the submodule generated by
elements of the form:

e(x1+x2,y) − e(x1,y) − e(x2,y)

e(x,y1+y2)
− e(x,y1)

− e(x,y2)

e(ax,y) − ae(x,y)

e(x,ay) − ae(x,y)

Let G = F/D and let φ : M× N → G be the composition of the following maps:

M× N ↪→ F ↠ G

Let T : M× N → P be a bilinear map. Consider the following commutative diagram:

M× N T //
� _

ι
��

P

F
π

//

∃! f

;;

G

∃!ϕ

OO

To show that existence of ϕ, we must show that D ⊆ ker f , since we can then finish using the universal
property of the kernel. But this is trivial to check and follows from the fact that T is a bilinear map and
completes the construction.

Similarly, we define the tensor product for a finite sequence of A-modules {Mi}n
i=1. That is, given a

multilinear map T :
n
∏
i=1

Mi → P, there is a unique A-module homomorphism ϕ such that the following
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diagram commutes:

M1 × · · · ×Mn
T //

φ

��

P

M1 ⊗ · · · ⊗Mn

∃!ϕ

88

Proposition 2.31. Let F and G be free A-modules with basis given by { fi}i∈I and {gj}j∈J respectively. Then,
F⊗A G is a free A-module with basis { fi ⊗ gj}i∈I, j∈J .

Proof. It is not hard to see that the set { fi ⊗ gj}i∈I, j∈J is generating for F⊗A G. Therefore, it suffices to show
that this set is linearly independent. Suppose not, then there is a finite linear combination

∑
i∈I, j∈J

aij fi ⊗ gj = 0

Pick some i0 ∈ I and j0 ∈ J. Let ϕ : F× G → A be the bilinear map such that

ϕ( fi, gj) =

{
1 i = i0 and j = j0
0 otherwise

This induces an A-module homomorphism φ : F⊗ G → A such that

φ( fi ⊗ gj) =

{
1 i = i0 and j = j0
0 otherwise

whence, it follows that ai0 j0 = 0 and the collection { fi ⊗ gj}i∈I, j∈J is linearly independent. ■

2.6.1 Properties of Tensor Product

Given two modules M and N with the canonical map φ : M × N → M ⊗ N, we denote by m ⊗ n, the
element φ(m, n) in M⊗ N.

Proposition 2.32. Let M, N, P be A-modules and {Mi}i∈I a collection of A-modules. Then,

(a) M⊗A N ∼= N ⊗A M

(b) (M⊗A N)⊗A P ∼= M⊗A (N ⊗A P) ∼= M⊗A N ⊗A P

(c) (
⊕

i∈I Mi)⊗A N ∼=
⊕

i∈I(Mi ⊗A N)

(d) A⊗A M ∼= M

Proof. (a) First, we shall show that there are well defined homomorphisms M ⊗ N → N ⊗ M and N ⊗
M → M⊗ N mapping m⊗ n 7→ n⊗m and n⊗m 7→ m⊗ n respectively. This is best done using the
universal property. Let T : M× N → N ×M be the isomorphism m× n 7→ n×m. Consider now the
following commutative diagram:

M× N

φ

��

T // N ×M

φ′

��

M⊗ N N ⊗M
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Since both φ′ and T are bilinear, so is φ ◦ T, consequently, there is a unique induced homomorphism
f : M⊗N → N⊗M making the diagram commute, consequently, f (m⊗ n) = φ′(T(m× n)) = n⊗m.

Similarly, there is a homomorphism g : N ⊗M → M⊗ N such that g(n⊗m) = m⊗m. It is not hard
to see that g ◦ f = idM⊗N and f ◦ g = idN⊗M, consequently, they are isomorphisms.

(b) We shall show (M ⊗A N) ⊗A P ∼= M ⊗A N ⊗A P since the proof of the other isomorphism follows
analogously. Fix some z ∈ P and consider the map fz : M× N → M⊗A N ⊗A P given by (x, y) 7→
x ⊗ y ⊗ z. This is an A-linear map and thus induces a map gz : M ⊗A N → M ⊗A N ⊗A P given
by gz(x ⊗ y) = x ⊗ y ⊗ z. The map G : (M ⊗A N) × P → M ⊗A N ⊗A P given by G(x ⊗ y, z) =
gz(x ⊗ y) = x ⊗ y ⊗ z is a well defined A-linear map which induces a map h : (M ⊗A N)⊗A P →
M⊗A N ⊗A P given by (x⊗ y)⊗ z 7→ x⊗ y⊗ z.

On the other hand, the map F : M× N × P → (M⊗A N)⊗A P given by (x, y, z) 7→ x ⊗ y⊗ z is A-
linear and thus induces a map f : M⊗A N⊗A P→ (M⊗A N)⊗A P given by x⊗ y⊗ z 7→ (x⊗ y)⊗ z.
Since the maps f and h are inverses to one another for elementary tensors, they are inverses to one
another over their respective domains, whereby both are isomorphisms.

(c) Define the map f : (
⊕

i∈I Mi)× N → ⊕
(Mi ⊗A N) by f ((mi)⊗ n) = (mi ⊗ n), which is a bilinear

map. This induces a map ϕ : (
⊕

i∈I Mi)⊗A N → ⊕
i∈I(Mi ⊗A N) such that f ((mi)⊗ n) = (mi ⊗ n).

Now, consider the map fi : Mi × N → M ⊗ N given by fi(mi, n) = ιi(mi) ⊗ n. This induces a
map gi : Mi ⊗A N → M ⊗ N such that gi(mi ⊗ n) = ιi(mi) ⊗ n. We may now define a map ψ :⊕

i∈I(Mi ⊗A N)→ (
⊕

i∈I Mi)⊗A N given by

ψ((mi ⊗ ni)) = ∑ gi(mi ⊗ ni)

Obviously the sum on the right is a finite sum. Further, since each each gi is well defined, so is ψ.

Lastly, we shall show that ϕ and ψ are inverses to one another. Indeed,

ψ ◦ ϕ((mi)⊗ n) = ψ((mi ⊗ n)) = ∑ ιi(mi)⊗ n = (mi)⊗ n

and
ϕ ◦ ψ((mi ⊗ ni)) = ∑ ϕ(gi(mi ⊗ ni)) = (mi ⊗ ni)

(d) Consider the map T : A×M→ M given by (a, m) 7→ am. It is not hard to see that this map is bilinear,
consequently, there is a map f : A⊗M→ M such that the following diagram commutes:

A×M T //

φ

��

M

A⊗M
f

;;

Note that f (a⊗m) = am by definition. Consider the map g : M → A⊗M given by g(m) = 1⊗m.
It is not hard to see that g is a well defined module homomorphism. Further, since f ◦ g and g ◦ f are
the identity homomorphisms, they both must be isomorphisms.

■

Example 2.33. Show that Z/mZ⊗Z/nZ ∼= Z/ gcd(m, n)Z for all m, n ∈ N. In particular, if m and n
are coprime, then Z/mZ⊗Z/nZ = 0.

Proof. Consider the module homomorphism T : Z→ Z/mZ⊗Z/nZ. ■

Let f : M→ M′ and g : N → N′ be A-module homomorphisms. Then, the map Φ : M× N → M′ ⊗ N′

given by Φ(m, n) = f (m)⊗ g(n). It is not hard to see that Φ is bilinear. Consequently, it induces a map
f ⊗ g : M⊗ N → M′ ⊗ N′ such that

( f ⊗ g)(x⊗ y) = f (x)⊗ g(y)
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Further, if f ′ : M′ → M′′ and g′ : N′ → N′′ are A-module homomorphisms, then we have another map
f ′ ⊗ g′ : M′ ⊗ N′ → M′′ ⊗ N′′ such that

( f ′ ⊗ g′)(x⊗ y) = f ′(x)⊗ g′(y)

Now, it is not hard to see that ( f ′ ◦ f ′)⊗ (g′ ◦ g) and ( f ′ ⊗ g′) ◦ ( f ⊗ g) agree on the elementary tensors,
therefore, agree on all of M⊗ N.

2.6.2 Restriction and Extension of Scalars

Let ϕ : A→ B be a homomorphism of rings. We shall

• convert an B-module into an A-module. This is known as restriction of scalars.

• construct from an A-module a B-module. This is known as extension of scalars.

The first is rather easy to do. Begin with an B-module M and define the action of A by a ·m = ϕ(a) ·m.
That this is a valid ring action is easy to verify. As for the second, note that the homomorphism ϕ gives B
the structure of an A-module whereby, we may consider the tensor product of A-modules B⊗A M. Now,
for b, b′ ∈ B, define

b′ · (b⊗m) = bb′ ⊗m

It is not hard to see that this is a ring, whereby, B⊗A M is also a B-module.

2.7 Right Exactness

Proposition 2.34. Let M, N, P be A-modules. Then, there is a natural isomorphism:

HomA(M, HomA(N, P)) ∼= HomA(M⊗A N, P)

Proof. Consider the map

θ : HomA(M⊗A N, P) −→ HomA(M, HomA(N, P))

given by θ(α)(m)(n) = α(m ⊗ n). Now, pick some η ∈ HomA(M, HomA(N, P)). Define the map ζ :
M× N → P given by ζ(m, n) = η(m)(n). Obviously, ζ is bilinear and induces a map δ : M⊗A N → P such
that δ(m⊗ n) = η(m)(n). Call the map sending η 7→ δ as β where

β : HomA(M, HomA(N, P))→ HomA(M⊗A N, P)

and β(η)(m⊗ n) = η(m)(n).
We contend that θ and β are inverses to one another. Indeed,

((β ◦ θ)(α))(m⊗ n) = θ(α)(m)(n) = α(m⊗ n)

and
((θ ◦ β)(η))(m)(n) = β(η)(m⊗ n) = η(m)(n)

whence the conclusion follows. ■

In particular, we see that the functor−⊗A N is the left adjoint of the functor HomA(N,−), consequently,
HomA(N,−) is the right adjoint of −⊗A N.

Theorem 2.35. The functor −⊗A N is right exact. That is, given a exact sequence

M′
f−→ M

g−→ M′′ −→ 0
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the sequence

M′ ⊗A N
f⊗1−→ M⊗A N

g⊗1−→ M′′ ⊗A N −→ 0

Proof. Since the given sequence is exact, so is

HomA(M′′, HomA(N, P))
g−→ HomA(M, HomA(N, P))

f−→ HomA(M′, HomA(N, P)) −→ 0

but from Proposition 2.34, so is

HomA(M′′ ⊗A N, P) −→ HomA(M⊗A N, P) −→ HomA(M′ ⊗A N, P) −→ 0

Since the above sequence is exact for all modules P, we have the desired conclusion. ■

The tensor product is not left exact. Conider the sequence of Z-modules

0 ↪→ Z
f−→ Z

where f (m) = 2m. Upon tensoring with Z/2Z, we get the sequence

0 −→ Z⊗Z Z/2Z
f⊗1−→ Z⊗Z Z/2Z

Note that
( f ⊗ 1)(m⊗ n) = 2m⊗ n = m⊗ (2n) = m⊗ 0 = 0

Therefore, the sequence cannot be exact.

Theorem 2.36. There is a natural isomorphism

(M⊗A B)⊗B (M′ ⊗A B) ∼= (M⊗A M′)⊗A B.

Proof. Note that the functor (−⊗A B)⊗B (M′ ⊗A B) is right exact, since it is a composition of tensor prod-
ucts. First, note that the isomorphism is obvious when M is a free module. Now suppose M were arbitrary.
Then, we have an exact sequence ⊕

j∈J
A −→

⊕
j∈J

A −→ M −→ 0.

Denote by F′ =
⊕

j∈J A and F =
⊕

i∈I A. Let

θM : (M⊗A B)⊗B (M′ ⊗A B)→ (M⊗A M′)⊗A B.

We have shown above that θM is an isomorphism whenever M is a free module. In particular, we have a
commutative diagram with exact rows.

(F′ ⊗A B)⊗B (M′ ⊗A B) //

∼=
��

(F⊗A B)⊗B (M′ ⊗A B) //

∼=
��

(M⊗A B)⊗B (M′ ⊗A B) //

θM
��

0

(F′ ⊗A M′)⊗A B // (F⊗A M′)⊗A B // (M⊗A M′)⊗A B // 0

Conclude using the five lemma. ■

Theorem 2.37. Let ϕ : A→ B be a ring homomorphism. Let M be an A-module and N a B-module. Note that
N is also an A-module owing to the restriction of scalars. Then, there is a natural isomorphism

(M⊗A B)⊗B N ∼−→ M⊗A N
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of B-modules.

Proof. Easy proof using universal properties. ■

More generally, the following is true.

Theorem 2.38. Let M be an A-module, P a B-module and N an (A, B)-bimodule. Then, M⊗A N is naturally
a B-module, N ⊗B P an A-module and there is an natural isomorphism of (A, B)-bimodules:

(M⊗A N)⊗B P ∼= M⊗A (N ⊗B P).

Proof. ■

As an application, we have the following.

Proposition 2.39. Let A be a local ring and M, N finitely generated A-modules. Then, M ⊗A N = 0 if and
only if M = 0 or N = 0.

Proof. Let k denote the residue field of A. Then,

(M⊗A k)⊗k (k⊗A N) ∼= ((M⊗A k)⊗k k)⊗A N ∼= (M⊗A (k⊗k k))⊗A N ∼= (M⊗A k)⊗A N
∼= (k⊗A M)⊗A N ∼= k⊗A (M⊗A N) = 0.

But a tensor product of vector spaces is 0 if and only if one of the two vector spaces is 0. Hence, either
M⊗A k = 0 or N ⊗A k = 0, whence, it follows from Lemma 2.17, that M = 0 or N = 0. ■

2.8 Flat Modules

Definition 2.40 (Flat Module). An A-module M is said to be flat if the functor −⊗A N is exact.

We know that −⊗A N is right exact, hence, it suffices to show that the functor is left exact.

Theorem 2.41. Let N be a A-module. Then, the following are equivalent

(a) N is flat

(b) If 0→ M′ → M→ M′′ → 0 is an exact sequence of A-modules, then the tensored sequence

0 −→ M′ ⊗A N
f⊗1−→ M⊗A N

g⊗1−→ M′′ ⊗A N −→ 0

is exact.

(c) If f : M′ → M is injective, then f ⊗ 1 : M′ ⊗ N → M⊗ N is injective

(d) If f : M′ → M is injective and M, M′ are finitely generated, then f ⊗A 1 : M′ ⊗A N → M⊗A N is
injective.

Proof.

(a)⇐⇒ (b): Is well known.

(b) =⇒ (c): Immediate from considering the short exact sequence 0→ M′ → M→ M/M′ → 0.
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(c) =⇒ (b): Since −⊗A N is known to be right exact as well.

TODO: Complete this later

■

Proposition 2.42. Let {Mi}i∈I be a collection of A-modules. Then, M =
⊕
i∈I

Mi is flat if and only if Mi is flat

for each i ∈ I.

Proof. From the fact that
M⊗A N ∼=

⊕
i∈I

(Mi ⊗A N)

and the isomorphism is natural. ■

Corollary 2.43. Free modules are flat.

Proof. Obviously, A is a flat A-module, therefore,
⊕

λ∈Λ A is free for every indexing set Λ. ■

Proposition 2.44. Let B be an A-algebra and M a flat A-module. Then, M⊗A B is a flat B-module.

Proof. Follows from the natural isomorphism (M⊗A B)⊗B N ∼= M⊗A N. ■

Lemma 2.45. The following are equivalent.

(a) M is flat.

(b) TorA
i (N, M) = 0 for all i > 0 and all A-modules N. Equivalently, TorA

i (M, N) = 0 for all i > 0 and all
A-modules N.

(c) TorA
1 (N, M) = 0 for all A-modules N. Equivalently, TorA

1 (M, N) = 0 for all A-modules N.

(d) TorA
1 (N, M) = 0 for all finitely generated A-modules N. Equivalently, TorA

1 (M, N) = 0 for all finitely
generated A-modules N.

The equivalent statements follow from the balancing property of Tor.

Proof. (a) =⇒ (b) is immediate from the definition of Tor while (b) =⇒ (c) and (c) =⇒ (d) is
something a third grader could figure out. It remains to show that (c) =⇒ (a). Let N and N′ be finitely
generated A-modules and f : N′ → N an injective homomorphism. Then, there is a short exact sequence

0 ↪→ N′
f−→ N −→ coker f ↠ 0.

This sequence gives rise to a Tor long exact sequence

TorA
1 (N′, M)→ TorA

1 (N, M)→ TorA
1 (coker f , M)→ N′ ⊗A M→ N ⊗A M→ coker f ⊗A M→ 0.

Since N and N′ are finitely generated, so is coker f , whence we have a an exact sequence

0→ N′ ⊗A M→ N ⊗A M→ coker f ⊗A M→ 0.

In particular, this means that N′ ⊗A M→ N ⊗A M is injective and M is flat. ■
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Lemma 2.46. If 0 → M′ → M → M′′ → 0 be a short exact sequence of A-modules with M′′ flat, then M′ is
flat if and only if M is flat.

Proof. Again, using the Tor long exact sequence, we have

· · · → TorA
n (N′, M)→ TorA

n (N, M)→ 0→ TorA
n−1(N′, M)→ TorA

n−1(N, M)→ 0→ · · · .

The conclusion is now obvious. ■

Lemma 2.47. M is flat if and only if TorA
1 (N, M) = 0 for every cyclic A-module N, equivalently, TorA

1 (M, N) =
0 for every cyclic A-module N.

Proof. The forward direction is clear. We shall prove the converse. Let N be a finitely generated A-module,
say generated by {x1, . . . , xn}. Let Ni denote the submodule generated by {x1, . . . , xi} for 1 ≤ i ≤ n. We
have a short exact sequence

0 −→ Ni −→ Ni+1 −→ Ni+1/Ni −→ 0.

Note that N1 is cyclic and thus, TorA
1 (N1, M) = 0. We shall inductively show that TorA

1 (Ni, M) = 0. The
induction step follows from the Tor long exact sequence, since

TorA
1 (Ni, M) // TorA

1 (Ni+1, M) // TorA
1 (Ni+1/Ni, M)

0 // ? // 0

and thus TorA
1 (Ni+1, M) = 0. In particular,

TorA
1 (N, M) = TorA

1 (Nn, M) = 0.

This completes the proof. ■

Corollary 2.48. M is flat if and only if TorA
1 (A/a, M) = 0 for every ideal a�A. Equivalently, TorA

1 (M, A/a) =
0 for every ideal a� A.

Proof. Every cyclic A-module is isomorphic to A/a as A-modules for some ideal a� A. ■

Lemma 2.49. M is flat if and only if TorA
1 (A/a, M) = 0 for every finitely generated ideal a� A. Equivalently,

TorA
1 (M, A/a) = 0 for every finitely genrated ideal a� A.

Proof. We shall show that for any A-module M, TorA
1 (A/a, M) = 0 for every finitely generated ideal a is

equivalent to TorA
1 (A/a, M) = 0 for every ideal a.

To see this, note that TorA
1 (A/a, M) = 0 if and only if the sequence

0 −→ a⊗A M −→ A⊗A M

is exact, where this equivalence follows from the Tor long exact sequence. . ■ complete
this
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Proposition 2.50. Suppose M′′ is a flat A-module and

0 −→ M′
f−→ M

g−→ M′′ −→ 0

is a short exact sequence. If N is any A-module, then

0 −→ M′ ⊗A N
f⊗1−→ M⊗A N

g⊗1−→ M′′ ⊗A N −→ 0

is exact.

Proof 1. The short proof is to consider the tail of the Tor long exact sequence.

· · · → TorA
1 (M′′, N)→ M′ ⊗A N → M⊗A N → M′′ ⊗A N → 0.

Since M′′ is flat, TorA
1 (M′′, N) = 0 and the conclusion follows. ■

Proof 2. This is a beautiful proof using the Snake Lemma. Let F be a free module that surjects onto N with
kernel N′. Then, we have a short exact sequence

0 −→ N′ −→ F −→ N −→ 0.

We can now construct the following commutative diagram

M′ ⊗A N′ //

��

M⊗A N′ //

��

M′′ ⊗A N′ //

��

0

0 // M′ ⊗A F // M⊗A F // M′′ ⊗A F // 0

The snake lemma gives an exact sequence ■

Lemma 2.51. A finitely presented flat module over a local ring is free.

Proof. Let M be a finitely presented (and therefeore, finitely generated) flat module over a local ring (A,m, k).
Let x1, . . . , xn ∈ M be such that x1, . . . , xn ∈ M/mM form a basis as a k-vector space. As we have seen ear-
lier, x1, . . . , xn then generate M as an A-module. Let F = A⊕n and φ : F ↠ M denote the surjection that
maps the i-th basis element of F to xi. Then, ker φ is finitely generated due to Proposition 2.72. We have a
short exact sequence

0 −→ ker φ −→ F
φ−→ M −→ 0.

Tensoring with k and invoking Proposition 2.50, we have

0 −→ ker φ⊗A k −→ F⊗A k −→ M⊗A k −→ 0

is exact. But note that F⊗A k −→ M⊗A k is a surjection of vector spaces of the same dimension. Therefore,
an isomorphism of k-vector spaces, consequently, also an isomorphism of A-modules. In particular, this
means that ker φ ⊗A k = 0. Finally, due to Lemma 2.17, ker φ = 0 and F ∼= M. This completes the
proof. ■

Definition 2.52. A ring A is said to be von Neumann regular or absolutely flat if every A-module is flat.
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Theorem 2.53. The following are equivalent

(a) A is absolutely flat.

(b) Every principal ideal in A is idempotent.

(c) Every finitely generated ideal in A is a direct summand of A as A-modules.

Proof. ■

Proposition 2.54. A local ring is absolutely flat if and only if it is a field.

Proof. Let (A,m, k) be local and absolutely flat. Then, there is a short exact sequence

0→ m→ A→ A/m→ 0.

Since A/m is a flat A-module, we may tensor to obtain the short exact sequence

0→ m⊗A A/m→ A⊗A A/m→ A/m⊗A A/m→ 0.

Note that A/m⊗A A/m = A/m as A-modules and hence,

0→ m⊗A A/m→ A/m→ A/m→ 0

is exact whence m⊗A A/m = 0, consequently, m = 0 due to Lemma 2.17. ■

2.9 Projective Modules

Theorem 2.55. For an A-module P, the following are equivalent:

(a) Every map f : P→ M′′ can be lifted to f̃ : P→ M in the following commutative diagram:

P
f̃

}}

f
��

M g
// M′′ // // 0

(b) Every short exact sequence 0→ M′ → M→ P→ 0 splits

(c) There is a module M such that P⊕M is free

(d) The functor HomA(P,−) is exact.

Proof.

(a) =⇒ (b): Taking M′′ = P and f = idP, we have the desired conclusion.

(b) =⇒ (c): Let F denote the free module on the set P. Then, the map Φ : F → P given by Φ(ex) = x for all
x ∈ P is a surjective A-module homomorphism. We have the following short exact sequence:

0→ ker Φ ι−→ F Φ−→ P→ 0

This is known to split and thus, F = ψ(P)⊕ ker Φ where ψ : P→ F is the section.

25



(c) =⇒ (d): Let M′ → M→ M′′ be an exact sequence of modules and K be an A-module such that P⊕K =
F ∼= AΛ. Then, the induced sequence

∏
λ∈Λ

M′ → ∏
λ∈Λ

M→ ∏
λ∈Λ

M′′

is exact. We have seen that there is a natural isomorphism HomA(A, M)
∼−→ M, consequently, there

is a natural isomorphism
HomA(A⊕Λ, M)

∼−→ ∏
λ∈Λ

M

whence it follows that the sequence

HomA(A⊕Λ A, M′)→ HomA(A⊕Λ A, M)→ HomA(A⊕Λ, M′′)

But since HomA(A⊕Λ, M) ∼= HomA(P, M)⊕HomA(K, M), we have the desired conclusion.

(d) =⇒ (a): Trivial.

■

Definition 2.56 (Projective Module). An A-module P satisfying any one of the four equivalent condi-
tions of Theorem 2.55 is said to be a projective A-module.

In particular, from Theorem 2.55(c), we see that every free module is projective.

Lemma 2.57. A finitely generated projective module P over a local ring (A,m) is free.

Proof. Let {x1, . . . , xn} be a basis for M/mM as a k-vector space where k = A/m. As we have seen earlier,
{x1, . . . , xn} generates M. Let F be the free module with basis {e1, . . . , en} and Φ : F → M be the module ho-
momorphism given by Φ(ei) = xi and K = ker Φ. Since M is projective, there is a module homomorphism
ψ : M→ F satisfying Φ ◦ ψ = idM and F = K⊕ ψ(M).

We contend that K = mK. Indeed, let x ∈ K, then x = ∑ riei for a unique choice {r1, . . . , rn}. Then,
∑ rixi = 0, consequently, ri ∈ m for all i. Since F = K ⊕ ψ(M), we may write ei = ui + vi for some ui ∈ K
and vi ∈ ψ(M). As a result,

x−∑ riui = ∑ rivi ∈ ker Φ ∩ ψ(M) = {0}

and the conclusion follows.
Finally due to Lemma 2.17, we must have that K = 0 whence M is free. ■

Proposition 2.58. Projective modules are flat.

Proof. Follows from the fact that free modules are flat and projective modules are direct summands of free
modules. ■

Theorem 2.59. Let I denote the unit interval and A = C(I), the ring of real valued continuous functions on
I. Let M denote the A-module of continuous functions that vanish in a neighborhood of zero. Then, M is a
projective A-module.
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Proof. Consider the functions ri : I → R given by

ri(x) =


0 0 ≤ x ≤ 1

2i

2ix− 1 1
2i ≤ x ≤ 1

2i−1

1 x ≥ 1
2i−1

.

For any f ∈ M, there is a sufficiently large i such that ri f = f . Define the map Φ : M→ ⊕∞
i=1 A by

Φ( f ) =
(
(1− ri−1) f

)
i∈N

.

For sufficiently large i, (1− ri−1) f = 0. Now, define Ψ :
⊕∞

i=1 A→ M by

Ψ((ai)i∈N) =
∞

∑
i=1

riai.

For f ∈ M, we have

Ψ ◦Φ( f ) =
∞

∑
i=1

ri(1− ri−1) f =
∞

∑
i=1

(ri − ri−1) f = f .

The last equality follows from the fact the sum was essentially finite. In particular, this means that M is a
direct summand of a free module which completes the roof. ■

Remark 2.9.1. It is also true that M is not a free A-module. I do not know of an elementary proof yet.

2.10 Injective Modules

Theorem 2.60 (Baer’s Criterion). Let Q be an A-module. Then Q is injective if and only if for every ideal a of
A, every A-module homomorphism f : a→ Q can be extended to an A-module homomorphism f̃ : A→ Q.

Proof. ( =⇒ ) Trivial.
(⇐= ) Let M ⊆ N be A-modules. It suffices to show that every A-module homomorphism f : M → Q

can be extended to an A-module homomorphism f : N → Q. We shall first show that given x ∈ N\M, the
map f can be extended to a map f ′ : M + (x) → Q. Indeed, let a = (M : x). Consider the map g : a → Q
given by g(a) = f (ax). This is obviously an A-module homomorphism and according to the hypothesis,
can be extended to an A-module homomorphism g̃ : A→ Q. Using this, we may define

f ′(m + ax) = f (m) + g̃(x) ∀a ∈ A.

It is straightforward to check that this is an A-module homomorphism which extends f .
Now, let (Σ,≦) denote the poset of maps ϕ : M′ → Q where M ≤ M′ ≤ N are A-modules with the

relation ϕ ≦ ψ if ψ is an extension of ϕ. It is not hard to argue that every chain in Σ has an upper bound.
Thus, due to Zorn, there is a maximal element f̃ : M′ → Q for some M ≤ M′ ≤ N. If M′ ̸= N, then by
choosing some x ∈ N\M′, we may extend the map f̃ to a map from M′ + (x) to Q, a contradiction. This
completes the proof. ■

Proposition 2.61. Let R be a PID. Then, M is an injective R-module if and only if it is divisible.

Proof. Suppose M is injective. Let a ∈ A\{0} and x ∈ M. Then, the map f : (a) → M which maps a 7→ x
can be extended to a map from A to M. If f (1) = y, then ay = x whence M is divisible.

Conversely, if M is divisible, then given any map f : (a)→ M, if f (a) = x, then there is y ∈ M such that
ay = M. Now, the map f̃ : A→ M given by f (1) = y extends f whereby M is injective. This completes the
proof. ■

27



2.11 Essential Extensions and Injective Hull

I’ll add the theory later. First, an application. Add the-
ory about
essential ex-
tensionsTheorem 2.62 (Schröder-Bernstein for Injective Modules). Let R be a possibly non-commutative ring and

M, N injective R-modules. If there are R-linear injections f : M ↪→ N and g : N ↪→ M, then M ∼= N.

Proof. We may treat N as a submodule of M. Using injectivity of N, there is a submodule X of M such that
M = N ⊕ X. Let Xn denote the set f n(X) and L =

⊕∞
n=0 Xn. Consider the map Φ : L→ M given by

Φ(x0, x1, . . . ) =
∞

∑
i=0

xi.

We contend that Φ is injective. Indeed, suppose (xi) ∈ ker Φ. Then, there is some positive integer n such
that xj = 0 for all j > n and

x0 + f (x1) + · · ·+ f n(xn) = 0.

Therefore, x0 ∈ im( f ) ⊆ N whence x0 = 0, consequently, x1 + f (x2) + · · ·+ f n−1(xn) = 0, since f is an
injection. Working inductively, we see that xi = 0 for all i and Φ is injective.

We may now suppose that L is embedded inside M through the injection Φ. Since f (L) ⊆ N, there is
an injective hull E of f (L) that is contained inside N. Since E is injective, there is a submodule Y of N such
that N = E⊕Y.

We have
E(L) ∼= E(X⊕ f (L)) ∼= E(X)⊕ E( f (L)) ∼= X⊕ E.

Recall that f is an injection and thus, E(L) ∼= E( f (L)) ∼= E. Henc, E ∼= X⊕ E. This gives us

M ∼= N ⊕ X ∼= Y⊕ E⊕ X ∼= Y⊕ E ∼= N.

This completes the proof. ■

2.12 Algebras

Definition 2.63. An A-algebra is a ring homomorphism ϕ : A → B. This endows B with the structure
of an A-module. The algebra is said to be of finite type if B is finitely generated as an A-module. A
homomorphism between algebras (ϕ1, B1) and (ϕ2, B2) is a map φ : B1 → B2 making the following
diagram commute.

A
ϕ1
//

ϕ2
��

B2

B1

φ

>>

This gives rise to a locally small category A−Alg with morphisms as defined above.

An A-algebra B is said to be finite if it is finitely generated as an A-module. On the other hand, it is said
to be finitely generated or of finite type if it is the homomorphic image of a polynomial ring A[x1, . . . , xn]
for some positive integer n.

Proposition 2.64. If C is a finite B-algebra and B is a finite A-algebra, then C is a finite A-algebra.
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Proposition 2.65. If C is a B-algebra of finite type and B is an A-algebra of finite type, then C is an A-algebra
of finite type.

Proof. There is a surjective ring homomorphism φ : A[x1, . . . , xn] → B and a surjective ring homomor-
phism ψ : B[y1, . . . , ym] → C. It is not hard to see that there is a surjective ring homomorphism Φ :
A[x1, . . . , xn, y1, . . . , ym]→ C thereby completing the proof. ■

2.12.1 Tensor Product of Algebras

Consider the two A-algebras f : A→ B and f : A→ C. Then, the map

µ : B× C× B× C → B⊗A C

given by µ(b, c, b′, c′) = bb′ ⊗ cc′ is A-multilinear, whereby it induces a map

µ′ : B⊗A C⊗A B⊗A C → B⊗A C

given by µ′(b ⊗ c ⊗ b′ ⊗ c′) = bb′ ⊗ cc′. Let D = B ⊗A C. Then, we have µ′ : D ⊗A D → D given by
µ′(b⊗ c, b′ ⊗ c′) = bb′ ⊗ cc′.

Let φ : D× D → D⊗A D be the natural map. Then, the composition · = µ′ ◦ φ : D× D → D is given
by

(b⊗ c) · (b′ ⊗ c′) = bb′ ⊗ cc′

We contend that (D⊗A D,+, ·, 0⊗ 0, 1⊗ 1) is a ring. To do this, we need only verify that multiplication
distributes over addition. Indeed,

(b⊗ c) · (b′ ⊗ c′ + b′′ ⊗ c′′) = µ′
(
(b⊗ c)⊗ (b′ ⊗ c′ + b′′ ⊗ c′′)

)
= µ′((b⊗ c⊗ b′ ⊗ c′) + (b⊗ c⊗ b′′ ⊗ c′′))

= bb′ ⊗ cc′ + bb′′ ⊗ cc′′

Let i : B→ B⊗A C be the map b 7→ b⊗ 1 and j : C → B⊗A C be the map c 7→ 1⊗ c. Then the square in
the following diagram commutes.

A
f
//

g
��

B

i
��

p

��

C

q 22

j
// B⊗A C

∃!r
##
T

Let T be an A-algebra with A-algebra morphisms p : B → T and q : C → T. We contend that there is a
unique A-algebra morphism r : B⊗A C → T making the above diagram commute.

To construct the map r, consider the multilinear map Φ : B× C → T given by Φ(b, c) = p(b)q(c). This
induces a map r : B⊗A C → T given by

r(b⊗ c) = p(b)q(c).

This map obviously makes the diagram commute. It remains to show that r is indeed an A-algebra mor-
phism, for which, it suffices to show that it is a ring homomorphism. Indeed,

r((b⊗ c)(b′ ⊗ c′)) = r(bb′ ⊗ cc′) = p(bb′)q(cc′) = p(b)q(c)p(b′)q(c′) = r(b⊗ c)r(b′ ⊗ c′).

Hence, the tensor tensor product is a coproduct in the category of A-algebras.
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2.13 Structure Theorem for Modules over a PID

Throughout this section, let R be a PID.

Lemma 2.66. A finitely generated torsion free R-module is free.

Proof. Let M be a finitely generated torsion free R-module. Let {x1, . . . , xm} be a set of generators. Pick
a maximal linearly independent subset {v1, . . . , vn} of {x1, . . . , xm}. Then, for each xi, there is a linear
combination

aixi + b1v1 + · · ·+ bnvn = 0

with ai ̸= 0 due to the maximality of {v1, . . . , vn}. Therefore, aixi ∈ (v1, . . . , vn) = (v1)⊕ · · · ⊕ (vn). Let
a = a1 · · · am. Then, the map ϕ : M → (v1, . . . , vn) given by ϕ(m) = am is an injective map. Thus, M is
isomorphic to a submodule of (v1, . . . , vn). But note that

(v1, . . . , vn) = (v1)⊕ · · · ⊕ (vn)

is a free module and hence so is M. ■

The statement is no longer true upon dropping the finitely generated condition, for example, Q as a
Z-module is not free but is torsion free.

Definition 2.67. Let E be an R-module. For x ∈ E, an element r ∈ R such that AnnR(x) = (r) is said to
be a period of x. An element c ∈ R is said to be an exponent for E (resp. for x) if cE = 0 (resp. cx = 0).
The elements x1, . . . , xn ∈ E are said to be independent if

(xi) ∩ (x1, . . . , x̂i, . . . , xn) = 0

In this case, (x1, . . . , xn) = (x1)⊕ · · · ⊕ (xn).

Remark 2.13.1. In order to show that x1, . . . , xn are independent, it suffices to show that given any linear combination
a1x1 + · · ·+ anxn = 0, we must have aixi = 0 for all 1 ≤ i ≤ n. Further note that the notion of independence is not
the same as that of linear independence. That is, we may have an independent set which is not linearly independent,
for each element in the set may be torsion.

The following lemma essentially states that it is possible to lift an independent set in a quotient module
to the original module.

Lemma 2.68 (Lifting Lemma). Let E be a torsion module with exponent pr for some prime p ∈ R and x1 ∈ E
be an element of period pr. Let E = E/(x1) and y1, . . . , ym be independent elements of E. Then for each
1 ≤ i ≤ m, there is a representative yi ∈ E of yi such that the period of yi is same as the period of yi. Further,
x1, y1, . . . , ym are independent.

Proof. Let y ∈ E, then, Ann(y) ⊇ Ann(E) ⊇ (pr) whereby, Ann(y) = (pn) for some n ≤ r. Thus, pny ∈ (x1)
whence there is psc ∈ R with p ∤ c such that pny = pscx1. Now, pscx1 has period pr−s and thus y has period
pn+r−s. This immediately implies that n + r − s ≤ s and equivalently n ≤ s. Consider now the element
z = y− ps−ncx1. This is a representative for y and its period is pn. This shows that we may lift the yi’s to E.

Finally, we must show that the liftings are independent. Indeed, suppose

ax1 + a1y1 + · · ·+ amym = 0

then moving to E, we have a1y1 + · · ·+ amym = 0 but since y1, . . . , ym are independent, aiyi = 0 for each
1 ≤ i ≤ m. Now, if pri is the period of yi (we have argued earlier that this must be a power of p) and
consequently, pri | ai. This immediately implies that aiyi = 0 and thus ax1 = 0, which completes the
proof. ■
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Let E be a finitely generated torsion module. For a prime p ∈ R, define

E[p] = {x ∈ E | ∃n ∈N, pnx = 0}

That this is a submodule is easy to verify. Further, it is finitely generated since it is the submodule of a
finitely generated module over a PID.

Let Ann(E) = (α) where α = upt1
1 · · · p

tr
r where u ∈ R×.

Lemma 2.69.

E ∼=
r⊕

i=1

E[pi]

Proof. Let qi = α/pti
i . Then, (q1, . . . , qr) = 1 and hence, there are γ1, . . . , γr ∈ R such that γ1q1 + · · ·+γrqr =

1. For any x ∈ E, we have
x = γ1q1x + · · ·+ γrqrx

where γiqix ∈ E[pi] for each i. Thus, E = ∑r
i=1 E[pi].

We shall now show that this sum is direct. Indeed, suppose xi ∈ E[pi] such that x1 + · · · + xr = 0.
Multiplying this equation by qi, we have qixi = 0, consequently, Ann(xi) ⊇ (pti

i , qi) = (1), that is, xi = 0
for each i. This completes the proof. ■

Since E[p] is finitely generated, we may let E = E[p] henceforth. Since E[p] is finitely generated, take
a generating set {x1, . . . , xn}. Since (pm) ⊆ Ann(xi) for some m ∈ N, we must have Ann(xi) = (pni ) for
some ni. As a result,

Ann(E) ⊇
r⋂

i=1

Ann(xi) ̸= 0

whence Ann(E) = (pn) for some positive integer n. We shall now show that E has a decomposition. Let
M(E) denote the minimum cardinality of a generating set of E. Obviously this exists since E has at least
one generating set.

Let x1 ∈ E be an element in a generating set with cardinality M(E) such that Ann(x1) divides the
annihilator ideal of every other element in the aforementioned generating set. This can be done because the
generating set has finite cardinality.

Let E = E/(x1). Obviously, M(E) < M(E) whereby, there is a decomposition E ∼= (y1)⊕ · · · ⊕ (ym)
with (yi)

∼= R/(pri ). Due to the Lemma 2.68, there are corresponding elements y1, . . . , ym ∈ E such that
the period of yi is that of yi, and x1, y1, . . . , ym are independent. This shows that the following short exact
sequence spilts:

0→ (x1)→ E→ E→ 0

whence E ∼= (x1)⊕ (y1)⊕ · · · ⊕ (ym). This completes the proof of the existence of a decomposition.

2.13.1 The Jordan Canonical Form

Let k be an algebraically closed field

2.14 Finitely Presented Modules

I need to place this section somewhere nice.

Definition 2.70 (Finitely Presented). An A-module M is said to be finitely presented if there are posi-
tive integers m and n and an exact sequence Am → An → M→ 0.

Obviously, every finitely presented module is finitely generated. Further, if A is a noethering, then an
A-module is finitely generated if and only if it is finitely presented.
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Proposition 2.71. If M is finitely presented, then for every A-module N and multiplicative subset S of A,

S−1 HomA(M, N) ∼= HomS−1 A(S
−1M, S−1N)

Proof. There is a natural map T : S−1 HomA(M, N) → HomS−1 A(S
−1M, S−1N) given by (ϕ/s)(m/t) =

ϕ(m)/st. We shall show that this map is an isomorphism when M is finitely presented. To do so, we must
first show that this is an isomorphism when M = An for some positive integer n. Indeed, since localization
commutes with direct sums, we have

S−1 HomA(A⊕n, N) ∼= S−1 ∏ HomA(A, N) ∼= ∏ HomS−1 A(S
−1 A, S−1N) ∼= HomS−1 A(S

−1 A⊕n, N).

Since M is finitely presented, we have an exact sequence Am → An → M→ 0 for some positive integers m
and n. We have a commutative diagram.

0 // S−1 HomA(M, N) //

��

S−1 HomA(An, N) //

∼
��

S−1 HomA(Am, N)

∼
��

0 // HomS−1 A(S
−1M, S−1N) // HomS−1 A(S

−1 An, S−1N) // HomS−1 A(S
−1 Am, S−1N)

and the conclusion follows from the five lemma (just add another column of zeros to the left). ■

Proposition 2.72. Let N be finitely generated and M a finitely presented A-module. If f : N ↠ M is a
surjection, then ker f is finitely generated.

Proof. Let Am → An → M→ 0 be an exact sequence. Then, there is a commutative diagram

Am //

∃h
��

An //

∃g
��

M //

idM

0

0 // ker f // N
f
// M // 0

with exact rows. Since Am and An are projective A-modules, the map idM can be lifted to maps g : An → N
and h : Am → ker f . Due to the Snake Lemma, there is an exact sequence

0 = ker idM → coker h→ coker g→ coker idM = 0

whence coker h ∼= coker g. But since N is finitely generated, so is coker g and hence so is coker h. Finally,
we have an exact sequence

Am → ker f → coker h

where Am and coker h are finitely generated. Thus, ker f is finitely generated. ■ cite 2 out of
3 lemma
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Chapter 3

Localization

3.1 Rings of Fractions

Define the relation ∼S on A× S by (a, s) ∼S (a′, s′) if there is t ∈ S such that t(s′a− sa′) = 0. That this is an
equivalence relation is easy to verify. We shall use a/s to denote the equivalence class [(a, s)] in A× S/ ∼S.

Consider the operations:
a
s
+

a′

s′
=

s′a + sa′

ss′
a
s
· a′

s′
=

aa′

ss′

It is not hard to see that these are well defined and endow A× S/ ∼S with a ring structure. We denote
this ring by S−1 A and is called the ring of fractions of A by S.

There is a natural ring homomorphism φ : A → S−1 A given by φ(x) = x/1. When A is an integral
domain and S = A\{0}, S−1 A is precisely the field of fractions. Recall that if p is a prime ideal in A, then
S = A\p is a multiplicatively closed subset of A. We denote the ring S−1 A by Ap.

Theorem 3.1. The ring Ap is local.

Proof. Let S = A\p and define

m =

 a
s

∣∣∣∣∣ a ∈ p, s ∈ S


It is not hard to see that m is an ideal in Ap. We contend that m is the ideal of non-units in Ap. Indeed, if
a/s ∈ m is a unit, then there is b/t ∈ Ap such that (ab)/(st) = 1, consequently, there is w ∈ S such that
w(ab− st) = 0, whence wst ∈ p, a contradiction.

On the other hand, if a/s /∈ m, then a/s is a unit since (a/s) · (s/a) = 1. Now, since the collection of all
non-units forms an ideal, the ring must be local due to Proposition 1.7. ■

Proposition 3.2. Let m be the unique maximal ideal of Ap. Then, Ap/m ∼= Q(A/p) where the latter is the
field of fractions of A/p.

Proof. TODO: Add in later ■

Similarly, when we let S = {an}n≥0 for some a ∈ A, we denote S−1 A by Aa.
There is a degenerate case, when we allow 0 ∈ S, notice that the ring S−1 A is the zero ring, since for all

a/s ∈ S−1 A, we have 0(as) = 0, therefore, a/s = 0/s.
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Proposition 3.3. Let {Ai}i∈I be a collection of commutative rings and {Si ⊆ Ai} be a collection of multiplica-
tively closed sets. Then, (

∏
i∈I

Si

)−1(
∏
i∈I

Ai

)
∼= ∏

i∈I
(S−1

i Ai)

Proof. Define the map ϕ : ∏i∈I(S
−1
i Ai)→ (∏i∈I Si)

−1 (∏i∈I Ai) given by

ϕ

((
ai
si

)
i∈I

)
=

(ai)i∈I
(si)i∈I

It is straightforward to argue that this map is well defined and surjective. We now contend that this is an
isomorphism, for which it suffices to show that ker ϕ is trivial. Indeed, if (ai/si)i∈I ∈ ker ϕ, then there is
(ti)i∈I such that (tiai)i∈I = (0)i∈I whereby, tiai = 0 for each i and ai/si = 0. This completes the proof. ■

Corollary 3.4. Let {Ai} be a collection of rings then every localization of ∏i∈I Ai is of the form (Ai)pi
for some i ∈ I where pi ⊆ Ai is a prime ideal.

Proof. Follows from the fact that prime ideals in ∏i∈I Ai are of the form π−1
i (pi) where pi is a prime ideal

in Ai and π : ∏i∈I Ai → Ai is the natural projection map. ■

3.1.1 Universal Property

Fix a multiplicative subset S ⊆ A. Let C denote the category with objects as pairs (ϕ, B) where ϕ : A → B
is a ring homomorphism such that ϕ(s) is a unit in B for all s ∈ S. A morphism in this category is a map
f : (ϕ, B)→ (ψ, C) making the following diagram commute.

A
ψ
//

ϕ

��

C

B
f

??

The ring of fractions is an initial object in this category. Therefore, we have the following universal
property. We shall verify in the “proof” that our construction of the field of fractions does satisfy this
property and is therefore an initial object in C .

Proposition 3.5. Let f : A→ B be a ring homomorphism such that f (s) is a unit in B for all s ∈ S. Then there
is a unique ring homomorphism g : S−1 A→ B making the following diagram commute

A
f
//

φ
��

B

S−1 A
∃!g

<<

Proof. Define the map g : S−1 A→ B by g(a/s) = g(a)g(s)−1. To see that this map is well defined, note that
if a/s = a′/s′, then there is t ∈ S such that t(s′a− sa′) = 0, consequently, g(t)(g(s′)g(a)− g(s)g(a′)) = 0.
As a result, g(a)g(s)−1 = g(a′)g(s′)−1. From this, it follows immediately that g is a ring homomorphism
making the diagram commute.

As for uniqueness, note that for all a/s ∈ S−1 A,

g(a/s) = g(a/1)g(1/s) = g(a/1)g(s/1)−1 = f (a) f (s)−1

which is fixed by the choice of f . This completes the proof. ■
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3.2 Modules of Fractions

Let M be an A-module and S ⊆ A be a multiplicatively closed subset. Define the relation ∼S on M× S by
(m, s) ∼S (m′, s′) if and only if there is t ∈ S such that t(s′m− sm′) = 0. That this is an equivalence relation
is easy to verify. We shall use m/s to denote the equivalence class [(m, s)] in M× S/ ∼S.

As in the previous section, there is a natural A-module homomorphism φ : M → S−1M given by
φ(m) = m/1. This map is called the localization map.

It is not hard to see that S−1M forms an A-module. Further, it also has the structure of an S−1 A module
under the action a

s
· m

t
=

a ·m
st

Let f : M→ N be an A-module homomorphism. Consider the map S−1 f : S−1M→ S−1N given by

S−1 f
(

m
s

)
=

f (m)

s

We must first show that this is well defined. Indeed, if m/s = m′/s′, then there is t ∈ S such that
t(s′m− sm′) = 0, consequently, t(s′ f (m)− s f (m′)) = 0, as a result, f (m)/s = f (m′)/s′ in S−1M.

We now contend that S−1 f is an S−1 A module homomorphism. Indeed, we have

S−1 f

(
m
s
+

a
t

m′

s′

)
= S−1 f

(
ts′m + asm′

sts′

)
=

f (ts′m + asm′)
sts′

=
ts′ f (m) + as f (m′)

sts′
=

f (m)

s
+

f (m′)
s′

Finally, let f : M→ N and g : N → P be A-module homomorphisms. Then,

S−1(g ◦ f )
(

m
s

)
=

g( f (m))

s
S−1g

(
S−1 f

(
m
s

))
= S−1g

(
f (m)

s

)
=

g( f (m))

s

Theorem 3.6. S−1 : A−Mod→ S−1 A−Mod is an exact functor.

Proof. Let M′
f−→ M

g−→ M′′ be an exact sequence. Then, for any m′/s′ ∈ S−1M′, we have

S−1g

S−1 f

(
m′

s′

) = S−1g

(
f (m′)

s′

)
=

g( f (m′))
s′

= 0

As a result, im(S−1 f ) ⊆ ker(S−1g). On the other hand, for m/s ∈ ker S−1g, we have g(m)/s = 0, conse-
quently, there is t ∈ S such that tg(m) = 0, equivalently, g(tm) = 0, whence, there is m′ ∈ M′ such that
f (m′) = tm. Then, we have

f

(
m′

st

)
=

f (m′)
st

=
tm
st

=
m
s

whence, ker(S−1g) ⊆ im(S−1 f ). This completes the proof. ■

Proposition 3.7. Let N, P, {Mi}i∈I be submodules of an A-module M. Then, for a multiplicatively closed
S ⊆ M,

(a) S−1(N ∩ P) = S−1N ∩ S−1P

(b) S−1

(
∑
i∈I

Mi

)
= ∑

i∈I
S−1Mi
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(c) S−1(M/N) ∼= S−1M/S−1N as S−1 A modules.

Proof. (a) We have the exact sequences 0 → N ∩ P → N and 0 → N ∩ P → P. Due to Theorem 3.6,
the sequences 0 → S−1(N ∩ P) → S−1N and 0 → S−1(N ∩ P) → S−1N are exact, consequently,
S−1(N ∩ P) ⊆ S−1N ∩ S−1P.

On the other hand, if n/s = p/t for some n ∈ N, p ∈ P and s, t ∈ S, there is some u ∈ S such
that u(tn − sp) = 0, equivalently, m = utn = usp ∈ N ∩ P. Thus, m/(stu) = n/s = p/t, and the
conclusion follows.

(b) Let M = ∑i∈I Mi. Then, there is the exact sequence 0 → Mi → M. Then, due to Theorem 3.6, the
sequence 0→ S−1Mi → S−1M is exact. Consequently, ∑

i∈I
S−1Mi ⊆ S−1M.

On the other hand, any element in S−1M is of the form (mi1 + · · ·+ min)/s = mi1 /s + · · ·+ min /s for
some min ∈ Min and s ∈ S. The conclusion follows.

(c) Consider the short exact sequence 0 → N → M → M/N → 0. Due to Theorem 3.6, we obtain
the short exact sequence of S−1 A-modules 0 → S−1N → S−1M → S−1(M/N) → 0 whereby the
conclusion follows.

■

Proposition 3.8. Let S ⊆ A be a multiplicative subset. Then, there is a natural isomorphism S−1M ∼=
S−1 A⊗A M.

Proof. Consider the map T : S−1 A × M → S−1M, given by T(a/s, m) = am/s. This is a bilinear map
whereby it induces a map f : S−1 A⊗A M → S−1M given by f (a/s⊗m) = am/s. This is surjective, since
f (1/s⊗m) = m/s. We shall show ker f = 0. Indeed, suppose the finite sum ∑i ai/si ⊗mi is in ker f . Let
s = ∏i si and ti = ∏j ̸=i si. Then,

∑
i

ai/si ⊗mi = 1/s⊗
(

∑
i

aitimi

)

The image under f of this tensor is (∑i aitimi)/s which is zero, whence there is u ∈ S such that u ∑i aitimi =
0, but this implies

1/s⊗
(

∑
i

aitimi

)
= 1/su⊗

(
u ∑

i
aitimi

)
= 0

This completes the proof. ■

Corollary 3.9. For every multiplicative subset S ⊆ A, S−1 A is a flat A-module.

Corollary 3.10. Let {Mi}i∈I be a collection of A-modules. If S ⊆ A is a multiplicative subset, then

S−1

⊕
i∈I

Mi

 ∼=⊕
i∈I

S−1Mi

as S−1 A-modules. As a result,

S−1

(
∑
i∈I

Mi

)
∼= ∑

i∈I
S−1Mi
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as S−1 A-modules.

Proof. The first assertion follows from the fact that the tensor product commutes with direct sums. As for
the second assertion, consider the exact sequence⊕

i∈I
Mi −→∑

i∈I
Mi −→ 0

and localize. ■

Proposition 3.11. Let S ⊆ A be a multiplicative subset. Then, there is a natural isomorphism S−1(M⊗A N) =
S−1M⊗S−1 A S−1N.

Proof. Define the map
Φ : S−1M× S−1N → S−1(M⊗A N)

given by

Φ
(

m
s

,
n
t

)
=

m⊗ n
st

.

This is obviously S−1 A-linear and thus induces a map

Ψ : S−1M⊗S−1 A S−1N → S−1(M⊗A N)

given by

Ψ
(

m
s
⊗ n

t

)
=

m⊗ n
st

.

We contend that this is an isomorphism of vector spaces. Define the map

Γ : S−1(M⊗A N)→ S−1M⊗S−1 A S−1N

by

Γ
(

m⊗ n
s

)
=

m
s
⊗ n

1
.

It is not hard to see that Γ ◦Ψ and Ψ ◦ Γ are the identity maps whence they are isomorphisms. ■

3.3 Local Properties

A property P defined on the class of modules is said to be local if for every A-module M,

M satisfies P if and only if Mp satisfies P for each p ∈ Spec A.

Proposition 3.12. Let M be an A-module. Then, the following are equivalent:

(a) M = 0

(b) Mp = 0 for each p ∈ Spec A

(c) Mm = 0 for each m ∈ MaxSpec A

Proof. That (a) =⇒ (b) =⇒ (c) is obvious. We shall show (c) =⇒ (a). Suppose not, then there is x ∈
M\{0}. Since AnnA(x) is a proper ideal in A, it is contained in some maximal ideal, say m. Since Mm = 0,
there is s ∈ A\m such that sx = 0, a contradiction. This completes the proof. ■
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Proposition 3.13. Let ϕ : M→ N be an A-module homomorphism. Then, the following are equivalent:

(a) ϕ is injective (surjective).

(b) ϕp : Mp → Np is injective (surjective).

(c) ϕm : Mm → Nm is injective (surjective).

Proof. (a) =⇒ (b) follows from the exactness of localization applied to the exact sequence 0 → M → N
(M → N → 0) and (b) =⇒ (c) is trivial. We shall show (c) =⇒ (a). We have the exact sequence
0 → ker ϕ → M → N → coker ϕ → 0. Upon localizing, for all maximal ideals m, we have the exact
sequence

0 −→ (ker ϕ)m −→ Mm −→ Nm −→ (coker ϕ)m −→ 0

Since we have ϕm is injective (surjective), we have (ker ϕ)m ((coker ϕ)m) is zero for all maximal ideals m,
whence we are done using to the previous proposition. ■

Proposition 3.14. Flatness is a local property. That is, the following are equivalent.

(a) M is a flat A-module.

(b) Mp is a flat Ap-module for every p ∈ Spec(A).

(c) Mm is a flat Am-module for every m ∈ MaxSpec(A).

Proof. (a) =⇒ (b) follows from the exactness of localization and (b) =⇒ (c) is obvious. We shall show
(c) =⇒ (a). ■ show that

c=>a

Proposition 3.15. Let M be a finitely presented A-module. Then, the following are equivalent:

(a) M is projective

(b) Mp is projective for all p ∈ Spec A

(c) Mm is projective for all p ∈ MaxSpec A

Proof. (a) =⇒ (b). If M is projective, there is a positive integer n and an A-module N such that M⊕ N ∼=
An. As a result, Mp ⊕Mp

∼= A⊕n
p and is projective.

(c) =⇒ (a). ■

A surprising consequence of the previous proposition is the following.

Proposition 3.16. A finitely presented flat A-module is projective.

Proof. Follows from Proposition 3.15 and Lemma 2.51. ■

Proposition 3.17. “Being an integral domain” is not a local property.

Proof. Let A be a nonzero integral domain and consider the ring R = A× A. This is not an integral domain.
Due to Proposition 3.3, every localization of R is isomorphic to Ap for some p ∈ Spec A, consequently, is an
integral domain. ■
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3.4 Extension and Contraction of Ideals

Definition 3.18. If a ⊆ A is an ideal, S ⊆ A a multiplicatively closed subset and φ : A → S−1 A the
natural map. Define S−1a to be the extension of a under the natural map φ.

Theorem 3.19. Let S ⊆ A be a multiplicatively closed set. Then,

(a) Every ideal in S−1 A is an extended ideal.

(b) If a ⊆ A is an ideal, then
aec =

⋃
s∈S

(a : s)

Hence, ae = (1) if and only if a∩ S ̸= ∅

(c) There is a bijection
{p ∈ Spec A | S ∩ p = ∅} ↔ Spec(S−1 A)

given by p 7→ S−1p, which is just the extension map.

Proof. (a) Let a ⊆ S−1 A be an ideal. We shall show that ace = a. We know that ace ⊆ a therefore, it
suffices to show the reverse inclusion. Let x/s ∈ a. Then, x/1 ∈ a, and x ∈ ac. As a result, x/1 ∈ ace

and x/s ∈ ace, implying the desired conclusion.

(b)

(c) Let p be a prime ideal in A that does not meet S. Let a/s, b/t ∈ S−1 A such that ab/st ∈ S−1p,
whereby there is an element p ∈ p and r ∈ S such that ab/st = p/r whence there is u ∈ S such that
uabr = ustp. Since ur /∈ p, we must have ab ∈ p, consequently, either a/s ∈ S−1p or b/t ∈ S−1p,
implying the desired conclusion.

Conversely, since the contraction of any prime ideal in S−1p is also a prime ideal not meeting S, lest
the prime ideal in S−1 A contain a unit. Now, if p is a prime ideal, then

p ⊆ pec =
⋃
s∈S

(p : s) ⊆ p

On the other hand, from (a), we see that if q is a prime ideal in S−1 A, then qce = q, whereby the
bijection is established.

■

Proposition 3.20. The operation S−1 on ideals of A commutes with formation of finite sums, products, inter-
sections and radicals.

Corollary 3.21. S−1(N(A)) = N(S−1 A)

Proof. Since N(A) =
√
(0). ■

From the above proposition, we see that “N(A) = (0)” is a local property.
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Proposition 3.22. If M is finitely generated, then S−1 AnnA(M) = AnnA(S−1M).

Proof. Induction on the number of generators. Sort of straightforward. Use the fact that

Ann(N1 + N2) = Ann(N1) ∩Ann(N2) ■

Theorem 3.23. Let f : A→ B be ring homomorphism. Then, p ∈ Spec(A) is a contraction of a prime ideal in
B if and only if pec = p.

Proof. We shall prove only the converse, since the other direction is trivial. Suppose pec = p. Let S =
f (A\p), which is obviously a multiplicatively closed subset of B. Obviously, pe ∩ S = ∅ whence S−1pe is a
proper ideal in S−1B. Let m ⊆ S−1B be a maximal ideal containing S−1pe. Let q be the contraction of m in
B. This is a prime ideal containing pe and q ∩ S = ∅, whence, qc must be contained in p but it also contains
p therefore, is equal to p. This completes the proof. ■

Theorem 3.24. A is absolutely flat if and only if Am is a field for every m ∈ MaxSpec(A).

Proof. The forward direction is obvious. We shall show the converse. Let M be an A-module. Then, Mm is
an Am-vector space and thus a flat Am-module. Since flatness is a local property, we see that M must be a
flat A-module. ■

3.5 Support of a Module

Definition 3.25. For an A-module M, the support of a module Supp(M) is defined to be the set of all
prime ideals p ∈ Spec(A) such that Mp ̸= 0.

Theorem 3.26. For an A-module M and an ideal a� A, the following are true.

(a) If M ̸= 0, then Supp(M) ̸= ∅.

(b) Supp(A/a) = V(a).

(c) If 0→ M′ → M→ M′′ → 0 is a short exact sequence, then Supp(M) = Supp(M′) ∪ Supp(M′′).

(d) If M = ∑i∈I Mi, then Supp(M) =
⋃

i∈I Supp(Mi).

(e) If M is finitely generated, then Supp(M) = V(AnnA(M)).

(f) If M and N are finitely generated, then Supp(M⊗A N) = Supp(M) ∩ Supp(N).

(g) If M is finitely generated, then Supp(M/aM) = V(a+ AnnA(M)).

Proof. (a) Follows from the fact that being zero is a local property.

(b) Note that (A/a)p = Ap/ap and ap ⊊ Ap if and only if a ⊆ p.
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(c) Consider the localized short exact sequence

0 −→ M′p −→ Mp −→ M′′p −→ 0.

If p ∈ Supp(M), then it must lie in either Supp(M′) or Supp(M′′). On the other hand, if p /∈ Supp(M),
then the above sequence is

0 −→ M′p −→ 0 −→ M′′p −→ 0

whence p /∈ Supp(M′) ∪ Supp(M′′).

(d) Follows from the fact that localization commutes with arbitrary sums.

(e) First suppose M = (x1). Then, p ∈ Supp(M) if and only if AnnA(x1) ⊆ p. Thus the assertion holds
for cyclic modules. Then, using the previous assertion,

Supp((x1, . . . , xn)) =
n⋃

i=1

V(AnnA(xi)) = V

 n⋂
i=1

AnnA(xi)

 = V(AnnA(M)).

(f) Suppose p /∈ Supp(M ⊗A N), then Mp ⊗Ap
Np = 0 and Mp, Np are finitely generated Ap-modules.

Due to Proposition 2.39, Mp = 0 or Np = 0, whence p /∈ Supp(M) ∩ Supp(N), that is, Supp(M) ∩
Supp(N) ⊆ Supp(M⊗A N). On the other hand, if p /∈ Supp(M) ∩ Supp(N), then Mp ⊗Ap

Np = 0
and the conclusion follows.

(g) We have, due to the previous assertion,

Supp(A/a⊗A M) = Supp(A/a) ∩ Supp(M) = V(a) ∩V(AnnA(M)) = V(a+ AnnA(M)). ■

Place This Somewhere

Lemma 3.27. Let M be a finitely generated A-module. Let a� A be an ideal and x1, . . . , xn ∈ M generate
M/aM. Then, there is f ∈ 1 + a such that x1/1, . . . , xn/1 generate M f as an A f -module.

Proof. Consider the map ϕ : An → M mapping ei to xi. Note that coker ϕ ⊗A A/a = 0 and thus, due to
Corollary 2.16, there is some f ∈ 1 + a such that f coker ϕ = 0. The conclusion now follows. ■

Lemma 3.28. Let M be a finitely generated A-module. Then, the following are equivalent:

(a) M is projective.

(b) M is strongly locally free.

(c) For every p ∈ Spec(A), the module Mp is free and has locally constant dimension with respect to the
Zariski topology.

Proof. (a) =⇒ (b).
(b) =⇒ (a). simplify this
(b) =⇒ (c) Trivial.
(c) =⇒ (b) Let m ⊆ A be a maximal ideal and let x1, . . . , xr ∈ M map to an A/m-basis of M/mM.

Then, due to the previous lemma, there is some f ∈ 1 +m such that x1/1, . . . , xr/1 generate M f over A f .
Since ρM is locally constant, it is equal to r on an open set containing m ∈ Spec(A). Choose a basic open

set D(g) with g /∈ m on which ρM is constant and equal to r. Define the map Ψ : Ar
f g → M f g given by

Φ (a1, . . . , ar) =
r

∑
i=1

ai
xi
1

.
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We contend that this is an isomorphism. Note the primes in A f g are precisely the extensions of the primes
in D( f g). Let p ∈ D f g. Then, the localization Ψp, at the extension of p in A f g is the map

Ψp : Ar
p → Mp Ψ (a1, . . . , ar) =

r

∑
i=1

ai
xi
1

.

Note that p ∈ D( f g) ⊆ D( f ) and thus, Ψp is surjective since x1/1, . . . , xr/1 generate M f over A f . Further,
since Mp is finitely generated and isomorphic to Ar

p, the surjection Ψp must be an isomorphism whence Ψ
is an isomorphism.

Hence, for each maximal m, we have found some h /∈ m such that Mh is a free Ah-module. The set of all
such h’s must generate (1) else they would be contained in a maximal ideal. This proves (b). ■
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Chapter 4

Primary Decomposition

4.1 Primary Decomposition of Ideals

A primary ideal is a generalization of the ideals pnZ in Z, as is evident from the following definition.

Definition 4.1 (Primary Ideals). An ideal q ⊆ A is said to be primary if for every ordered pair x, y ∈ A,

xy ∈ q =⇒ x ∈ q or yn ∈ q for some n > 0

From the definition, we see that every prime ideal is primary. It is not hard to see that

• q is primary if and only if every zero divisor in A/q is nilpotent.

• q is primary if and only if (0) is primary in A/q.

Proposition 4.2. If q is primary, then
√
q is prime. Further,

√
q is the smallest prime ideal containing q.

Proof. Suppose xy ∈ √q, then there is n > 0 such that xnyn ∈ q, consequently, there is an m > 0 such that
xn ∈ q or ymn ∈ q, therefore, x ∈ √q or y ∈ √q, whence

√
q is prime. The second assertion is trivial. ■

If q is a primary ideal, then p =
√
q is called the associated prime ideal of q and q is said to be p-primary.

Consider the ring A = k[x, y] and the ideal q = (x, y2). The quotient ring A/q is isomorphic to k[y]/(y2)
where every zero divisor is nilpotent consequently, q is primary. The radical ideal p =

√
q = (x, y) is a

prime ideal such that p2 ⊊ q ⊊ p, therefore, q is not a prime power.
On the other hand, consider the ring A = k[x, y, z]/(xy− z2) and the prime ideal p = (x, z) ⊆ A. We

contend that p2 ⊆ A is not primary. Indeed, note that xy = z2 ∈ p2 but x /∈ p2 and y /∈ p2, and the
conclusion follows.

Proposition 4.3. If
√
a is maximal, then a is primary.

Proof. Let m =
√
a and ϕ : A → A/a denote the natural map. Then, ϕ(

√
a) is the maximal ideal in A/a

and is also the nilradical of A/a, consequently, A/a is local and every non-unit is nilpotent. Hence, a is
primary. ■

Proposition 4.4. Let ϕ : A→ B be a ring homomorphism. If q� B is a primary ideal in B, then qc is a primary
ideal in A.
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Proof. There is an injection A/qc ↪→ B/q. If (0) is primary in B/q then it is primary in A/qc. ■

Lemma 4.5. If {qi}n
i=1 are p-primary, then so is q =

⋂n
i=1 qi.

Proof. Obviously,
√
q =

n⋂
i=1

√
qi = p

Let xy ∈ q. If y ∈ p, then we are done, since p =
√
q. Else, yn /∈ qi for every positive integer n, since p =

√
qi

whereby x ∈ qi for each 1 ≤ i ≤ n and the conclusion follows. ■

Lemma 4.6. Let q be a p-primary ideal and x ∈ A. Then

(a) if x ∈ q, then (q : x) = (1).

(b) if x /∈ q, then (q : x) is p-primary.

(c) if x /∈ p, then (q : x) = q.

Proof. (a) Trivial.

(b) If y ∈ (q : x), then xy ∈ q, therefore, y ∈ p. Thus, we have q ⊆ (q : x) ⊆ p. Taking radicals,
p ⊆

√
(q : x) ⊆ p, whereby

√
(q : x) = p.

On the other hand, if yz ∈ (q : x), then xyz ∈ q. If z ∈ p, then we are done. Else, xy ∈ q and y ∈ (q : x)
whence (q : x) is p-primary.

(c) If y ∈ (q : x), then yx ∈ q. Since x /∈ p, we must have y ∈ q. This completes the proof.
■

Definition 4.7 (Primary Decomposition). A primary decomposition of an ideal a ⊆ A is an expression
of a as a finite intersection of primary ideals.

a =
n⋂

i=1

qi

The ideal a is said to be decomposable if it has a primary decomposition. Moreover, if for all 1 ≤ i ≤ n,√
qi are distinct and ⋂

j ̸=i

qj ̸⊆ qi

then the primary decomposition is said to be minimal.

Using Lemma 4.5, it is not hard to see that every decomposable ideal has a minimal decomposition.

Theorem 4.8 (First Uniqueness Theorem). Let a ⊆ A be a decomposable ideal and

a =
n⋂

i=1

qi
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be a minimal primary decomposition with pi =
√
qi. Then, the pi’s are precisely the prime ideals the occur in

the set {
√
(a : x) | x ∈ A}.

Proof. First, note that √
(a : x) =

√√√√ n⋂
i=1

(qi : x) =
n⋂

i=1

√
(qi : x) =

⋂
x/∈qi

pi

Using Proposition 1.9,
√
(a : x) = pj for some index j.

Conversely, for every 1 ≤ j ≤ n, there is xj ∈
⋂

i ̸=j qi\qj. This obviously exists since the decomposition
is minimal. It now follows from Proposition 1.9 and the decomposition of

√
(a : x) we derived above that√

(a : x) = pj. ■

Proposition 4.9. Let a be a decomposable ideal. Then any prime ideal p ⊇ a contains a minimal prime ideal
belonging to a, and thus the minimal prime ideals belonging to a are precisely the minimal prime ideals in the
set of all prime ideals containing a.

Proof. Let p be a minimal prime ideal containing a. Consider a minimal primary decomposition of a given
by

p ⊇ a =
n⋂

i=1

qi.

Let pi =
√
qi, then

p ⊇
√
a =

n⋂
i=1

pi

and due to Proposition 1.9, there is an index j such that p ⊇ pj whence pj = p. Thus, every minimal prime
ideal containing a belongs to a. ■

Proposition 4.10. Let S be a multiiplcatively closed subset of A and q be a p-primary ideal.

(a) If S ∩ p ̸= ∅, then S−1q = S−1 A.

(b) If S ∩ p = ∅, then S−1q is S−1p-primary and its contraction in A is q.

Proof. (a) is trivial. (b) : Recall that we have

qec =
⋃
s∈S

(q : s) =
⋃
s∈S

q

where the last equality follows from the fact that S∩ q = ∅. It remains to show that S−1q is primary. Indeed,
let x/s · y/t ∈ S−1q. Then, there is z ∈ q and w, u ∈ S such that w(xyu− stz) = 0. But since wu /∈ q, we
must have xy ∈ q, whereby x ∈ q or yn ∈ q for some positive integer n, implying that either x/s ∈ S−1q or
yn/tn ∈ S−1q. This completes the proof. ■

Definition 4.11 (Isolated Set of Associated Primes). A set Σ of prime ideals associated with a is said
to be isolated if it satisfies the following condition:

if p′ is a prime ideal belonging to a with p′ ⊆ p for some p ∈ Σ, then p′ ∈ Σ
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Theorem 4.12 (Second Uniqueness Theorem). Let a be a decomposable ideal with a primary decomposition
a =

⋂n
i=1 qi. Let

√
qi = pi. Suppose Σ = {pi1 , . . . , pim} is an isolated set of associated primes of a, then

⋂m
j=1 qij

is independent of the chosen decomposition.

Proof. Let S = A\⋃m
j=1 pij . Then, pk ∩ S = ∅ if and only if pk ⊆

⋂m
j=1 pj whence due to Proposition 1.9, there

is a prime pit containing pk and equivalently, pk ∈ Σ.
Whence, upon localizing with S, we have

S−1a =
n⋂

i=1

S−1qi =
m⋂

j=1

S−1qij

Contracting both sides, we have

aec =

 m⋂
j=1

S−1qij

 =
m⋂

j=1

qec
ij
=

m⋂
j=1

qij

and the conclusion follows. ■

Corollary 4.13. In particular, the primary ideals which correspond to the minimal primes associated to
a are uniquely determined.

Proposition 4.14. Let X be an infinite compact Hausdorff space. Then, (0) is not decomposable in C(X), the
ring of continuous functions on X.

Proof. Suppose (0) =
⋂n

i=1 qi. Recall that the maximal ideals in X are in bijection with the points of X.
Denote the maximal ideal corresponding to a point x ∈ X by mx.

For each qi, choose a maximal ideal mxi containing it. Choose some x ∈ X\{x1, . . . , xn}. Choose an open
set V containing {x1, . . . , xn} and an open set U containing x such that U ∩V = ∅.

Using Urysohn’s Lemma, choose continuous functions f , g : X → [0, 1] such that f (x) = 1 and
Supp( f ) ⊆ U and g(xi) = 1 for every i and Supp(g) ⊆ V. By our choice of g, note that gm /∈ qi for
every 1 ≤ i ≤ n and every positive integer m. Since f g = 0, we must have f ∈ qi for every 1 ≤ i ≤ n,
implying that f = 0, a contradiction. This completes the proof. ■

Definition 4.15 (Symbolic Power). Let p ∈ Spec A. The n-th symbolic power of p is defined to be the
contraction of the ideal pn Ap in A, denoted p(n).

Being the contraction of a primary ideal in Ap, the symbolic power is always a primary ideal. Moreover,√
p(n) = p whence, it is p-primary.

Proposition 4.16. With notation as above,

(a) p(n) is a p-primary ideal.

(b) if pn has a primary decomposition, then p(n) is its p-primary component.

Proof. (a) follows from the fact that the contraction of primary ideals is primary.
(b) Note that pn obviously would have a p-primary component and that would be given by the contrac-

tion of S−1pn where S = A\p. The conclusion follows. ■
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4.2 Associated Primes of Modules

Definition 4.17. Let a ∈ A and M and A-module. The homomorphism aM : M → M given by x 7→ ax
for all x ∈ M is called the principal homomorphism. We say that aM is locally nilpotent if for each x ∈ M,
there is an integer n ∈N such that anx = 0.

Remark 4.2.1. If M is finitely generated, then aM is locally nilpotent if and only if it is nilpotent.

Proposition 4.18. Let a ∈ A and M an A-module. Then aM is locally nilpotent if and only if a ∈ p for each
p ∈ SuppA(M), that is, a ∈ ⋂

p∈SuppA(M)
p.

Proof. Suppose aM is locally nilpotent and p ∈ Supp(M). Then, there is some x ∈ M such that x/1 ̸= 0 in
Mp, that is, a = AnnA(x) ⊆ p. Since aM is locally nilpotent, there is a positive integer n such that an ∈ a
whence a ∈ p.

Conversely, suppose aM is not locally nilpotent whence there is some x ∈ M such that anx ̸= 0 for all
n ∈N. Let p be a prime ideal not intersecting {1, a, a2, . . . } and containing AnnA(x)1. Then, x/1 ̸= 0 in Mp

whence Mp ̸= 0 and p ∈ Supp(M), but a /∈ p. This completes the proof. ■

Definition 4.19 (Associated Primes). For an A-module M, a prime p ∈ Spec(A) is said to be associated
with M if there is x ∈ M such that p = AnnA(x). The set of all associated primes of a module M is
denoted by Ass(M).

Equivalently, a prime p is an associated prime of M if there is an injection of A-modules, A/p ↪→ M.

Proposition 4.20. If the poset
Σ = {AnnA(x) | x ∈ M\{0}}

has a maximal element, then it is prime.

Proof. Let p be a maximal element of Σ under inclusion. Let a, b ∈ A with ab ∈ p. If either a or b is zero,
then, trivially, a ∈ p or b ∈ p. Suppose now that both a, b are nonzero. Let x ∈ M be such that p = AnnA(x)
and suppose b /∈ p. Then, p ⊆ AnnA(bx) ̸= (1) and due to maximality, we must have p = AnnA(bx), and
thus a ∈ p. This completes the proof. ■

Corollary 4.21. Modules over noetherings have associated primes.

Lemma 4.22. Let A be a noethering and M an A-module with a ∈ A. Then, aM is injective if and only if a does
not lie in any of the associated primes of M.

Proof. If aM is injective, then a is not in the annihilator of any nonzero element, therefore, not an element
of any associated prime. On the other hand, suppose aM is not injective. Then, there is some nonzero
x ∈ M such that a ∈ AnnA(x). Consider the poset of all proper annihilators containing AnnA(x). Since A
is a noethering, this has a maximal element, say p. Note that p is also maximal in the poset of all proper
annihilators whence is prime and hence a is contained in an associated prime. This completes the proof. ■

1That we can do this is an easy application of Zorn’s Lemma
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Lemma 4.23. Let A be a noethering and M and A-module. Then, every p ∈ Supp(M) contains an associated
prime.

Proof. If p ∈ Supp(M), then there is some x ∈ M such that (Ax)p ̸= 0, consequently, (Ax)p has an asso-
ciated prime, say q. First, we contend that q ⊆ p. Suppose not, then there is some a ∈ q\p. Since q is an
associated prime, there is some 0 ̸= y/s ∈ (Ax)p such that q = AnnAp

(y/s). In particular, by/s = 0. But
b/1 is invertible in Ap whence y/s = 0, a contradiction. Thus q ⊆ p.

Next, we shall show that q is an associated prime of M. Since A is a noethering, q is finitely generated,
say by b1, . . . , bn. Then, biy/s = 0 for each i, consequently, there is some si /∈ p such that sibiy = 0. Let
t = s1 · · · sn /∈ p. We contend that q = AnnA(ty). Obviously, q ⊆ AnnA(ty). On the other hand, if
b ∈ AnnA(ty), then bty = 0 whereby by/s = 0 and b ∈ q. This completes the proof. ■

Corollary 4.24. Let A be a noethering and M an A-module with a ∈ A. The following are equivalent:

(a) aM is locally nilpotent.

(b) for each p ∈ Ass(M), a ∈ p.

(c) for each p ∈ Supp(M), a ∈ p.

Proof. (a) =⇒ (b) is immediate from the definition while (c) =⇒ (a) has been proven. Both these
implications do not require the noethering hypothesis. The implication (b) =⇒ (c) has been proven
above and requires the noethering hypothesis. ■

Lemma 4.25. Let N be a submodule of M. Then,

Ass(N) ⊆ Ass(M) ⊆ Ass(N) ∪Ass(M/N).

Proof. It is obvious that Ass(N) ⊆ Ass(M). Now, let p ∈ Ass(M). Then, there is some x ∈ M such that
p = AnnA(x). If x ∈ N, then we are done. If not, then consider Ax ∩ N. If Ax ∩ N = 0, then, Ax is
isomorphic to the image of Ax under the projection M/N. Therefore, p is an associated prime of some
submodule of M/N. On the other hand, if Ax ∩ N ̸= 0, then there is some y = ax ∈ N for some a ∈ A.

Obviously p annihilates y. If b ∈ A annihilates y, then bax = 0 whence ba ∈ p. But since y ̸= 0, a /∈ p
and thus b ∈ p. This completes the proof. ■

Lemma 4.26. Let S ⊆ A be a multiplicative subset and N an S−1 A-module. Then,

AssS−1 A(N) = S−1 AssA(N)\{S−1 A},

where
S−1 AssA(N) := {S−1p | p ∈ AssA(N)}.

Proof. ■

Lemma 4.27. Let A be a noethering, M a non-zero A-module and S a multiplicative subset of A. Then,

AssS−1 A(S
−1M) = S−1 AssA(M)\{S−1 A}.

Proof. ■
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Corollary 4.28. Let A be a noethering. Then,

p ∈ AssA(M) ⇐⇒ pAp ∈ AssAp
(Mp).

Proof. Take S = A\p and the conclusion follows from the above lemma. ■

Proposition 4.29. Let A be a noethering and M ̸= 0 a finitely generated (and hence, noetherian) A-module.
Then, there is a filtration

M = M0 ⊋ M1 ⊋ · · · ⊋ Mn = 0

such that Mi/Mi+1
∼= A/pi for some pi ∈ Spec(A).

Proof. Since A is a noethering, AssA(M) is non-empty. Pick a prime p0 ∈ AssA(M). Then, there is an
injection A/p0 ↪→ M. Then, there is a submodule N0 of M that is isomorphic to A/p0. If M = N0, then we
are done. If not, then consider M/N0. This also has an associated prime p1 and hence, there is a submodle
N1 of M containing N0 such that M/N1

∼= A/p1. Continuing this way, we obtain a sequence (the finiteness
of this sequence requires M to be noetherian):

N0 ⊊ N1 ⊊ · · · ⊊ Nn = M

where M/Ni
∼= A/pi for some pi ∈ Spec(A). This completes the proof. ■

Lemma 4.30. Let A be a noethering. Then, the set of all zero divisors on M is given by⋃
p∈AssA(M)

p.

Proof. If a ∈ A is a zero divisor on M, then, the set

{a� A | a ∈ a and a = AnnA(x) for some x ∈ M}

admits a maximal element (due to noetherian-ness), say p. This is an associated prime and contains a. The
converse is trivial. ■

Lemma 4.31. Let A be a noethering and M a finitely generated (equivalently, noetherian) A-module. Then,
AssA(M) is finite.

Proof. As we have seen earlier, M admits a filtration

M = M0 ⊋ M1 ⊋ · · · ⊋ Mn = 0

where Mi/Mi+1
∼= A/pi for some pi ∈ Spec(A). We have short exact sequences

0 −→ Mi+1 −→ Mi −→ Mi/Mi+1 −→ 0.

Then,
AssA(Mi) ⊆ AssA(Mi+1) ∪AssA(Mi/Mi+1) = AssA(Mi+1) ∪ {pi}.

Inductively, we see that
AssA(M) ⊆ {p0, . . . , pn−1}. ■
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Lemma 4.32. Let A be any ring. Then,

AssA(M) ⊆ SuppA(M).

Proof. Let p ∈ AssA(M). Then, there is an injection A/p ↪→ M. Localizing at p, we have an injection
Q(A/p) ↪→ Mp. Thus, Mp ̸= 0 and p ∈ SuppA(M). ■

Lemma 4.33. Let A be a noethering. The minimal elements of AssA(M) and SuppA(M) are the same.

Proof. Let p ∈ AssA(M) be minimal. We have seen that p ∈ SuppA(M). Suppose q ∈ SuppA(M) with
q ⊆ p. Note that

AssAq
(Mq) =

(
AssA(M)

)
q
\{Aq} = ∅.

Therefore, Mq = 0 and q /∈ SuppA(M). This shows that the minimal primes of AssA(M) are a subset of the
minimal primes of SuppA(M).

Conversely, suppose p ∈ SuppA(M) is minimal. Then,

∅ ̸= AssAp
(Mp) =

(
AssA(M)

)
p
\{Ap},

where the first “equality” follows from the fact that Mp ̸= 0. Hence, there is a prime ideal q ⊆ p that is an
associated prime of M and hence, also lies in the support of M. It follows that q = p whence p ∈ AssA(M).
This completes the proof. ■

4.3 Primary Decomposition of Modules

Definition 4.34. Let M be an A-module. A submodule Q of M is said to be primary if Q ̸= M and for
each a ∈ A, the homomorphism aM/Q is either injective or nilpotent.

Equivalently, the above definition implies that if aM/Q is a zero-divisor, then it is nilpotent.

Proposition 4.35. Let Q be a primary submodule of M. Then,

p := {a ∈ A | aM/Q is nilpotent}

is a prime ideal.

Proof. Let ab ∈ p, that is, (ab)M/Q is nilpotent. If a /∈ p, then aM/Q is injective and thus bM/Q is nilpotent,
i.e. b ∈ p. This completes the proof. ■
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Chapter 5

Integral Extensions

Definition 5.1 (Integral Extension). Let A ⊆ B be a subring. Then, α ∈ B is said to be integral over A
if it satisfies a monic polynomial in A[x]. The extension A ↪→ B is said to be integral if every element
of B is integral over A.

Similarly, if a ⊆ A is an ideal, then α ∈ B is said to be integral over a if it satisfies a monic polynomial
in A[x] with coefficients in a.

Theorem 5.2. Let A ⊆ B be a subring and α ∈ B. Then, the following are equivalent:

(a) α is integral over A

(b) A[α] is a finitely generated A-module

(c) A[α] is contained in a subring C of B such that C is a finitely generated A-module

(d) There is a faithful A[α]-module M which is finitely generated as an A-module.

Proof. (a) =⇒ (b): If αn + an−1αn−1 + · · ·+ a0 = 0. Then, it is not hard to argue that {1, α, . . . , αn−1} gen-
erated A[α] over A.

(b) =⇒ (c): Take C = A[α]

(c) =⇒ (d): C is a faithful A[α] module which is a finitely generated A-module.

(d) =⇒ (a): Let ϕ : M → M be the map m 7→ α ·m. We have ϕ(M) ⊆ AM, consequently, due to Proposi-
tion 2.15 (since a = A is an ideal in A), there are ai ∈ A such that

(αn + an−1αn−1 + · · ·+ a0) ·m = 0

for each m ∈ M. But since M is a faithful A[α]-module, we must have αn + an−1αn−1 + · · ·+ a0 = 0,
whereby α is integral over A. ■

Corollary 5.3. If B is a finite A-algebra, then B/A is an integral extension. In particular, every element
of B is integral over A.
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Proposition 5.4. Let G be a finite group of ring automorphisms of A and let

AG := {a ∈ A | g · a = a, ∀g ∈ G}.

Then, A/AG is an integral extension.

Proof. It is easy to see that AG is a subring of A. For any a ∈ A, consider the monic polynomial

f (x) = ∏
σ∈G

(x− σ(a)).

This is obviously a polynomial with coefficients in AG and has x as a root. Thus, x is integral over AG. ■

Proposition 5.5. Let {αi}n
i=1 be elements of B, each integral over A. Then the ring A[α1, . . . , αn] is a finitely

generated A-module, equivalently, a finite A-algebra.

Proof. Let Ak denote the subring A[α1, . . . , αk] for k ≥ 1. We shall induct on k with the convention A0 = A.
Obviously A0 is a finite A-algebra. We have Ak+1 = Ak[αk+1] and thus is a finite Ak-algebra. But since Ak
is a finite A-algebra, so is Ak+1, thereby completing the proof. ■

Corollary 5.6. The set C of elements of B which are integral over A is a subring of B containing A.

Proof. Let α, β ∈ C. Then, A[α, β] is a finite A-algebra. Now, A ⊆ A[α− β] ⊆ A[α, β] and A ⊆ A[αβ] ⊆
A[α, β] whereby both α− β, αβ ∈ C and C is a ring. ■

The set C as defined above is called the integral closure of A in B. If C = A, then A is said to be integrally
closed in B.

Theorem 5.7. Let A ⊆ B ⊆ C such that B/A and C/B are integral extensions. Then C/A is an integral
extension.

Proof. Let α ∈ C. Then,
αn + bn−1αn−1 + · · ·+ b0 = 0

for some bi ∈ B. Then, α is integral over B′ = A[b0, . . . , bn−1], consequently, B′[α] is a finite B′-algebra. But
since B′ is a finite A-algebra, B′[α] is a finite A-algebra and α is integral over A. ■

Corollary 5.8. Let A ⊆ B and C be the integral closure of A in B. Then, C is integrally closed in B.

Proof. Let α ∈ B be integral over C. Then, C[α] is integral over C, whereby C[α] = C. ■

Proposition 5.9. Let A ⊆ B be an integral extension. Then,

(a) if b ⊆ B is an ideal and π : B → B/b is the canonical surjection, then B/b is integral over π(A). In
particular, due to the First Isomorphism Theorem, we see that B/b is integral over a copy of A/a where
a = b∩ A.

(b) if S ⊆ A is multiplicatively closed, then S−1B is integral over S−1 A.
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Proof. (a) Let β ∈ B/b, then there is some α ∈ B such that π(α) = β. Then, there are a0, . . . , an−1 ∈ A
such that

αn + an−1αn−1 + · · ·+ a0 = 0

whereby
βn + π(an−1)βn−1 + · · ·+ π(a0) = 0

and the conclusion follows.

(b) Let α/s ∈ S−1B. Since α is integral over A, there are a0, . . . , an−1 ∈ A such that

αn + an−1αn−1 + · · ·+ a0 = 0

then
(α/s)n + (an−1/s)(α/s)n−1 + · · ·+ a0/sn = 0

which completes the proof.
■

5.1 The Cohen-Seidenberg Theorems

5.1.1 Going Up Theorem

Proposition 5.10. Let A ⊆ B be an integral extension of integral domains. Then A is a field if and only if B is
a field.

Proof. =⇒ If x ∈ B\{0} is integral over A, then

xn + an−1xn−1 + · · ·+ a0 = 0

for some ai ∈ A. Then, x(xn−1 + an−1xn−2 + · · ·+ a1) = −a0, in particular, x is a unit in B.
⇐= Let x ∈ A\{0}. Then, x−1 ∈ B is integral over A and satisfies an equation of the form

x−n + an−1x−(n−1) + · · ·+ a0 = 0.

Multiplying this equation by xn−1, we have

x−1 = −(an−1 + an−2x + · · ·+ a0xn−1) ∈ A,

whence A is a field. ■

Proposition 5.11. Let A ⊆ B be an integral extension, q ⊆ B a prime ideal and p = qc = q ∩ A. Then q is
maximal if and only if p is maximal.

Proof. Due to Proposition 5.9, B/q is integral over a copy of A/p. The conclusion now follows from the
above proposition. ■

Proposition 5.12. Let A ⊆ B be an integral extension. Let q, q′ ⊆ B be prime ideals of B such that q ⊆ q′. If
q∩ A = q′ ∩ A = p, then q = q′.
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Proof. Let S = A\p and treat all rings and ideals as A-modules. Then, S−1 A ⊆ S−1B is an integral extension
and since q∩ S = q′ ∩ S = ∅, the ideals S−1q and S−1q′ are prime ideals in B such that

S−1q∩ S−1 A = S−1(q∩ A) = S−1p = S−1(q′ ∩ A) = S−1q′ ∩ S−1 A

where all the above equalities follow from treating p, q, q′, A as A-submodules of B, in particular, due to
Proposition 3.7.

But note that S−1p is maximal in A whence S−1q = S−1q′ due to the previous proposition. But recall
that under localization, the contraction after extension of prime ideals is the prime ideal itself, whereby the
contraction of S−1q is q whence q = q′. ■

Lemma 5.13. Let A ⊆ B be rings, B integral over A, and let p be a prime ideal of A. Then there is a prime ideal
q of B such that q∩ A = p.

5.1.2 Going Down Theorem

Definition 5.14. An integral domain is said to be normal if it is integrally closed in its field of fractions.

For example, Z is integrally closed since the only algebraic integers in Q are the integers.

Lemma 5.15. Let A ⊆ B be rings and C the integral closure of A in B. Let S ⊆ A be multiplicatively closed.
Then S−1C is the integral closure of S−1 A.

Proof. Since C is integral over A, we have that S−1C is integral over S−1 A. It remains to show that any
element that is integral over S−1 A is contained in S−1C. Indeed, let b/s ∈ S−1B be an element in S−1 A that
is contained in the integral closure. Then, there are ai/si such that

(b/s)n + an−1/sn−1(b/s)n−1 + · · ·+ a0/s0 = 0

Let t = s1 · · · sn−1 and multiply the equation throughout by (st)n to obtain

(bt)n + bn−1(bt)n−1 + · · ·+ b0

1
= 0.

Thus, there is u ∈ S such that
u
[
(bt)n + bn−1(bt)n−1 + · · ·+ b0

]
= 0

Again, multiply the equation by un−1 to obtain

(ubt)n + cn−1(ubt)n−1 + · · ·+ c0 = 0,

consequently, ubt is integral over A, therefore, lies in C. As a result, b/s = (ubt)/(sut) ∈ S−1C. This
completes the proof. ■

Lemma 5.16. Let A be an integral domain and S ⊆ A a multiplicatively closed subset. If A is normal, then
S−1 A is normal.

Proof. Let K denote the field of fractions of A. Since A is an integral domain, the natural map A → S−1 A
is an inclusion. Moreover, the inclusion A → K maps every element of A to a unit and thus induces an
inclusion S−1 A → K. We can now treat A ⊆ S−1 A ⊆ K. Since K is a field, the field of fractions of S−1 A
must also be contained in K. Therefore, it suffices to show that S−1 A is integrally closed in K. But from
Lemma 5.15, we see that S−1 A is the integral closure of S−1 A in S−1K = K. This completes the proof. ■
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Proposition 5.17. Let A be an integral domain. Then, the following are equivalent:

(a) A is normal

(b) Ap is normal for all p ∈ Spec A

(c) Am is normal for all m ∈ MaxSpec A

Proof. (a) =⇒ (b) follows from the previous lemma and (b) =⇒ (c) is obvious. We shall show that
(c) =⇒ (a). Let K be the field of fractions of A and C denote the integral closure of A in K. Let ι : A ↪→ C
be the inclusion map. We shall show that ι is a surjection. Note that both A and C are integral domains and
Cm is the integral closure of Am in K and therefore, in Q(Am), consequently, Am = Cm due to (c). As a
result, ιm is a surjection for all maximal ideals m implying that ι is a surjection. ■

Lemma 5.18. Let C be the integral closure of A in B and let a ⊆ A be an ideal. Then, the integral closure of a in
B is
√
ae where the extension is taken through the inclusion A ↪→ C.

Proof. If x ∈ C is integral over a, then x satisfies an equationo the form

xr + ar−1xr−1 + · · ·+ a0

with ai ∈ a. Thus, xr ∈ ae whence x ∈
√
ae.

Conversely, suppose x ∈
√

ae, then there is a positive integer n such that xn ∈ ae. Then, xn = a1x1 +
· · · + amxm where each ai ∈ a and xi ∈ C. Let M = A[x1, . . . , xm]. Since each xi is integral over A, M
is a finitely generated A-module. Let ϕ : M → M be the homomorphism given by ϕ(y) = xny. Then,
ϕ(M) ⊆ aM. Thus, ϕ satisfies and equation of the form

ϕr + ar−1ϕr−1 + · · ·+ a0id = 0

whre ai ∈ a. Thus, x is integral over a. ■

Proposition 5.19. Let A ⊆ B be integral domains with A integrally closed. Let α ∈ B be integral over an ideal
a of A. Then α, viewed as an element of L := Q(B) ⊇ Q(A) =: K is algebraic over the field of fractions K of A.
Further, if the minimal polynomial of α over K is given by xn + an−1xn−1 + · · ·+ a0, then each ai is an element
of
√
a.

Proof. Let α1, . . . , αk be the distinct conjugates of α in K, an algebraic closure of K containing L. Then, each
αi is integral over a. The irreducible polynomial of α over K is given by

k

∏
i=1

(x− αi)
e

for some exponent e. In particular, the coefficients of the non-leading terms are polynomials in th αi’s
whence are integral over a and also lie in A, whence are elements of

√
a. This completes the proof. ■

Theorem 5.20 (Going Down Theorem). Let A ⊆ B be an integral extension of integral domains with A
integrally closed. Suppose p1 ⊇ · · · ⊇ pn are prime ideals in A and correspondingly q1 ⊇ · · · ⊇ qm are prime
ideals in B with m < n and qi ∩ A = pi for 1 ≤ i ≤ m, then there are prime ideals qm+1 ⊇ qn with qm ⊇ qm+1
such that qi ∩ A = pi for m < i ≤ n.
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Proof. We shall prove this in the case m = 1 and n = 2. This obviously suffices to prove the theorem in its
full generality. Consider the composition of maps

A −→ B −→ Bq1

where the composition shall be denoted by f : A → Bq1 . It suffices to show that there is a prime in Bq1
contracting to p2. Due to Theorem 3.23, it suffices to show that pec = p where the extension and contraction
is taken with respect to f .

Let x ∈ p2Bq1 . Then, x = y/s for some y ∈ Bp2 and s ∈ S. Note that s is integral over the ideal (1) in A
and thus its minimal polynomial over K is of the form

tr + ar−1tr−1 + · · ·+ a0

where ai ∈ A.
Now, y ∈ B and lies in p2B ⊆

√
p2B whence is integral over p2 and hence its minimal polynomial over

K is of the form
tr′ + br′−1tr′−1 + · · ·+ b0

with bi ∈
√
p2 = p2. Since s = y/x in Q(B), the minimal polynomials of s and y over K must have the same

degree, that is, r = r′ and bi = xr−iai for 0 ≤ i ≤ r− 1. If x /∈ p2, then ai ∈ p2 for 0 ≤ i ≤ r− 1, which would
imply sr ∈ p2B ⊆ p1B ⊆ q1, i.e. s ∈ q1, which is absurd. Thus, x ∈ p2 whence pec

2 ⊆ p2, which completes the
proof. ■

5.1.3 Another Proof of the Going Down Theorem

Lemma 5.21. Let A ⊆ B be an integral extension of integral domains. If S = A\{0}, then S−1B = Q(B), the
field of fractions of B and the extension Q(B)/Q(A) is algebraic.

Proof. Note that Q(A) ⊆ S−1B is an integral extension of integral domains and hence, S−1B is a field that
is contained in Q(B), whence, is equal to Q(B). The assertion about algebraic extensions follows from the
integrality of the extension. ■

Lemma 5.22. Let L/K be a normal extension of fields with G = Aut(L/K). Let A be an integrally closed
subring of K = Q(A), B the integral closure of A in L. Then, for any prime p ∈ Spec(A), G acts transitively
on the fiber of p in Spec(B).

That G acts on each fiber is trivial to see. Only the transitivity of the action must be demonstrated.

Proof. First, suppose L/K is a Galois extension. That the statement is true for finite Galois extensions is
common knowledge. We know that

Gal(L/K) = lim←−
E

Gal(E/K)

where E ranges over all finite Galois extensions of K. Let q, q′ be primes lying over p. For every finite Galois
subextension E of L/K, let CE denote the integral closure of A in E and pE, p′E the respective contractions
of q, q′. We know that there is a collection {σE} ∈ Gal(E/K) such that σE(pE) = p′E. Note that the inverse
image of this set in Gal(L/K) is a closed (and hence compact) set, which we shall denote by SE.

If E1, . . . , En are finite Galois subextensions of L, then their compositum F = E1 · · · En is a finite Galois
subextension and hence,

∅ ̸= SF ⊆
n⋂

i=1

SEi ,
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that is, {SE} has the finite intersection property and there is a σ ∈ ⋂ SE, which is the required automorphism
taking q to q′.

Now, suppose L/K is normal and F = LG. Then, L/F is Galois and F/K is purely inseparable. Let C
denote the integral closure of A in F. We claim that there is precisely one prime in C lying over p ∈ Spec(A).
Indeed, consider

q = {x ∈ C | ∃ n > 0, xpn ∈ p}.

It is not hard to show that q is a prime ideal in C and lies over p. Further, any prime ideal q′ lying over p
must contain q, consequently, must be equal to q. ■

Theorem 5.23 (Going Down Theorem). Let A ⊆ B be an integral extension of integral domains with A
integrally closed. Suppose p1 ⊇ · · · ⊇ pn are prime ideals in A and correspondingly q1 ⊇ · · · ⊇ qm are prime
ideals in B with m < n and qi ∩ A = pi for 1 ≤ i ≤ m, then there are prime ideals qm+1 ⊇ qn with qm ⊇ qm+1
such that qi ∩ A = pi for m < i ≤ n.

Proof. We shall prove this in the case m = 1 and n = 2, which obviously suffices to prove the theorem in
its full generality. Let K denote the fraction field of A and L that of B. Let L′ denote the normal closure of
L in L, the algebraic closure containing L and C the integral closure of A in L′. Let P1 denote a prime in C
lying over q1 (hence, over p1) and P a prime in C lying over p2. Due to the Going Up Theorem, there is a
prime P′ ⊇ P in C lying over p1. Since Aut(L′/K) acts transitively on the fiber of any prime, there is an
automorphism σ ∈ Aut(L′/K) such that σ(P′) = P1. Then, P2 = σ(P) is a prime in C lying over p2 that is
contained in P1.

Let q2 = P2 ∩ B. Then, q2 is a prime in B lying over p2 that is contained in q1. This completes the
proof. ■

Corollary 5.24. Let A ⊆ B be an integral extension of integral domains with A integrally closed. If
q ∈ B is a prime and p = q∩ B, then ht(q) = ht(p).

5.2 Field Theory Arguments

Definition 5.25. Let V be a finite dimensional vector space over a field k. A bilinear form on V is a
k-bilinear map ψ : V ×V → k. The form ψ is said to be non-degenerate if the left kernel,

{v ∈ V | ψ(v, x) = 0 for all x ∈ V} = 0.

Lemma 5.26. If e1, . . . , en is a basis for V and ψ a non-degenerate bilinear form, then there is a basis f1, . . . , fn
of V such that ψ( fi, ej) = δij. We shall call this the dual basis of {ei} with respect to ψ.

Proof. Consider the map Φ : V → V∨ given by

Φ(v) = ψ(v, ·).

This is an injective map since ψ is non-degenerate and thus, an isomorphism. Let ϕi : V → k be the map
defined on basis elements by ϕi(ej) = δij. Due to surjectivity, there is some fi ∈ V such that Φ( fi) = ϕi. The
fi’s must be linearly independent since the ϕi’s are linearly independent as elements of V∨. This completes
the proof. ■
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Theorem 5.27. Let A be an integrally closed integral domain with field of fractions K, L/K a separable extension
of degree m and B the integral closure of A in L Then, there are free A-submodules M and M′ of L such that

M ⊆ B ⊆ M′.

Proof. It is quite obvious that there is an integral basis for L over K, i.e. a K-basis {β1, . . . , βm} with βi ∈ B
for 1 ≤ i ≤ m. Let M = Aβ1 + · · ·+ Aβm ⊆ B. Consider the bilinear form ⟨·, ·⟩ : L× L→ K given by

⟨x, y⟩ = TrL
K(xy),

which is a non-degenerate bilinear form and thus admits a dual basis of {βi}with respect to ⟨·, ·⟩, say {β′i}.
Let M′ = Aβ′1 + · · ·+ Aβ′m. We shall show that B ⊆ M′. For any b ∈ B, there are bi’s such that

b = b1β′1 + · · ·+ bmβ′m. (5.1)

Then,
bi = ⟨b, βi⟩ = TrL

K(bβi) ∈ A,

since bβi is integral over A and A is integrally closed. This completes the proof. ■

Corollary 5.28. With the above setup, if A is noetherian, then so is B. On the other hand, if A is a PID,
then B is a free A-module.

Theorem 5.29 (Extension Lemma for Rings). Let Ω be an algebraically closed field and B/A an integral
extension of rings. If σ : A→ Ω is a ring homomorphism, then it can be extended to σ̃ : B→ Ω.

Proof. Let p = ker σ, which is a prime ideal and let q be a prime ideal in B lying over p. Due to the First
Isomorphism Theorem, there is an induced map ϕ : A/p→ Ω. Using the universal property of the fraction
field, there is an induced map ψ : Q(A/p) → Ω. Note that A/p ⊆ B/q and thus Q(A/p) ⊆ Q(B/q). Now,
using the extension lemma for fields, there is an induced map ψ̃ : Q(B/q) → Ω extending ψ. Composing
this map with the inclusion B/q ↪→ Q(B/q), we obtain a map ϕ̃ : B/q→ Ω extending ϕ. Finally, composing
this map with the surjection B ↠ B/q, we obtain a map σ̃ : B → Ω extending σ. This completes the
proof. ■

Lemma 5.30. Let A be a subring of a field K and x ∈ K×. Let φ : A → Ω be a ring homomorphism into an
algebraically closed field Ω. Then φ has an extension to a homomorphism of either A[x] or A[x−1] into Ω.

Proof. First, let p = ker φ. As we have seen earlier, we may extend φ to a ring homomorphism φ : Ap → Ω.
Hence, we may suppose that A is local with maximal ideal m.

Suppose first that ■ proof in
lang seems
fishy

5.3 Noether’s Normalization Lemma

Lemma 5.31. Let k be a field and F ∈ k[X1, . . . , Xn] a non-constant polynomial. Then there is a k-algebra
automorphism

φ : k[X1, . . . , Xn]→ k[X1, . . . , Xn]

such that φ(Xn) = Xn and
φ(F) = aXd

n + fd−1Xd−1
n + · · ·+ f1Xn + f0
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where fi ∈ k[X1, . . . , Xn−1] for 1 ≤ i ≤ d− 1.

Proof. We shall pick an automorphism of the form φ(Xi) = Xi + Xti
n for some positive integer ti for each

1 ≤ i ≤ n− 1. We shall choose these ti’s at the end of the proof.
First, note that for 1 ≤ i ≤ n − 1, φ(Xi − Xti

n ) = Xi whence φ is a surjection. Since k[X1, . . . , Xn] is a
noethering, φ is an isomorphism.

Let Λ ⊆Nn be a finite subset such that

F = ∑
α∈Λ

aαXα

where aα ∈ k× for each α ∈ Λ. For each α ∈ Λ, define ω(α) = t1α1 + · · ·+ tn−1αn−1 + αn.
Choose a positive integer N greater than

max
α∈Λ

max
1≤i≤n

αi

and set ti = Ni for 1 ≤ i ≤ n− 1. It is not hard to see that all the ω(α)’s are distinct.
We have

φ(F) = ∑
α∈Λ

(
aα

n−1

∏
i=1

(Xi + Xti
n )

αi

)
Xαn

n

and since the ω(α)’s are distinct, there is a unique term in the above expansion that contributes to the term
with maximum exponent of Xn whence the coefficient of this term is a constant in K×. This completes the
proof. ■

Theorem 5.32 (Noether Normalization). Let k be a field and A a finitely generated k-algebra. Then, there
are z1, . . . , zm ∈ A such that

(a) z1, . . . , zm are algebraically independent over ka. That is, the evaluation map

ev : k[X1, . . . , Xm] ↠ k[z1, . . . , zm]

from the ring of polynomials in m variables over k is an isomorphism.

(b) A is integral over k[z1, . . . , zm].
am = 0 is permitted

Proof. We shall prove this statement by induction on the cardinality n of the smallest generating set of A as
a k-algebra. The base case with n = 0 is trivial. Since A is a finitely generated k-algebra, there is a surjective
ring homomomrphism

π : k[X1, . . . , Xn] ↠ A.

Choose a non-constant polynomial G ∈ ker π. Due to Lemma 5.31, there is an automorphism φ of k[X1, . . . , Xn]
which sends G to a polynomial F of the form

aXd
n + fd−1Xd−1

n + · · ·+ f1Xn + f0

where a ∈ k×. We now have the following sequence of ring homomorphisms

k[X1, . . . , Xn]
φ−1

−→ k[X1, . . . , Xn]
π−→ A

with F ∈ ker(π ◦ φ−1). Let xi = (π ◦ φ−1)(Xi), then, F(x1, . . . , xn) = 0. That is,

xd
n + a−1 fd−1(x1, . . . , xn−1)xd−1

n + · · ·+ a−1 f0(x0, . . . , xn−1) = 0,

and thus, xn is algebraic over B = k[x1, . . . , xn−1]. Due to the induction hypothesis, there are algebraically
independent z1, . . . , zm ∈ B such that B is integral over k[z1, . . . , zm].

We have shown that xn is integral over B and thus B ⊆ A is an integral extension whence k[z1, . . . , zm] ⊆
A is an integral extension. This completes the proof. ■

59



5.3.1 Stronger NNL

Theorem 5.33. Let A be a finitely generated k-algebra and let a1 ⊆ · · · ⊆ ap be an increasing chain of ideals in
A, with ap ̸= (1). Then, there is an integer n > 0 and algebraically independent x1, . . . , xn ∈ A, such that

(a) A is integral over B = k[x1, . . . , xn]

(b) for each 1 ≤ i ≤ p, there is an integer h(i) ≥ 0 such that ai ∩ B is generated by (x1, . . . , xh(i)).

Proof. Note that it suffices to prove the theorem when A is a polynomial algebra A′ = k[Y1, . . . , Ym], for we
can write A as a quotient of such a polynomial algebra and replace each ai by its preimage in A′, say a′i. If
{x′1, . . . , x′n} are in A′ satisfying the statement of the theorem, then the images {x1, . . . , xn} in A satisfy the
statement of the theorem for A. Henceforth, we suppose that A = k[Y1, . . . , Ym] and argue by induction on
p.

Suppose p = 1. ■ complete
NNL

5.3.2 Various Forms of the Nullstellensatz

Lemma 5.34 (Zariski’s Lemma). Let K/k be an extension of fields such that K is a finitely generated k-algebra.
Then, K/k is a finite extension.

Proof. According to Theorem 5.32, there are z1, . . . , zm ∈ K such that K is integral over k[z1, . . . , zm], which
is an integral domain whence a field due to Proposition 5.10. We note that m may not be positive since a
polynomial ring can never be a field. Hence, K/k is algebraic and since K is a finitely generated k-algebra,
the extension K/k must be finite. ■

Theorem 5.35 (Hilbert’s Nullstellensatz, Weak Form 1). Let k be an algebraically closed field. Then, any
maximal ideal in k[x1, . . . , xn] is of the form (x1 − a1, . . . , xn − an).

Proof. It suffices to show the converse. Let m be a maximal ideal in k[x1, . . . , xn]. We now have a commuta-
tive diagram

k �
� ι //

φ
''

k[x1, . . . , xn]

π
����

k[x1, . . . , xn]/m = K

where φ := π ◦ ι.
The map φ gives K the structure of a finitely generated k-algebra and thus φ is surjective (since k is

algebraically closed). Let π(xi) = ai for 1 ≤ i ≤ n. Due to the surjectivity of φ, for each ai, there is some
a′i ∈ k with φ(a′i) = ai whence π(xi − a′i) = 0 and

(x1 − a′1, . . . , xn − a′n) ⊆ m.

But since the former is a maximal ideal, we must have equality. ■

Theorem 5.36 (Hilbert’s Nullstellensatz, Weak Form 2). Let k be an algebraically closed field and S ⊆ kn.
Then, I(S) = (1) if and only if S = ∅.

Proof. ( =⇒ ) If S ̸= ∅, then let a = (a1, . . . , an) be a point in S. Then, I(S) ⊆ ma = (x1 − a1, . . . , xn − an).
( ⇐= ) If I(S) ̸= (1), then it is contained in some maximal ideal m = ma for some a ∈ kn, whence a ∈ S.
This completes the proof. ■
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Theorem 5.37 (Hilbert’s Nullstellensatz, Strong Form). Let a ⊆ k[x1, . . . , xn] be an ideal. Then,

I(V(a)) =
√
a

The following proof is due to Rabinowitsch.

Proof. First, note that the inclusion
√
a ⊆ I(V(a)) is obvious for if f ∈

√
a, then there is a positive integer r

such that f r ∈ a whence f r vanishes at all points in V(a) and thus f r ∈ I(V(a)).
We shall now prove the other inclusion. Since a is finitely generated, let f1, . . . , fm be a set of generators

for a and let f ∈ I(V(a)). Consider now the ring B = k[x0, x1, . . . , xn] which contains A = k[x1, . . . , xn] as a
subring and treat all polynomials as elements of B. The polynomials

f1, . . . , fm, 1− x0 f

do not have any common zeros. Let b ⊆ B denote the ideal generated by these polynomials. Due to
Theorem 5.36 and the fact that the polynomials have no common zeros, we must have b = B. Consequently,
there are polynomials g0, . . . , gn ∈ k[x1, . . . , xn] such that

1 = g0(1− x0 f ) + g1 f1 + · · ·+ gm fm.

Consider now the evaluation map ev : B → k(x1, . . . , xn) which maps x0 7→ 1/ f and xi 7→ xi for
1 ≤ i ≤ n. It is not hard to see that this is a ring homomorphism. Under this map, the above equality
transforms to

1 = g1(1/ f , x1, . . . , xn) f1(x1, . . . , xn) + · · ·+ gm(1/ f , x1, . . . , xn) fm(x1, . . . , xm).

Since all the gi’s and fi’s are polynomials, we may clear out the denominators by multiplying with a suitable
power of f , say f N . Then, we have

f N = h1(x1, . . . , xn) f1 + · · ·+ hm(x1, . . . , xn) fm

whereby f N ∈ a for some positive integer N and equivalently, f ∈
√
a. This completes the proof. ■

Lemma 5.38. Let A ⊆ C ⊆ B be an extension of rings such that C is the integral closure of A in B. Suppose
f , g ∈ B[x] such that f g ∈ C[x]. Then, f , g ∈ C[x].

Proof. We first begin with an auxiliary result.
Claim. There is a ring D containing B in which f (x) splits into linear factors.
Proof. It suffices to show that there is a ring D in which f (x) has a root. Let R denote the ring B[T]/( f (T)).
This comes equipped with a natural injection B ↪→ R and hence, we may suppose that B ⊆ R. Note that
T ∈ R is a root of f (x) which proves the claim. □

Using the above claim, let D be a ring containing B in which both f and g split. Let

f (x) = ∏(x− αi) g(x) = ∏(x− β j).

Then, each αi, β j is a root of f g ∈ C[x], whence is integral over C. Since integral elements form a ring, the
coefficients of f and g, being polynomials in the αi’s and β j’s respectively, are integral over C and lie in B,
hence, they lie in C. This completes the proof. ■

Theorem 5.39. Let A ⊆ C ⊆ B be an extension of rings such that C is the integral closure of A in B. Then,
C[x] is the integral closure of A[x] in B[x].
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Proof. First, we shall show that the integral closure of A[x] in B[x] is contained in C[x]. Suppose f (x) ∈ B[x]
is integral over A[x]. Then,

f m + gm−1 f m−1 + · · ·+ g0 = 0

for some gi ∈ A[x]. Let r be a positive integer greater than the degree of each gi and f . Let f1(x) =
f (x)− xr ∈ A[x]. Then,

( f1 + xr)m + gm−1( f + xr)m−1 + · · ·+ g0 = 0,

which is a monic polynomial in x. Expanding it out, we have an equation of the form

f m
1 + hm−1 f m−1

1 + · · ·+ h0 = 0,

for some hi ∈ A[x]. Note that f1 is a monic polynomial and thus, so is

f m−1
1 + hm−1 f m−2

1 + · · ·+ h1.

Using the preceeding lemma, we see that f1 ∈ C[x], whence f ∈ C[x].
We must now show the converse. Let f (x) ∈ C[x] where f (x) = cmxm + · · · + c0. Then, f (x) ⊆

A[x][c0, . . . , cm], which is a finitely generated A[x]-module (since A[c0, . . . , cm] is a finitely generated A-
module), whence f (x) is integral over A[x]. This completes the proof. ■

5.4 Jacobson Rings

Theorem 5.40. The following are equivalent:

(a) Every prime ideal in A is an intersection of maximal ideals.

(b) In every homomorphic image of A, the nilradical is equal to the Jacobson radical.

(c) Every prime ideal in A which is not maximal is equal to the intersection of the prime ideals strictly
containing it.

Proof. (a) =⇒ (b) Any homomorphic image of A can be treated as A/a where a is an ideal in A. If a = A,
then there is nothing to prove. Suppose now that a is a proper ideal. Note that R(A/a) is the intersection
of all maximal ideals in A/a, which is the image of the intersection of all maximal ideals containing a in
A, due to the ideal correspondence. But the intersection of all maximal ideals containing a is the same as
the intersection of all prime ideals containing a which is the contraction of the nilradical of A/a. Thus,
N(A/a) = R(A/a).

(b) =⇒ (c) Let p be a prime ideal in A. Then,
√
p is the intersection of all maximal ideals containing it

whence p is the intersection of all prime ideals strictly containing it.
(c) =⇒ (a) Suppose there is a prime ideal p in A which is not an intersection of maximal ideals.

Consider some
f ∈ p\

⋂
m⊇p

m.

The poset Σ = {a � A | f /∈ a} is nonempty (since it contains p) and has a maximal element, say q,
which is also prime. Due to maximality, any prime containing q must contain f and hence, q cannot be the
intersection of the primes strictly containing it. ■

Definition 5.41 (Jacobson Ring). The ring A is said to be Jacobson if it satisfies the equivalent conditions
of Theorem 5.40.
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Chapter 6

Noetherian and Artinian Rings and
Modules

6.1 Chain Conditions

A totally ordered sequence {xn}∞
n=1 in the poset (Σ,≦) is said to be stationary if there is an index n such that

xn = xn+1 = · · · .

Definition 6.1. An A-module M is said to be noetherian or equivalently said to satisfy the ascending
chain condition if every chain in the poset of submodules of M ordered by ⊆ is stationary.

Similarly, M is said to be artinian equivalently said to satisfy the descending chain condition if every
chain in the poset of submodules of M ordered by ⊇ is stationary.

A ring A is said to be noetherian (resp. artinian) if it is noetherian (resp. artinian) as an A-module.

Proposition 6.2. Let (Σ,≦) be a poset. Then, the following are equivalent:

(a) Every chain in Σ is stationary.

(b) Every subset of Σ has a maximal element.

The proof is omitted owing to its triviality.

Lemma 6.3. An A-module M is noetherian if and only if every submodule is finitely generated.

Proof. ■

Corollary 6.4. A ring A is noetherian if and only if every ideal is finitely generated.

Corollary 6.5. Every submoule of a noetherian A-module is noetherian.
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Proposition 6.6. M is a noetherian (resp. artinian) A-module if and only if it is a noetherian (resp. artinian)
A/ AnnA(M)-module.

Proof. Since the poset of A/ AnnA(M)-submodules of M is the same as the poset of A-submodules of M,
the conclusion follows. ■

Lemma 6.7 (2/3-lemma). Consider the short exact sequence 0→ M′ → M→ M′′ → 0. Then M is noetherian
(resp. artinian) if and only if both M′ and M′′ are noetherian (resp. artinian).

Proof. ■

Corollary 6.8. Let {Mi}n
i=1 be A-modules. Then,

n⊕
i=1

Mi is noetherian (resp. artinian) if and only if each

Mi is noetherian (resp. artinian).

Proof. The forward direction is obvious. For the converse, induct on n using the short exact sequence:

0 −→ Mn −→
n⊕

i=1

Mi −→
n−1⊕
i=1

Mi −→ 0

■

Proposition 6.9. If A is a noethering (resp. artinian ring), then so is A/a for any ideal a in A.

Proof. A/a is a noetherian (resp. artinian) A-module and thus a noetherian (resp. artinian) A/a-module.
■

Proposition 6.10. Let A be a noetherian (resp. artinian) ring and M a finitely generated A-module. Then, M
is noetherian (resp. artinian).

Proof. Let {m1, . . . , mn} be a set of generators of M. Then, there is a surjection An ↠ M given by

(a1, . . . , an) 7→ a1m1 + · · ·+ anmn.

Since An is a noetherian (resp. artinian) A-module, so is M. ■

Proposition 6.11. Let M be an A-module and ϕ ∈ EndA(M).

(a) If M is noetherian and ϕ is surjective, then ϕ is injective.

(b) If M is artinian and ϕ is injective, then ϕ is surjective.

Proof. (a) Consider the ascending chain of submodules

ker ϕ ⊆ ker ϕ2 ⊆ · · ·

Since M is noetherian, there is an index n such that ker ϕn = ker ϕn+1. Let x ∈ ker ϕn. Due to the
surjectivity of ϕ, there is y ∈ M such that ϕ(y) = x, whence ϕn+1(y) = 0 and y ∈ ker ϕn+1 = ker ϕn.
Therefore, ker ϕn = 0 and ϕ is injective.
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(b) Consider the descending chain of submodules

im ϕ ⊇ im ϕ2 ⊇ · · ·

Since M is artinian, there is an index n such that im ϕn = im ϕn+1. Then, for every x ∈ M, there is
y ∈ M such that ϕn(x) = ϕn+1(y), whence x = ϕ(y), this establishes surjectivity.

■

Lemma 6.12. “Noetherian-ness” is not a local property.

Proof. Let A = F2 × F2 × · · · and p ∈ Spec(A). Note that every element in A is an idempotent. Therefore,
every element in Ap is also an idempotent. Consequently, for all x ∈ Ap, x(1− x) = 0. Note that either x or
1− x must be a unit lest 1 = x + (1− x) be a non-unit. Thus, either x = 0 or 1− x = 0, equivalently, x = 1.
Thus, Ap

∼= F2. ■

Remark 6.1.1. Instead of choosing A = F2 ×F2 × · · · , any product of fields works but the proof in the general case
requires a bit more machinery. Indeed, if A is an infinite product of fields, then A is absolutely flat, consequently,
every localization of A at a prime ideal is a local absolutely flat ring, whence a field, which is noetherian.

6.2 Length of Modules

Lemma 6.13. Supose there is a sequence of maximal ideals m1, . . . ,mn in A such that (0) = m1 · · ·mn. Then,
A is a noethering if and only if it is artinian.

Proof. Suppose A is noetherian. We have the chain of ideals

A ⊇ m1 ⊇ · · · ⊇ m1 · · ·mn = 0

Note that each factor m1 · · ·mi−1/m1 · · ·mi is a noetherian A-module and thus a noetherian ki = A/mi-
module and thus a ki-vector space satisfying a.c.c whence it satisfies d.c.c and is an artinian A/mi-module
whence an artinian A-module. We now have a short exact sequence

0 −→ m1 · · ·mi+1 −→ m1 · · ·mi −→ m1 · · ·mi+1/m1 · · ·mi −→ 0

Inducting downwards from m1 · · ·mn = (0) (which is clearly artinian) with the repeated usage of Lemma 6.7,
we are done. ■

Lemma 6.14 (Fitting). Let R be any ring and M a finite-length module. If f ∈ EndR(M), then for any
sufficiently large n, M ∼= im( f n)⊕ ker( f n).

Proof. We have the sequences

im( f ) ⊇ im( f 2) ⊇ · · · ker( f ) ⊆ ker( f 2) ⊆ · · · .

Hence, for sufficiently large n, ker( f n) = ker( f n+1) = · · · and im( f n) = im( f n+1) = · · · . Choose any
x ∈ M. Then, there is some y ∈ M such that f n(x) = f 2n(y), consequently, x − f n(y) ∈ ker( f n), whence
M = ker( f n) + im( f n).

On the other hand, if x ∈ ker( f n)∩ im( f n), then there is some y ∈ M such that f n(y) = x. Consequently,
f 2n(y) = 0, whence y ∈ ker( f 2n) = ker( f n), thus, x = f n(y) = 0. This shows that M ∼= ker( f n) ⊕
im( f n). ■
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6.3 Noetherian Rings

Recall that A is a noetherian ring if it is a noetherian A-module. One must take note that a noethering need
not have finite Krull dimension1 on the other hand, it is not even true that local rings with dimension zero
are noetherian. In particular, consider the ring R = k[x1, x2, . . .]/(x1, x2

2, . . .). Obviously A is not noetherian,
owing to the strictly increasing sequence of ideals (x1) ⊊ (x1, x2) ⊊ · · · . Now, let p be a prime ideal in R.
Then, the preimage of p under the natural projection, say p is a prime ideal containing (x1, x2

2, . . .) and thus
contains its radical, (x1, x2, . . .). Since the latter is a maximal ideal, so is p and hence so is p. This establishes
that dim A = 0. Finally, to see that this ring is local, use a similar argument as before to conclude that the
preimage of any maximal ideal is the ideal (x1, x2, . . .).

Lemma 6.15. If A is Noetherian and ϕ : A→ B is a surjective ring homomorphism, then B is also Noetherian.

Proof. Since B ∼= A/ ker ϕ, the conclusion follows. ■

Proposition 6.16. If A is a noethering and S ⊆ A is a multiplicative subset, then S−1 A is a noethering.

Proof. Recall that every ideal in S−1 A is finitely generated. Let I ⊆ S−1 A be an ideal then there is a ⊆ A
an ideal such that S−1a = I. Since A is noetherian, a is generated by a finite set {x1, . . . , xn}, whereby I is
generated by the set {x1/1, . . . , xn/1}. This completes the proof. ■

But recall, as we have seen earlier, that being a noethering is not a local property, a counterexample to
which is an infinite product of fields.

Lemma 6.17. if A is a noethering and a ⊆ A is an ideal, then there is a positive integer n such that (
√
a)n ⊆ a.

Proof. Let
√
a = {x1, . . . , xn}. Then, for each index 1 ≤ i ≤ n, there is a positive integer mi such that xmi

i ∈ a.
Let N = ∑n

i=1 ni. Then,

(
√
a)N =

(
n

∑
i=1

(xi)

)N

since multiplication of ideal distributes over multiplication, every element in the above expansion would
be of the form (x1)

r1 · · · (xn)rn with ∑n
i=1 ri = N. But since (xi)

mi ∈ a, we have the desired conclusion. ■

Theorem 6.18 (Hilbert Basis Theorem). If A is Noetherian, then so is A[x].

Note that the converse is also true since A ∼= A[x]/(x). The following proof is due to Sarges.

Proof. We shall show that every ideal in A[x] is finitely generated. Suppose not and let I ⊆ A[x] be an
ideal that is not finitely generated. Choose f1 ∈ I with minimum degree. Now, inductively, choose
fk+1 ∈ I\( f1, . . . , fk) with the minimum degree. Obviously, this process goes on indefinitely, since we
have assumed I to not be finitely generated. We now have

f1 = a1xd1 + lower degree terms

f2 = a2xd2 + lower degree terms
...

fn = anxdn + lower degree terms
...

1Nagata is to blame for this monster
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with d1 ≤ d2 ≤ · · · . We also have the following ascending chain of ideals in A,

(a1) ⊆ (a1, a2) ⊆ · · ·

Therefore, there is n ∈ N such that (a1, . . . , an) = (a1, . . . , an, an+1). Consequently, we may write an+1 as a
linear combination of a1, . . . , an, say

an+1 = b1a1 + · · ·+ bnan

for some b1, . . . , bn ∈ A. Let

g = fn+1 − (b1xdn+1−d1 f1 + · · ·+ bnxdn+1−dn fn)

It is not hard to argue that g ∈ I\( f1, . . . , fn), but deg g ≤ deg fn+1, a contradiction. This completes the
proof. ■

An analogous theorem, with an analogous proof is true wherein A[x] is replaced by AJxK.

Corollary 6.19. For a field k, the polynomial ring k[x1, . . . , xn] in finitely many indeterminates is noethe-
rian.

Corollary 6.20. If A is a noethering, then every A-algebra of finite type is a noethering.

If A ⊆ B is a ring extension with both A and B noetherian, it is not necessary that B is an A-algebra of
finite type. Indeed, consider Q/Q an extension of fields.

On the other hand, even if B is an A-algebra of finite type and noetherian, it is not necessary for A to be
noetherian. Indeed, consider the ring inclusion

k[xy, xy2, . . .] ⊊ k[x, y]

The former is not noetherian owing to the chain of ideals

(xy) ⊊ (xy, xy2) ⊊ · · ·

while the latter obviously is noetherian.

Proposition 6.21. Let A be a noethering. Every finitely generated A-module is noetherian.

Proof. Let M be generated by {x1, . . . , xn} ⊆ M. Since A is a noetherian A-module, so is A⊕n. There is a
surjection φ : A⊕n ↠ M which maps the i-th basis element to xi. Thus, M is noetherian. ■

Proposition 6.22. Let M be a noetherian A-module. Then, A/ AnnA(M) is a noethering.

Proof. Since M is noetherian, it is finitely generated. Let {m1, . . . , mn} be a set of generators. Then, AnnA(M) =
n⋂

i=1

AnnM(mi). Consider the map ϕ : A → Mn given by ϕ(a) = (am1, . . . , amn). Note that ker ϕ =

AnnA(M). Thus, we have a short exact sequence

0 −→ A/ AnnA(M) −→ A −→ ϕ(A) −→ 0.

Consequently, A/ AnnA(M) is a noetherian A-module and thus a noetherian A/ AnnA(M)-module, whence
a noethering. ■

An analogous result does not hold for Artinian modules (rings). Consider the module M = µ[p∞] for
some prime p as an abelian group. This is an artinian module but not noetherian as we have seen earlier. It
is not hard to see that AnnZ(M) = (0) whence Z/ AnnZ(M) = Z which is not artinian, as we have seen
earlier.
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Lemma 6.23 (Artin-Tate Lemma). Let A ⊆ B ⊆ C be rings with A noetherian, and C an A-algebra of finite
type. If either

(a) C is a finite B-algebraa, or

(b) C is integral over B,

then B is an A-algebra of finite type.
aRecall that this is the same as being finitely generated as a B-module

Proof. Note that (a) ⇐⇒ (b) due to Theorem 5.2. We shall show that (a) implies the desired conclusion.
Since C is an A-algebra of finite type, say it is generated by {x1, . . . , xn} as an A-algebra. Similarly, since it is
a finite B-algebra, it is finitely generated as a B-module, say by {y1, . . . , ym}. Therefore, there are coefficients
bij and bijk in B such that

xi =
m

∑
j=1

bijyj

yiyj =
m

∑
k=1

bijkyk.

Let B0 = A[{bij} ∪ {bijk}] ⊆ B. Since A is noetherian, and B0 is an A-algebra of finite type, it is a noethering.
Now, since C is a finite type A-algebra, every element of C is a polynomial in the xi’s with coefficients

in A. Using the first set of relations, it is a polynomial in the yi’s with coefficients in B0. Using the second
set of relations, it is a linear combination of the yi’s with coefficients in B0, whereby C is a finite B0-algebra.

Since C is a finitely generated B0-module it is noetherian and thus B, being a B0-submodule, is a finitely
generated B0-module and consequently, a B0-algebra of finite type. Thus, B is an A-algebra of finite type.

■

Corollary 6.24 (Noether). Let A be a noethering and R an A-algebra (commutative) of finite type and
G a finite group of A-algebra automorphisms of R. Let

RG := {r ∈ R | g · r = r, ∀g ∈ G}.

Then, RG is a finitely generated A-algebra, in particular, is a noethering.

Proof. That RG is indeed an A-algebra is easy to see. Further, it is well known that R/RG is an integral
extension. But since R is integral over RG and is also a finitely generated RG-algebra, due to Proposition 5.5,
R is a finitely generated RG-module. Finally from Lemma 6.23, RG is an A-algebra of finite type. ■

Lemma 6.25 (Cohen). A is a noethering if and only if every prime ideal in A is finitely generated.

Proof. We shall prove the converse. Let Σ be the poset of proper ideals that are not finitely generated,
which we suppose is nonempty. If C is a chain in Σ, then I =

⋃
a∈C a may not be finitely generated for if it

were, then there is a set of generators {r1, . . . , rn} and thus there would exist a ∈ C containing {r1, . . . , rn}
whereby equal to I, contradiction. Hence, I is an upper bound for C and due to Zorn’s Lemma, there is a
maximal element p ∈ Σ.

Since p may not be prime, there are x, y /∈ p such that xy ∈ p. Consider p+ (x). This strictly contains p
and therefore, is finitely generated. The generators of p+ (x) are of the form pi + aix for 1 ≤ i ≤ n for some
positive integer n.
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Consider the ideal (p : x). This contains p+ (y) which strictly contains p an thus, is finitely generated.
Say (p : x) = (x1, . . . , xm) for some positive integer m. Let a = (p1, . . . , pn, xx1, . . . , xxm). We contend that
a = p.

Obviously, a ⊆ p. On the other hand, for any p ∈ p, there is a representation

p + x = b1 p1 + · · ·+ bn pn + cx

for some b1, . . . , bn, c ∈ A, consequently, p ∈ a. Thus, a = p, which is a contradiction to the choice of p.
Hence, Σ is empty and A is a noethering. ■

Proposition 6.26. A nonzero ideal in a noethering contains a product of prime ideals.

Proof. Suppose not. Let Σ be the set of all ideals which do not contain a product of prime ideals. According
to our assumption, Σ is non-empty and thus contains a maximal element2, say a. Since a ∈ Σ, it cannot be
prime, thus, there are x, y /∈ a with xy ∈ a. Since a+ (x) and a+ (y) strictly contain a, they are not in Σ
whence there are prime ideals p1, . . . , pn and q1, . . . , qm such that

p1 · · · pn ⊆ a+ (x) q1 · · · qm ⊆ a+ (y)

and thus
p1 · · · pnq1 · · · qm ⊆ (a+ (x))(a+ (y)) = a2 + a((x) + (y)) + (xy) ⊆ a

a contradiction. ■

Lemma 6.27. Let A be a noethering and a ⊆ A an ideal. Suppose b ∈ ⋂∞
n=1 a

n. Then a = ba.

Proof. Let a be generated by a1, . . . , ak. Let n be a positive integer. Since b ∈ an, there is a homogeneous
polynomial Pn(x1, . . . , xk) ∈ A[x1, . . . , xk] of degree n such that Pn(a1, . . . , ak) = b. Consider now the chain
of ideals

(P1) ⊆ (P1, P2) ⊆ · · ·
Then there is a positive integer N such that (P1, . . . , PN) = (P1, . . . , PN+1). Consequently, there are polyno-
mials Q1, . . . , QN in A[x1, . . . , xk] such that

PN+1 = Q1P1 + · · ·+ QN PN

Since PN+1 is a homogeneous polynomial of degree N + 1, we may choose each Qi to be homogeneous of
degree N + 1− i > 0 (one can do this by just dropping all the terms which are not of degree N + 1− i).
Consequently, for each 1 ≤ i ≤ N, Qi(a1, . . . , ak) ∈ a whence

b = PN+1(a1, . . . , ak) = b
n

∑
i=1

Qi(a1, . . . , ak) ∈ ba

This completes the proof. ■

Corollary 6.28. Let A be a noethering and a ⊆ A an ideal. Then
⋂∞

n=1 a
n = 0 if

(a) a ⊆ R(A), the Jacobson radical.a

(b) A is a domain and a is a proper ideal.

aWhen A is a local noethering and a = m, this result is known as Krull’s Intersection Theorem.

2This does not require Zorn, since we are in a noethering
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Proof. (a) Let b ∈ ⋂∞
n=1 a

n. Then, ba = (b) whence there is some x ∈ a such that bx = b or equivalently,
b(1− x) = 0. Since x ∈ R(A), 1− x is invertible and b = 0.

(b) Using a similar argument as above, if bx = b then either b = 0 or x = 1. Since a is a proper ideal, we
must have b = 0.

■

6.3.1 Primary Decomposition

Definition 6.29 (Irreducible). An ideal a ⊆ A is said to be irreducible if for all ideals b, c ⊆ A,

a = b∩ c =⇒ a = b or a = c

Lemma 6.30. In a noethering, every ideal can be expressed as a finite intersection of irreducible ideals.

Proof. Let Σ be the poset of ideals that cannot be expressed as a finite intersection of irreducible ideals in
A. Suppose Σ is nonempty, then every chain in Σ is finite (owing to noetherian-ness) whence has an upper
bound, thus Σ has a maximal element (Zorn’s Lemma), say a. Note that a cannot be irreducible, therefore,
there are ideals b, c properly containing a such that a = b ∩ c. Due to the maximality of a, both b and c can
be expressed as a finite intersection of irreducible ideals in A, as a result, so can a, a contradiction. Thus Σ
must be empty and the proof is complete. ■

Lemma 6.31. Every irreducible ideal in a noethering is primary.

Proof. Let q ⊆ A be an irreducible ideal. We shall show that (0) is primary in A/q, which is equivalent to q
being primary. Let x, y ∈ A/q such that xy = 0. If x ̸= 0, then consider the chain

Ann(y) ⊆ Ann(y2) ⊆ · · ·

Since A/q is a noethering, there is a positive integer n such that Ann(yn) = Ann(yn+1). We contend that
(x) ∩ (yn) = 0. Indeed, if z ∈ (x) ∩ (yn), then there are u, v ∈ A/q such that z = ux = vyn. Then,

vyn+1 = zy = uxy = 0

whence v ∈ Ann(yn+1) = Ann(yn), whereby z = 0. But since (0) is irreducible and x ̸= 0, we must have
yn = 0 and (0) is primary. This completes the proof. ■

Corollary 6.32. A noethering has finitely many minimal prime ideals.

Proof. Since A is noetherian, the ideal (0) has a primary decomposition and the minimal primes belonging
to (0) are precisely the minimal primes in A and thus are finite. ■

Alternate Proof to Proposition 6.26. Let a ⊆ A be a nonzero ideal. Then, it has a primary decomposition,
whereby

√
a can be written as an intersection of prime ideals, say p1 ∩ · · · ∩ pn. We have p1 · · · pn ⊆ p1 ∩

· · · ∩ pn since the product of ideals is contained in their intersection. Finally, since every ideal in a noethering
contains a power of its radical, there is a positive integer m such that

(p1 · · · pn)
m ⊆
√
a

m ⊆ a

This completes the proof. ■
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Lemma 6.33. Let A be a noetherian domain with dim A = 1. Then every nonzero ideal in A can be uniquely
expressed as a product of primary ideals whose radicals are distinct.

Proof. Let a ⊆ A be a nonzero ideal. This has a primary decomposition with the associated primes being
maximal and thus comaximal. Thus, the primary ideals in the decomposition are also comaximal. From
Theorem 1.3, we have that a is in fact the product of the aforementioned primary ideals.

On the other hand, suppose a = q1 · · · qn where pi =
√
qi are distinct. Since dim A = 1, the ideals

pi are maximal whence qi are comaximal. Invoking Theorem 1.3, we see that a =
⋂n

i=1 qi is a primary
decomposition. Further, since pi are also the minimal primes associated with a, due to Theorem 4.12, the
qi’s are unique. ■

Theorem 6.34 (Krull’s Intersection Theorem). Let A be a noetherian ring and a� A an ideal. Set

b =
∞⋂

n=1

an.

Then, ab = b.

Proof. Since a is a proper ideal, so is b and ab. Hence, it admits a primary decomposition

ab = q1 ∩ · · · ∩ qn.

We contend that b ⊆ qi for every 1 ≤ i ≤ n. Suppose not, then there is some index i and bi ∈ b\qi. Note that
bia ⊆ ab ⊆ qi and hence, a ⊆ pi. Now, there is a positive integer r > 0 such that pr

i ⊆ qi whence, ar ⊆ qi,
consequently, b ⊆ qi, a contradiction. This completes the proof. ■

There’s an analogue of the above theorem for modules as well.

Theorem 6.35 (Krull’s Intersection Theorem). Let A be a noethering, M a finitely generated A-module and
a� A an ideal. Set

N =
∞⋂

n=1

an M.

Then, aN = N.

Proof. If a = (1) or N = M, there is nothing to prove. Now suppose N ⊊ M, then, it admits a primary
decomposition

N = Q1 ∩ · · · ∩Qn

where each Qi is pi-primary and hence, pi =
√

AnnA(M/Qi). We contend that N is contained in every Qi.
Suppose not, then there is an index i and x ∈ N\Qi. Notet hat ax is a submodule of aN which is contained
in Qi. But since x is not contained in Qi, we must have a ⊆ pi. As a result, there is a positive integer r > 0
such that ar ⊆ AnnA(M/Qi). Hence, N ⊆ Qi, a contradiction. This completes the proof. ■

Corollary 6.36. With the notation of the above result,

N = {x ∈ M | ∃a ∈ a, (1 + a)x = 0}.

6.3.2 Nagata’s Monster
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Lemma 6.37. Let A be a ring such that

(a) for each maximal ideal m, Am is noetherian.

(b) every x ∈ A\{0} has finitely many maximal ideals containing it.

Then, A is noetherian.

Proof. Let (0) ̸= a� A be a proper ideal. We shall show that a is a finitely generated ideal. Let m1, . . . ,mr be
the maximal ideals containing a, which are finite in number since a is nonzero. Pick some nonzero x0 ∈ a
and let m1, . . . ,mr, . . . ,mr+s be the maximal ideals containing x0.

For each 1 ≤ j ≤ s, there is xj ∈ a\mr+j. Now, for each 1 ≤ i ≤ r, aAmi is a finitely generated ideal and

is generated by the images of some x(i)1 , . . . , x(i)ni .
Let a0 ⊆ a denote the ideal in A generated by

{x0} ∪ {x1, . . . , xs} ∪
r⋃

i=1

{x(i)1 , . . . , x(i)ni }.

Let m be a maximal ideal in A. If x0 ∈ m, then the extensions of both a0 and a are equal to Am. Now suppose
x0 ∈ m. Thus, m ∈ {m1, . . . ,mr+s}. If m = mr+j for some j, then xj /∈ m but xj ∈ a0 whence the extensions
of both a0 and a are Am. Finally, if m = mi for some 1 ≤ i ≤ r, then both a0 and a extend to aAm, since
the former contains x(i)1 , . . . , x(i)ni . Thus, the inclusion a0 ↪→ a is a surjection, due to Proposition 3.13. This
completes the proof. ■

Theorem 6.38. Let k be a field and A = k[x1, x2, . . . ], the polynomial ring over k in countably many indeter-
minates. Let {mi}∞

i=1 denote an increasing sequence such that mi+1 −mi > mi −mi−1 for all i > 1. Finally,
let pi = (xmi+1, . . . , xmi+1) and S denote A\⋃∞

i=1 pi. Then, R = S−1 A is a noethering with infinite Krull
dimension.

The proof of the above theorem relies on the following claims.
Claim 1 (Prime Avoidance). If a� A is contained in

⋃∞
i=1 pi, then a ⊆ pi for some i.

Proof. For each f ∈ A, let
S( f ) := {i ∈N | f ∈ pi},

which is finite. Pick some f ∈ a. If there is no g ∈ a with S( f ) ∩ S(g) = ∅, then, a is contained in
⋃

i∈S( f ) pi,
and we are done due to Proposition 1.9.

On the other hand, suppose there is some g ∈ a such that S( f ) ∩ S(g) = ∅. Obviously, neither S( f ) or
S(g) can be empty. Choose some r ∈ S(g) and let d = deg f . We shall show that S( f + xd+1

mr+1g) = ∅.
First, note that S(g) = S(xd+1

mr+1g). Further, a polynomial in A is contained in pi if and only if each
monomial in the aforementioned polynomial is contained in pi. Next, suppose h = f + xd+1

mr+1g ∈ pl . Then,
we must have all the monomials in h to lie in pl , consequently, both f and xd+1

mr+1g must lie in pl . That is,
l ∈ S( f ) ∩ S(xd+1

mr+1g) = ∅, a contradiction.
Hence, it can never be the case that S( f ) ∩ S(g) = ∅. This completes the proof. ■

Claim 2. The primes in R are precisely the S−1pi’s.

Proof. Let f /s ∈ R\S−1pi. We shall show that its image in R/S−1pi is a unit. First, note that it suffices to
show that the image of f in R/S−1pi is a unit. Since f /∈ S−1pi, it has at least one monomial not in pi. We
may suppose that all the monomials in f are not in pi. Consider f + xmi+1, whose image in R/S−1pi is the
same that of f . But f + xmi+1 ∈ S and thus is a unit. This proves the claim. ■
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Proof of Theorem 6.38. Note that RS−1pi
∼= Api , which is noetherian, further, every element in S−1 A is con-

tained in finitely many of the S−1pi’s whence, due to Lemma 6.37, R is noetherian. Finally, note that the
height of S−1pi is at least mi+1 −mi, consequently, dim R = ∞. This completes the proof. ■

6.3.3 Eakin-Nagata Theorem

Lemma 6.39 (Formanek). Let M be a finitely generated faithful A-module such that the poset

{aM | a is an ideal in A}

has the ascending chain condition. Then, A is a noethering.

Proof. Suppose not. Consider the poset

Σ = {a� A | M/aM is not a noetherian A-module}.

This is non-empty and hence, contains a maximal element, say a0. Let M′ = M/a0M and A′ = A/ AnnA(M′).
Then, M′ is a non-noetherian faithful A′-module. Further, if b� A′ is a non-zero ideal, then M′/bM′ is iso-
morphic to M/a′M where a′ strictly contains a0 and hence, is a noetherian A-module, consequently, a
noetherian A′-module.

Consider the poset
Γ = {N ≤ M′ | M′/N is a faithful A′-module}.

Note that N ∈ Γ if and only if for all a ∈ A′\{0}, aM′ ̸⊆ N. It is now easy to see that every chain in Γ
admits an upper bound in Γ and hence, Γ contains a maximal element, say N0 ≤ M′. Let M′′ = M′/N0.

First, note that M′′ cannot be noetherian since this would force A′ to be a noethering, which, in turn
would force A to be a noethering. Hence, there is a (non-zero) submodule N of M′′ that is not finitely
generated as an A′-module. The module M′′/N is isomorphic to M′/N′ where N′ is a submodule of M′

that strictly contains N0 and hence, M′/N′ is not a faithful A′-module. That is, there is an a ∈ A′\{0} such
that aM′′ ⊆ N. Note that M′′/aM′′ is isomorphic to M′/aM′, which must be a noetherian A′-module due
to our construction of M′.

Hence, N/aM′′, being a submodule of M′′/aM′′ is a noetherian A′-module, in particular, it is finitely
generated. Finally, since aM′′ is a finitely generated A′-module, we must have that N is a finitely generated
A′-module, a contradiction. ■

Theorem 6.40 (Eakin-Nagata). Let A ⊆ B be an extension of rings such that B is a noethering and a finitely
generated A-module. Then, A is a noethering.

Proof. Follows from Lemma 6.39 by taking M = B. ■

6.4 Artinian Rings

Recall that A is artinian if it is an artinian module over itself.

Proposition 6.41. Let A be an artinian ring. Then A has finitely many maximal ideals.

Proof. Suppose not. Then, we have a sequence {mi}∞
i=1 of pairwise distinct maximal ideals. Consider the

sequence of ideals {m1 · · ·mn}∞
n=1. We contend that the inclusion m1 · · ·mn−1 ⊇ m1 · · ·mn is strict. Indeed,

for all 1 ≤ i ≤ n − 1, pick xi ∈ mi\mn. Then, x1 · · · xn−1 /∈ mn, since A\mn is a multiplicatively closed
subset. Thus, x1 · · · xn−1 ∈ m1 · · ·mn−1\m1 · · ·mn. This is a contradiction to A being artinian. ■
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Proposition 6.42. Let A be an artinian ring. Then every prime ideal in A is maximal.

Proof. Let p be a prime ideal in A. Then A′ = A/p is an Artinian integral domain. We shall show that this
is a field, for which it suffices to show that every element is invertible. Choose x′ ∈ A′ and let ϕ : A′ → A′

be the A′-module homomorphism that maps a 7→ x′a. Since A′ is an integral domain, this map is injective
and since A′ is artinian, it is also an isomorphism. Consequently, there is some y′ ∈ A′ such that x′y′ = 1
and the conclusion follows. ■

Corollary 6.43. Let A be an artinian ring. Then N(A) = R(A).

Lemma 6.44. Let A be an artinian ring. Then N(A) is nilpotent.

Proof. We shall denote N(A) by N for the sake of brevity. Consider the decreasing chain

N ⊇ N2 ⊇ · · ·

Then there is an index n such that a = Nn = Nn+1 = · · · . Suppose for the sake of contradiction that a ̸= 0.
Let Σ be the set of ideals b such that ab ̸= 0. Obviously Σ is empty since it contains a. Since A is artinian, Σ
has a minimal element c3.

We contend that c is principal. Indeed, there is an element x ∈ c such that xa ̸= 0. Thus, (x)a ̸= 0.
Owing to the minimality of c, we must have c = (x).

Consider now the ideal (x)a. This is a subset of (x) and

((x)a)ak = (x)ak+1 = (x)a ̸= 0

whence (x)a ∈ Σ and again, owing to the minimality of (x) = c, we have (x)a = (x). Hence, there is some
y ∈ a such that xy = x. We now have

x = xy = xy2 = · · ·
Since y ∈ a ⊆ N, it is nilpotent, whence x = 0, a contradiction. Thus a = 0 and this completes the proof. ■

Theorem 6.45. A is artinian if and only if it is a noethering with krull dimension zero.

Proof. ( =⇒ ). Obviously dim A = 0. We know that A has finitely many maximal ideals m1, · · ·mn the
intersection of which is the Jacobson radical, which, in this case, is equal to the nilradical. Further, since the
maximal ideals are comaximal, we have

N(A) = m1 · · ·mn

But since N(A) is nilpotent, there is a positive integer k such that mk
1 · · ·mk

n = 0, thus due to Lemma 6.13, A
is noetherian.

( ⇐= ). Since A is a noethering, the (0) ideal has a primary decomposition, whence (0) =
⋂n

i=1 qi
whereby N(A) =

⋂n
i=1 pi where each prime pi is maximal owing to the krull dimension. Thus, N(A) =

p1 · · · pn. Since in a noetherian ring, the nilradical is nilpotent, there is a positive integer k such that

(0) = N(A)k = pk
1 · · · pk

n.

We are now done due to Lemma 6.13. ■

3We have not invoked Zorn to conclude this.
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Theorem 6.46 (Structure Theorem of Artinian Rings). Let A be an artinian ring. Then, there are artinian
local rings A1, . . . , An such that A ∼= A1 ⊕ · · · ⊕ An. Further, the Ai’s are unique up to isomorphism.

Proof. ■

Lemma 6.47.
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Chapter 7

DVRs and Dedekind Domains

7.1 General Valuations and Valuation Rings

Definition 7.1 (Valuation). A valuation on a field K is a map v : K → Γ ∪ {∞} where Γ is an ordered
abelian group such that for all x, y ∈ K,

1. v(xy) = v(x) + v(y), that is, the restriction v : K× → Γ is a group homomorphism,

2. v(x + y) ≥ min{v(x), v(y)}.

The set
A = {x ∈ K× | v(x) ≥ 0}

is called the valuation ring of K with respect to the valuation v. Simply stating “A is a valuation ring”
means A is a valuation ring of K = Q(A).

That the set A forms a ring follows from the fact that it is closed under addition, multiplication and
subtraction.

Proposition 7.2. Let A be an integral domain and K = Q(A), its field of fractions. Then, A is a valuation
ring of K iff for every x ∈ K\{0}, we have x ∈ A or x−1 ∈ A.

Proof. The forward direction from the fact that 0 = v(1) = v(xx−1) = v(x) + v(x−1). Conversely, let
Γ = K×/A× and π : K× ↠ Γ the natural projection. Define an order on Γ as follows

• Every element in G is of the form π(x) for x ∈ K×. According to the given hypothesis, x ∈ A or
x−1 ∈ A. In the former case, let π(x) ≥ 1Γ and in the latter, π(x) < 1Γ.

• To see that this is well defined, suppose x, y ∈ K with x/y ∈ A×, then if x ∈ A then y = xu ∈ A
where u ∈ A×, on the other hand, if x−1 ∈ A, then y−1 = ux−1 ∈ A where u ∈ A×.

• This extends to a total order on Γ by π(x) ≥ π(y) if and only if π(xy−1) ≥ 1Γ, that is, xy−1 ∈ A.

We now contend that π is a valuation with valuation ring A. Since π is a homomorphism, it suffices to
check π(x + y) ≥ min{π(x), π(y)}. Indeed, suppose π(x) ≥ π(y), which is equivalent to stating x/y ∈ A.
Then, 1 + x/y ∈ A, consequently

π(x + y) = π(y(1 + x/y)) = π(y)π(1 + x/y) ≥ π(y).

This completes the proof. ■
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Proposition 7.3. Let A be a valuation ring. Then

(a) A is a local ring.

(b) A is normal.

Proof. (a) We shall show that the nonunits in A form an ideal. Let m be the set of nonunits in A and
choose x ∈ m\{0}, b ∈ A. Then, bx ̸= 0 since x is not a zero divisor. We contend that bx is a nonunit.
For if not, then b(bx)−1 would be an inverse of x.
Next, let x, y ∈ m\{0}. According to the given condition, either x/y or y/x are in A. Without loss
of generality, suppose x/y ∈ A. Then x + y = y(1 + x/y) ∈ m from the conclusion of the previous
paragraph. Thus m is an ideal and A is local.

(b) Indeed, let α ∈ K be integral over A. If α ∈ A, there is nothing to prove. If not, then it satisifes an
equation of the form

αn + bn−1αn−1 + · · ·+ b1α + b0

Upon multiplying by α−(n−1), we can represent α as a sum of elements in A, consequently, is an
element of A, a contradiction. ■

Proposition 7.4. Let A be a domain. Then A is a valuation ring if and only if the ideals in A are totally ordered.

Proof. ( =⇒ ) Suppose not. Then, there are two distinct ideals a, b with a ̸⊆ b and b ̸⊆ a whence we can
pick a ∈ a\b and b ∈ b\a. Since either a/b ∈ A or b/a ∈ A, we must have a|b or b|a. Without loss of
generality, suppose b|a. Then, a ∈ (b) ⊆ b, a contradiction.

( ⇐= ) Let x = a/b ∈ K. Consider the ideals (a) and (b) in A. Since the ideals of A are totally ordered,
either (a) ⊆ (b) or (b) ⊆ (a), and thus, either x ∈ A or x−1 ∈ A. This completes the proof. ■

Definition 7.5 (Bézout Ring). A ring is said to be a Bézout ring if every finitely generated ideal is
principal.

Proposition 7.6. A ring is a valuation ring if and only if it is a local Bézout domain.

Proof. Let A be a valuation ring and a = (a1, . . . , an) = (a1) + · · ·+ (an). Since ideals in a valuation ring
are totally ordered, there is an index i such that (aj) ⊆ (ai) for 1 ≤ j ≤ n, consequently, a = (ai).

Conversely, let A be a local Bézout Domain and x = a/b ∈ K = Q(A). If either a or b is a unit, then
either x or x−1 ∈ A. Then, there is c ∈ A such that (c) = (a, b) whence there are a′, b′ ∈ A such that a = ca′

and b = cb′. Let u ∈ A be such that (u) = (a′, b′). Then, (cu′) = (c) whence u is a unit. If neither a′ or b′

is a unit, then (1) = (a′, b′) = (a′) + (b′) ⊆ m, a contradiction. Thus, either a|b or b|a which completes the
proof. ■

7.2 Discrete Valuation Rings

Definition 7.7 (Discrete Valuation Ring). A valuation v : K → Γ∪ {∞} is said to be a discrete valuation
when Γ = Z and v is surjective. An integral domain A is said to be a discrete valuation ring if there is a
discrete valuation v on the field of fractions of A such that A is the corresponding valuation ring.

First, since A is a valuation ring of its field of fractions, say K, it is local and normal, i.e. integrally closed
in K. Further, the maximal ideal m in A is the set of all x ∈ A with positive valuations.
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Proposition 7.8. Let A be a DVR. Then, A is a local PID.

Proof. Let mk = {x ∈ A | v(x) ≥ k}. We first show that mk is an ideal. Indeed, for all x, y ∈ mk,

v(x− y) ≥ min{v(x), v(−y)} = min{v(x), v(y)} ≥ k

and v(xy) = v(x) + v(y) ≥ k.
Next, we show that every non-zero ideal a in A is one of the mi’s. Due to the well ordering of the

naturals, there is an x ∈ a with k = v(x) = min
a∈a

v(a). Then, by the choice of k, a ⊆ mk. Now, let y ∈ mk.

Since v is surjective, there is an element z ∈ A with v(z) = v(y)− v(x). Whence xz ∈ a and v(xz) = v(y).
Since (xz) = (y), we must have y ∈ a.

Notice that these ideals form a descending chain

m = m1 ⊇ m2 ⊇ · · · .

Choose some a ∈ A with v(a) = 1, which exists due to the surjectivity of v. Then, m = (a) and
consequently, mk = (ak) = mk. From this, we may conclude that m is the unique non-zero prime ideal in A
and every other ideal is a power of m and also principal. Thus A is a local PID. ■

Theorem 7.9. Let A be a noetherian local domain of Krull dimension 1, m its maximal ideal and k = A/m its
residue field. Then the following are equivalent:

(a) A is a discrete valuation ring.

(b) A is normal.

(c) m is principal.

(d) dimk(m/m2) = 1.

(e) Every non-zero ideal is a power of m.

(f) There is x ∈ A such that every nonzero ideal is of the form (xk) for k ≥ 0.

Proof. (a) =⇒ (b) is obvious.
(b) =⇒ (c). Let a ∈ m. Since the ring is noetherian, (a) has a primary decomposition, but since

the Krull dimension is 1, the only non-zero prime ideal is m, we see that
√
(a) = m. Since we are in a

noethering, there is a positive integer n such that mn ⊆ (a) but mn−1 ⊊ (a). Let b ∈ mn−1\(a) and x = a/b,
y = x−1 = b/a in K = Q(A), the field of fractions.

First, since b /∈ (a), y /∈ A and therefore, is not integral over A. Since m is a finitely generated A-module,
it cannot be an A[y]-module lest y be integral over A due to Theorem 5.2. Hence, ym ⊊ m.

Now consider ym. For any z ∈ m, yz = bz/a ∈ A since bz ∈ mn ⊆ (a). Thus, ym ⊆ A. Since this is an
ideal and is not contained in m, we must have ym = A, whence m = Ax = (x) and is principal.

(c) =⇒ (d). Let m = (a) for some a ∈ A. Then, m/m2 = (a) where a is the image of a. Thus,
dimk(m/m2) ≤ 1. Now, note that m ̸= m2, lest due to Lemma 2.17, we have m = 0. Thus, dimk(m/m2) ≥ 1
and the conclusion follows.

(d) =⇒ (e). Let a be a proper non-zero ideal in A. Then,
√
a = m as we have argued earlier and thus,

there is a least positive integer n such that mn ⊆ a. Now, A/mn is an artinian local ring with maximal ideal
m = m/m2. Consequently,

dimk(m/m2) = dimk(m/m2) = 1

whence, due to <insert reference>, every ideal in A/mn is principal, in particular, a is principal. Complete
This Argu-
ment

(e) =⇒ ( f ). Due to Lemma 2.17, m ⊋ m2, hence there is x ∈ m\m2. According to our hypothesis,
(x) = mn for some positive integer n. Due to our choice of x, we must have n = 1, whence m = (x). The
conclusion now follows.

78



( f ) =⇒ (a). We shall explicitly create a valuation. First, note that we have m = (x) due to maximality
and due to Nakayama’s Lemma, mk ̸= mk+1 for if not, then mk = 0 whereby, m = 0, upon taking radicals, a
contradiction.

For each a ∈ A, (a) = (xk) for a unique k, since (xn) ⊋ (xn+1). Define v(a) = k and extend it to
K = Q(A) by defining v(a/b) = v(a)− v(b). This is obviously a well defined valuation and v(a/b) ≥ 0 if
and only if (a) = (xn) and (b) = (xm) for n ≥ m, whence a ∈ (b) and a/b ∈ A. Thus A is the valuation
ring of K with respect to v. This completes the proof. ■

Proposition 7.10. A is a DVR if and only if A is a local PID which is not a field.

Proof. If A is a local PID which is not a field, then it is a noetherian local domain of Krull dimension 1
with a principal maximal ideal. From Theorem 7.9, we have that A is a DVR. Putting this together with
Proposition 7.8, we have the desired conclusion. ■

Proposition 7.11. Let A be a valuation ring that is not a field. Then A is a DVR if and only if A is noetherian.

Proof. It suffices to show the converse. Since A is noetherian, every ideal is finitely generated and thus
principal. Hence, A is a DVR. ■

7.3 Dedekind Domains

Theorem 7.12. Let A be a noetherian domain of Krull dimension 1. Then, the following are equivalent

(a) A is integrally closed.

(b) Every primary ideal in A is a prime power.

(c) Every local ring Ap is a discrete valuation ring.

Proof. ■

Definition 7.13. A ring satisfying the equivalent conditions of Theorem 7.12, is said to be a Dedekind
domain.

Theorem 7.14. In a Dedekind domain, every non-zero ideal has a unique factorization as a product of primea

ideals.
aWhich in this case, are maximal.

Proof. From Lemma 6.33, every ideal in a noetherian domain of Krull dimension 1 has a unique factorization
as a product of prime ideals. Then, from Theorem 7.12 and Theorem 1.3, the conclusion follows. ■

Proposition 7.15. Let A be a Dedekind domain and a ⊆ A a nonzero ideal. Then, A/a is a principal ring.
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Proof. The ideal a has a prime factorization a = p
n1
1 · · · p

ns
s with A/a ∼=

⊕s
i=1 A/pni

i . We shall show that each
factor A/pni

i is a principal ring, by showing that for every prime ideal p, the ring A = A/pn is principal for
every positive integer n.

First, note that A must be artinian and local as we have argued in the previous chapters. Hence, due to
Lemma 6.47, it suffices to show that the maximal ideal in A is principal. Note that the maximal ideal in A
is given by p/pn. If n = 1, then A/pn is a field and there is nothing to prove. Now, suppose n ≥ 2. Let p
denote the maximal ideal p/pn in A. Then, p2 = p2/pn, which may not be equal to p due to Lemma 2.17.

Choose some a ∈ p\p2. We contend that p = (a). Let a ∈ A be an element mapping to a under the
projectio A ↠ A/pn. Then, (a) ⊇ pn, consequently,

√
(a) = p is maximal and thus (a) is p-primary, whence

a power of p. Since we chose a in p\p2, we must have (a) = p which completes the proof. ■

Corollary 7.16. Every ideal in a Dedekind domain is generated by at most two elements.

Proof. Let a� A be an ideal and a ∈ a\{0}. Then, a/(a) is a principal ideal. Let b ∈ a map to a generator of
a/(a). Then, (a, b) = a. ■

Proposition 7.17. Let A be a Dedekind domain and a, b, c ⊆ A be ideals. Then,

(a) a∩ (b+ c) = a∩ b+ a∩ c and

(b) a+ b∩ c = (a+ b) ∩ (a+ c).

Proof. ■

Proposition 7.18. A Dedekind domain is a UFD if and only if it is a PID.

Proof. We shall show only the forward direction since the converse is trivial. Let p be a prime ideal in A and
0 ̸= a ∈ p. Then, a has a factorization, a = upe1

1 · · · p
er
r where the pi’s are irreducibles and ei > 0. Since p is a

prime ideal, there is some pi ∈ p, consequently, (pi) ⊆ p. But since (pi) is a nonzero prime ideal, it must be
equal to p. Thus, every prime ideal in A is principal and thus A is a PID. ■

Proposition 7.19. A Dedekind domain with finitely many prime ideals is a PID.

7.4 Fractional Ideals

Definition 7.20. Let A be an integral domain. A fractional ideal of A is a nonzero A-submodule M of
K = Q(A), the field of fractions such that there is d ∈ A with dM ⊆ A.

Remark 7.4.1. If M is an A-fractional ideal, then for any multiplicatively closed subset S ⊆ A not containing 0, we
have that S−1M is an S−1 A fractional ideal. This observation will be quite useful in the future.

The ideals contained in A are now called “integral ideals”. Obviously, every integral ideal is fractions.
Let M and N be A-submodules of K. Define the modified colon operator as

⟨M : N⟩ = {x ∈ K | xN ⊆ M}.
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Similarly, one defines the sum and product of A-submodles of K as

∑
i∈I

Mi =

{
∑

finite
mi | mi ∈ Mi

}

MN =

{
∑

finite
xiyi | xi ∈ M, yi ∈ N

}

Proposition 7.21. Let M, N, P be A-submodule of K = Q(A). Then,

M(N + P) = MN + MP

Proposition 7.22. Let M and N be A-submodules of K and S ⊆ A a multiplicative subset. Then

(a) S−1(MN) = (S−1M)(S−1N)

(b) S−1⟨M : N⟩ ⊆ ⟨S−1M : S−1N⟩. Equality holds when N is finitely generated as an A-module.

Proof. (a). Let x = (∑i mini)/s ∈ S−1(MN). Then,

x = ∑
i
(mi/s)(ni/1) ∈ (S−1M)(S−1N).

On the other hand, if x ∈ (S−1M)(S−1N), then x = ∑i(mi/si)(ni/ti) = ∑i(mini/siti). Let s = ∏ si and
t = ∏ ti. Then, it is not hard to see that x = m′n′/st ∈ S−1(MN) and the conclusion follows.

(b). The inclusion is obvious. To see the inclusion in the other direction, suppose N were generated by
{n1, . . . , nr} ⊆ N. Let z ∈ ⟨S−1M : S−1N⟩ and let zni/1 = mi/si with mi ∈ M and si ∈ S. Set s = ∏i si.
Then, it is clear that szni ∈ M for each i and thus sz ∈ ⟨M : N⟩ whence z ∈ S−1⟨M : N⟩. This completes the
proof. ■

Proposition 7.23. Let A be a noetherian domain. Then an A-submodule M of K = Q(A) is a fractional ideal
if and only if M is a finitely generated A-module.

Proof. It is not hard to see that every finitely generated A-submodule M of K is fractional, for if it is gener-
ated by x1/y1, . . . , xn/yn, then choosing y = ∏n

i=1 yi, we have yM ⊆ A.
On the other hand, if A is noetherian and M a fractional ideal, then there is some d ∈ A such that

dM ⊆ A and is an ideal, say a ⊆ A. Thus M = d−1a and is a finitely generated A-module. ■

Definition 7.24. Let A be an integral domain. An A-submodule M of K = Q(A) is said to be invertible
if there is an A-submodule N of K with MN = A.

Remark 7.4.2. Each fractional ideal of A is invertible if and only if each integral ideal of A is invertible. Indeed,
suppose each integral ideal of A is invertible and M be a fractional ideal of A. Then, there is some d ∈ A such that
dM is an integral ideal whence admits an inverse N. Then, note that dN is an inverse of M.

For an A-submodule M of K, define

⟨A : M⟩ = {x ∈ K | xM ⊆ A}.

It is not hard to see that ⟨A : M⟩ is an A-submodule of K.
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Proposition 7.25. Let A be an integral domain and M an invertible ideal of A. Then, M−1 = ⟨A : M⟩ and M
is finitely generated.

Proof. Let N denote the inverse of M. Then

N ⊆ ⟨A : M⟩ = ⟨A : M⟩MN ⊆ AN = N.

Since M⟨A : M⟩ = A, there exist, for 1 ≤ i ≤ n, xi ∈ M and yi ∈ ⟨A : M⟩ such that ∑i xiyi = 1. Hence, for
any x ∈ M, we have

x =
n

∑
i=1

xxiyi =
n

∑
i=1

(yix)xi.

Since each yi ∈ ⟨A : M⟩, we have yix ∈ A for 1 ≤ i ≤ n, thus M is generated by x1, . . . , xn, whence finitely
generated. ■

Proposition 7.26. Let M be a fractional ideal of an integral domain A. Then, the following are equivalent:

(a) M is invertible.

(b) M is finitely generated and for each p ∈ Spec A, Mp is invertible.

(c) M is finitely generated and for each m ∈ MaxSpec A, Mm is invertible.

Proof. (a) =⇒ (b) First, since M is invertible, it is finitely generated as an A-module. We have

Ap = (M⟨A : M⟩)p = Mp⟨Ap : Mp⟩

whence Mp is invertible.
(b) =⇒ (c) Obvious.
(c) =⇒ (a). Let a = M⟨A : M⟩. This is an integral ideal in A. Let ι : a ↪→ A denote the inclusion and

let m ⊆ A be a maximal ideal. Then,

am = Mm⟨Am : Mm⟩ = Am.

Thus ιm is surjective for all maximal ideals m and due to Proposition 3.13, a = A. ■

Proposition 7.27. Let A be a local domain. Then A is a DVR iff every non-zero fractional ideal of A is invertible.

Proof. ( =⇒ ) Let M be a fractional ideal of A and m = (x). Then, there is y ∈ A such that yM ⊆ A. Let
s > 0 be chosen such that (y) = (xs). Then, xs M = yM ⊆ A is an ordinary ideal and is therefore equal to
(xr) for some non-negative integer r. Then, M = (xr−s) is principal and thus invertible.

( ⇐= ) First, every integral ideal is fractional and according to the hypothesis, finitely generated. Thus
A is noetherian. We shall now show that every nonzero proper integral ideal is a power of m. Suppose
not. Let Σ be the set of all nonzero proper integral ideals in A which are not powers of m. Let a ∈ Σ be a
maximal element1. Then, a ⊊ m. But since m is invertible, we have

m−1a ⊆ m−1m = A

and thus m−1a is a proper integral ideal which contains a, since 1 ∈ m−1. We contend that this containment
is proper. For if not, then

m−1a = a =⇒ a = ma

and due to Lemma 2.17, a = 0. Thus, a ⊊ m−1a and due to the maximality of a, there is a positive integer k
such that m−1a = mk whence a = mk+1, a contradiction. This completes the proof. ■

1We do not need to invoke Zorn for this since the ring is Noetherian.
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Proposition 7.28. Let A be an integral domain. Then A is a Dedekind domain iff every non-zero fractional ideal
of A is invertible.

Proof. ( =⇒ ) Let M be a fractional ideal in A. Since A is also noetherian, M is finitely generated. Let p ∈
Spec A. Then Mp is a fractional ideal in the DVR Ap whence invertible. We are done due to Proposition 7.26.

( ⇐= ) We shall show that Ap is a DVR for each p ∈ Spec(A). Due to Remark 7.4.2, it to show that
every integral ideal of Ap is invertible for each p ∈ Spec(A). Let b be an integral ideal in Ap, then there is
a corresponnding integral ideal a in A such that b = ap. According to our assumption, there is a fractional
ideal M such that aM = A whence apMp = Ap and b is invertible. This completes the proof. ■

Corollary 7.29. If A is a Dedekind domain, the non-zero fractional ideals of A form a group with
respect to multiplication.

7.5 Dedekind Domains and Extensions

Theorem 7.30. Let A be a Dedekind domain with field of fractions K. If L/K is a separable field extension and
B is the integral closure of A in L, then B is a Dedekind domain.

Proof. Obviously, B is integrally closed. We now show that B has Krull dimension 1. First, note that the only
prime ideal in B lying over (0) in A is (0) due to Proposition 5.12. If p1 ⊊ p2 in B, then their contractions
pc

1 ⊊ pc
2 are prime ideals in A, where the inclusion is strict, again due to Proposition 5.12. Thus, pc

1 = (0)
and B has dimension 1.

Finally, that B is a noethering follows from Corollary 5.28. This completes the proof. ■

Theorem 7.31. Let A be a Dedekind domain with field of fractions K. If L/K is a finite purely inseparable
extension and B is the integral closure of A in L, then B is a Dedekind domain.

Proof. We shall show that every ideal of B is invertible. This is equivalent to B being a Dedekind domain.
Let char A = p > 0 and q = pn be the exponent of the purely inseparable extension L/K. Let b be an ideal
of B and

a = {bq | b ∈ b}A,

an ideal of A. Since A is a Dedekind domain, the ideal a has an inverse, say a−1. Let a−1
B denote the B-

submodule of L generated by a−1. Since a−1 was a fractional ideal of A, there is some d ∈ A such that
da−1 ⊆ A, therefore, da−1

B ⊆ B and a−1
B is a fractional ideal of B.

Now, note that a ⊆ bq whence

1 ∈ aa−1 ⊆ bqa−1
B =⇒ B ⊆ bqa−1

B .

On the other hand, pick some a ∈ a−1 and b1, . . . , bq ∈ b. Then,

(b1 · · · bqa)q = (bq
1a) · · · (bq

qa).

Note that bq
i ∈ a an thus bq

i a ∈ A. Therefore, b1 · · · bqa is integral over A and thus lies in B. Note that
every element of bqa−1

B is a B-linear combination of elements of th form b1 · · · bqa and thus lies in B, that is,
bqa−1

B ⊆ B. Hence,
bqa−1

B = B =⇒ b−1 = bq−1a−1
B .

This completes the proof. ■

We immediately obtain the following result.
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Corollary 7.32. Let A be a Dedekind domain with field of fractions K. If L/K is a finite extension and
B is the integral closure of A in L, then B is a Dedekind domain.

7.5.1 Primes in Extensions

Throughout this section, we consider the following setup:

A is a Dedekind domain with fraction field K. Let L/K be a finite extension and B the integral
closure of A in L.

Definition 7.33. If p ∈ Spec(A), then pB has a prime factorization in B, say

pB =
r

∏
i=1

P
ei
i .

The number ei is called the ramification index. We say that P divides p if P occurs in the factorization
of p in B. Further, we write e(P/p) for the ramification index and f (P/p) for the degree of the field
extension [B/P : A/p].

A prime is said to ramify if ei > 1 for some i. It is said to split if ei = fi = 1 for all i. It is said to be
inert if pB is a prime ideal in B.

Proposition 7.34. Let p ∈ Spec(A). Then, P divides p if and only if P lies over p.

Proof. =⇒ Obviously P∩ A contains p. But since p is maximal, and 1 /∈ P, we have p = P∩ A.
⇐= Suppose P lies over p. Then, pB ⊆ P. Consider the prime factorization

r

∏
i=1

Pei = pB ⊆ P =⇒
r

∏
i=1

Pi ⊆ P

and thus Pi ⊆ P for some i. But since the Pi’s are maximal, we have Pi = P for some i. ■

Theorem 7.35 (Ramification Formula). Suppose L/K is separable with [L : K] = m and P1, . . . ,Pr be the
prime ideals dividing p. Then,

r

∑
i=1

ei fi = m,

where ei = e(Pi/p) and fi = f (Pi/p).

Proof. We shall first show that B/pB is a vector space of dimension m over A/p. It obviously is a finite
dimensional vector space over A/p an thus

B/pB ∼= (A/p)s

for some positive integer s. Localizing at p, we have

Bp/(ppBp) ∼= (Ap/pp)s.

Note that Ap is a DVR, in particular, a PID. Hence, Bp is a free Ap-module since we had already established
that B was a finitely generated A-module. Let n be a positive integer such that Bp

∼= An
p as Ap-modules.
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Then, upon tensoring with K, have an isomorphism2 of Ap-modules and thus of K-vector spaces, Kn −→ L
whence n = m. On the other hand, upon tensoring with Ap/p, we have an isomorphism

Bp/(ppBp) ∼= (Ap/pp)m,

whence m = s. This proves our claim.
Now, using the Chinese Remainder Theorem, we have an isomorphism,

B/pB ∼=
r

∏
i=1

B/Pei
i .

Note that this is also an isomorphism as A/p-modules. We shall show, individually, that [B/Pei
i : A/p] =

ei fi. First, consider the chain
B ⊋ Pi ⊋ · · · ⊋ P

ei
i .

Since there is no ideal strictly between P
j
i and P

j+1
i , each successive quotient above must have dimen-

sion 1 as a B/Pi-vector space. But B/Pi itself is a fi dimensional A/p-vector space, whence B/Pei
i is ei fi

dimensional A/p-vector space. This completes the proof. ■

2In general, if A ⊆ B is an integral extension of integral domains, then any element in the localization of B at A\{0}. Note that any
element in the fraction field of B is of the form b/b′, which can be written in the form b′′/a for some b′′ ∈ B and a ∈ A.
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Chapter 8

Completions

8.1 Filtrations of Rings and Modules

Definition 8.1 (Filtered Ring). A filtered ring A is a ring A together with a family (An)n≥0 of additive
subgroups of A satisfying the conditions:

(a) A0 = A,

(b) An+1 ⊆ An for all n ≥ 0,

(c) Am An ⊆ Am+n for all m, n ≥ 0.

Substituting m = 0 In the last condition, we get AAn ⊆ An for all n ≥ 0 whence each An is in fact an
ideal in A.

Example 8.2. (a) Let a ⊆ A be an ideal. Then, An = an for n ≥ 0 gives the a-adic filtration on A.

(b) Let B ⊆ A be a subring. Then, given any filtration (An)n≥0 on A, the sequence (B ∩ An)n≥0 is a
filtration on B, called the induced filtration on B.

Definition 8.3 (Filtered Module). Let A be a filtered ring with filtration (An)n≥0. A filtered A-module
M is an A-module M together with a family (Mn)n≥0 of additive subgroups of M satisfying:

(a) M0 = M,

(b) Mn+1 ⊆ Mn for all n ≥ 0,

(c) Am Mn ⊆ Mm+n for all m, n ≥ 0.

Substituting m = 0 in the last condition, we obtain AMn ⊆ Mn for all n ≥ 0 whence each Mn is an
A-submodule of M.

Example 8.4. (a) A filtered ring is a filtered module over itself (with the filtration being the same).

(b) Let a ⊆ A be an ideal, then the sequence (an M)n≥0 of A-submodules of M forms a filtration on
M, called the a-adic filtration.

(c) More generally, given a filtration (An)n≥0 on a ring A, define Mn := An M, which gives M the
structure of a filtered A-module.
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(d) Let M be a filtered A-module and N an A-submodule of M. Then, we have an induced filtration
on N and M/N given by

(N ∩Mn)n≥0 and
(

N + Mn

N

)
n≥0

respectively.

Definition 8.5. Let M and N be filtered A-modules (over a filtered ring). A homomorphism of filtered
modules is an A-module homomorphism f : M→ N such that f (Mn) ⊆ Nn for all n ≥ 0.

Definition 8.6. A filtration (Mn)n≥0 of an A-module M is said to be an a-filtration if aMn ⊆ Mn+1 for
all n ≥ 0. And a stable a-filtration if there is a positive integer N such that aMn = Mn+1 for n ≥ N.

Definition 8.7 (Graded Ring). A graded ring is a ring A together with a family (An)n≥0 of additive
subgroups such that A =

⊕
n≥0 An and Am An ⊆ Am+n for all m, n ≥ 0. A nonzero element of An is

said to be a homogeneous element of degree n.

Proposition 8.8. Let A = (An)n≥0 be a graded ring with the specified grading. Then,

(a) A0 is a subring,

(b) A is an A0-module,

(c) An is an A0-submodule for all n ≥ 0.

Proof. (a) Since A0 A0 ⊆ A0, it is closed under multiplication and obviously under addition. There is
some n ≥ 0 and a0, . . . , an such that 1 = a0 + · · · + an. Thus, ai = a0ai + · · · + anai. Comparing
degrees, ai = a0ai for 0 ≤ i ≤ n. Thus,

a0 = a0 · 1 = a0(a0 + · · ·+ an) = a0a0 + · · ·+ a0an = a0 + · · ·+ an = 1.

Hence, 1 ∈ A0 and it is a subring.

(b) Trivial.

(c) Trivial. ■

Definition 8.9. Let A be a graded ring. A graded A-module is an A-module M together with a family
(Mn)n≥0 of subgroups of M such that M =

⊕
n≥0 Mn and Am Mn ⊆ Mm+n. A nonzero element of Mn

is said to be a homogeneous element of degree n.

Definition 8.10. If M and N are graded A-modules, then a homomorphism of graded A-modules is an
A-module homomorphism f : M→ N such that f (Mn) ⊆ Nn for all n ≥ 0.
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Proposition 8.11. Let A =
⊕

n≥0 An be a graded ring. Then, the following are equivalent:

(a) A is a Noetherian ring.

(b) A0 is noetherian and A is an A-algebra of finite type.

Proof. =⇒ Let A+ :=
⊕

n≥1 An. This is obviously an ideal of A and A/A+
∼= A0 and thus is noetherian.

Since A is noetherian, A+ is a finitey generated ideal. Suppose it is generated by x1, . . . , xs, where we
may suppose that the xi’s are homogeneous with degrees 1, . . . , s respectively for s > 0. Let A′ denote the
subring A[x1, . . . , xs] of A.

We shall inductively show that An ⊆ A′ for n ≥ 0. The base case with n = 0 is trivial to prove. Let
y ∈ An for n > 0. Then, thre is a linear combination

y =
s

∑
i=1

aixi

where ai ∈ A. Comparing degrees, we see that ai ∈ An−i with the convention that Ak = 0 for k < 0.
Due to the induction hypothesis, for each i, there is a polynomial fi with coefficients in A0 such that ai =
fi(x1, . . . , xs). Let g = a1 f1 + · · ·+ as fs. Then, y = g(x1, . . . , xs), whence, y ∈ A′. Thus, An ⊆ A′ for n ≥ 0,
consequently, A = A′.
⇐= Follows from Theorem 6.18. ■

Definition 8.12 (Rees Algebra). Let a ⊆ A be an ideal. Define the Rees algebra to be

A∗ :=
⊕
n≥0

an

where element multiplication is the analogue of polynomial multiplication. That is, represent every
element of A∗ as a polynomial

a0 + a1T + · · ·+ anTn

in some indeterminate T, where ai ∈ ai. It is now easy to see how multiplication is defined. The
identity element is simply given by (1, 0, . . . ) or in the polynomial notation, simply the monomial 1.
This gives A∗ the structure of a commutative ring.

Definition 8.13. Let M be a filtered A-module with filtration (Mn)n≥0 over A with the a-adic filtration
for some ideal a ⊆ A. Define

M∗ :=
⊕
n≥0

Mn.

As in the definition of the Rees algebra, we view elements of M∗ as formal polynomials

m0 + m1T + · · ·+ mnTn

in some indeterminate T, where mi ∈ Mi. This has a natural action of the Rees algebra, A∗, by polyno-
mial multiplication, which is well defined, since ai Mj ⊆ Mi+j due to the filtered structure of M. This
structure also shows that M∗ is a graded A∗-module with the above grading.

Proposition 8.14. A is a noethering if and only if A∗ is a noethering.
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Proof. The converse is obvious since A can be realized as a quotient of A∗. Suppose A is a noethering.
Then, a is finitely generated, say a = (a1, . . . , an). Consider the map φ : A[x1, . . . , xn] → A[T] mapping
xi 7→ xiT (this map exists due to the universal property of the polynomial ring). It is not hard to see that
im φ = A∗ ⊆ A[T], whence we are done due to Theorem 6.18. ■

Proposition 8.15. Let A be a noethering, M a finitely generated A-module and (Mn)n≥0 an a-filtration of M.
Then, the following are equivalent:

(a) M∗ is a finitely generated A∗-module.

(b) The filtration (Mn)n≥0 is a-stable.

Proof. Since M is a finitely generated module over a noethering, it is a noetherian A-module whence each
Mn is finitely generated. Let

Qn :=
n⊕

k=1

MkTk

be an A-module and M∗n be the A∗-module generated by it. Note that M∗n is finitely generated since each
Mk is finitely generated. Further, these form an ascending chain(

M∗0 ⊆ M∗1 ⊆ · · ·
)
⊆ M∗ (†)

Recall that A∗ is noetherian. Thus, M∗ is finitely generated if and only if M∗ is noetherian if and only if
(†) stabilizes if and only if M∗ = M∗n0

for some n0 ∈ N. Now, let n ≥ n0. Let mn+1 ∈ Mn+1. Then,
mn+1Tn+1 ∈ M∗n+1 = M∗n and thus

mn+1Tn+1 =
r

∑
k=1

PA
k (T)PM

k (T)

where each PA
k is a polynomial in A∗ while PM

k is a polynomial in Qn. Looking at the coefficient of Tn+1,
we see that mn+1 ∈ aMn whence Mn+1 = aMn whereby the filtration (Mn)n≥0 is stable. The converse is
obvious and thus this is an equivalence thereby completing the proof. ■

Lemma 8.16 (Artin-Rees Lemma). Let A be a noethering, a ⊆ A an ideal, M a finitely-gennerated A-module,
(Mn)n≥0 a stable a-filtration of M. If M′ is an A-submodule of M, then (M′ ∩Mn)n≥0, the induced filtration
on M′ is a stable a-filtration of M′.

Proof. We have
a(M′ ∩Mn) ⊆ aM′ ∩ aMn ⊆ M′ ∩Mn+1

whence the induced filtration (M′ ∩ Mn)n≥0 is an a-filtration. Consider M′∗ induced by this filtration.
This is an A∗-submodule of M∗. Due to Proposition 8.15, M∗ is a finitely generated A∗-module whence is
noetherian and thus M′∗ is a finitely generated A∗-module. Again, Proposition 8.15, the filtration (M′ ∩
Mn)n≥0 is a-stable. This completes the proof. ■

Corollary 8.17 (Krull’s Intersection Theorem). Let A be a noethering and a ⊆ R(A) a proper ideal.
Let M be a finitely generated A-module. Then

⋂
n≥0 a

n M = 0.

Proof. Let N :=
⋂

n≥0 a
n M. Then, an M ∩ N = N for all n ∈ N. The filtration an M is a-stable and thus, so is

the induced filtration on N. But this means (N)n≥0 is a stable a-filtration, implying that aN = N and thus
N = 0 from Lemma 2.17. ■
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Definition 8.18 (Equivalent Filtrations). Let M be a filtered A-module. Two filtrations (Mn)n≥0 and
(M′n)n≥0 are said to be equivalent if there is a positive integer k such that

Mn+k ⊆ M′n and M′n+k ⊆ Mn

for all n ≥ 0.

8.2 Completion

Definition 8.19. An inverse system of A-modules is a collection of A-modules (Mn)n≥0 and homomor-
phisms (θn)n≥1 where θn : Mn → Mn−1. If θn is surjective for all n, then the system is said to be a
surjective system.

The inverse limit of this system is the categorical limit over the diagram

M0
θ1←− M1

θ2←− M2
θ3←− · · ·

in A−Mod.

Example 8.20. Suppose we have a filtration M = M0 ⊇ M1 ⊇ · · · , then we have an inverse system
(M/Mn)n≥0 with

θn+1 : M/Mn+1 ↠ M/Mn

being the natural map x + Mn+1 7→ x + Mn. Moreover, this is a surjective system.

Proposition 8.21. The inverse limit of an inverse system ((Mn)n≥0, (θn)n≥1) exists and is unique upto unique
isomorphism.

Proof. It suffices to show existence since the “unique upto unique isomorphism” simply follows from the
fact that the inverse limit is a “universal object”.

Let N := ∏i≥0 Mi and πi : N → Mi denote the projection. Let

M := {(xi)i≥0 ∈ N | θi+1(xi+1) = xi for all i ≥ 0}.

That this is a submodule is easy to verify. This is called the submodule of coherent sequences. Next, define
fi : M→ Ni by the restriction fi = πi|M. We contend that

M = lim←−
n

Mn.

Indeed, let P be another A-module with maps gi : P → Mi such that θi+1 ◦ gi+1 = gi for all i ≥ 0. Define
the map h : P → M by h(p) = (g0(p), g1(p), . . . ). Since this sequence is coherent, it is a valid map into M.
Morover, for any a ∈ A, and p, p′ ∈ P,

h(p + ap′) = (gi(p) + agi(p′)) = (gi(p)) + a(gi(p′)) = h(p) + ah(p′)

and thus, h is an A-module homomorphism. Finally,

fi ◦ h(p) = fi((gj(p))i≥0) = gi(p)

as desired. ■
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Topological Interlude

Definition 8.22. Let G be a topological abelian group. A fundamental system of neighborhoods of {0} is
a descending chain of subgroups

G = G0 ⊇ G1 ⊇ · · · .

such that U ⊆ G is a neighborhood of 0 if and only if it contains some Gn.

Proposition 8.23. Let G be an abelian group and G = G0 ⊇ G1 ⊇ · · · be a descending chain of subgroups of
G. The collection

B := {g + Gi | g ∈ G}

forms a basis for a topology on G. Under this topology, G is a topological group.

Proof. Let i < j and h ∈ (g + Gi) ∩ (g′ + Gj). Then, g− h ∈ Gi and g′ − h ∈ Gj ⊆ Gi therefore, g− g′ ∈ Gi.
Consequently,

h + Gj = g′ + Gj ⊆ g′ + Gi = g + Gi

whence h + Gj ⊆ (g + Gi) ∩ (g′ + Gj). This shows that B indeed forms a basis for some topology on G.
Let φ : G× G → G given by φ(x, y) = x− y. Suppose (x, y) ∈ φ−1(g + Gn). Then,

(x + Gn)× (y + Gn) ⊆ φ−1(g + Gn)

whence φ−1(g + Gn) is open. This completes the proof. ■

Definition 8.24. A sequence (xn) in a topological abelian group G is said to be Cauchy if for every open
neighborhood U of 0, there is a positive integer N such that xn − xm ∈ U for all m, n ≥ N.

We shall now construct the completion of a group using Cauchy sequences.

• Define a relation on the set of all Cauchy sequences in G by (xn) ∼ (yn) if and only if xn − yn → 0 as
n→ ∞.

• That this is an equivalence relation is easy to see, for if (xn) ∼ (yn) and (yn) ∼ (zn), then

lim
n→∞

(xn − zn) = lim
n→∞

(
(xn − yn) + (yn − zn)

)
= lim

n→∞
(xn − yn) + lim

n→∞
(yn − zn) = 0.

• Let Ĝ denote the equivalence classes under the above relation. Define the operation [(xn)] + [(yn)] =

[(xn + yn)]. It is not hard to verify that this is well defined and endows Ĝ with the structure of an
abelian group.

Proposition 8.25. Let φ : G → Ĝ denote the map g 7→ [(g)], the equivalence class of the constant sequence.
This is a homomorphism of groups and ker φ =

⋂
U where the intersection ranges over all neighborhoods of 0.

Proof. ■

Back to Completions

Let M be a filtered module with filtration (Mn)n≥0 over a filtered ring A with filtration (An)n≥0. In accor-
dance with Proposition 8.23, both M and A have the structure of abelian topological groups.
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Proposition 8.26. Under the aforementioned induced topology, A is a topological ring and M is a topological
module. This topology is called the topology induced by the filtration.

Proof. We have seen already that A forms a topological group under addition. It remains to show that
multiplication is continuous. Let φ : A× A → A be the multiplication map and (a, b) 7→ x ∈ A. Let An be
a neighborhood x. Then, (a + An)× (b + An) maps into x + An under φ (this is where we use properties of
the filtration) whence φ−1(x + An) is open in A× A.

A similar proof works for the module case. ■

Proposition 8.27. Equivalent filtrations induce the same topology on M.

Proof. Trivial. ■

We now have a topology on the module M whence, we can form its completion, M̂, as outlined in the
previous (sub)section.

• Let (xn) be Cauchy in M and a ∈ A, in particular, let a ∈ Am0 . Let U be a neighborhood of 0,
which contains Mn0 for some positive integer n0. Then, there is a positive integer n1 such that for all
m, n ≥ n1, xm − xn ∈ Mn0 , whereby a(xm − xn) ∈ Am0 Mn0 ⊆ Mn0 ⊆ U.

• Further, if (xn) ∼ (yn) and a ∈ A, we must have (axn) ∼ (ayn) using a similar argument as above.

Thus M̂ is also an A-module.

Proposition 8.28. M̂ ∼= lim←−
n

M/Mn as A-modules.

Proof. We shall define a map α : M̃ := lim←−
n

M/Mn → M̂. Let (yn) ∈ M̃ be a coherent sequence. For each

n ≥ 0, pick any xn ∈ Mn such that πn(xn) = yn where πn : M → M/Mn is the natural projection. First,
note that ■ complete

this
Now, let A be a filtered ring, which can be regarded as a filtered module over itself. Then, Â is an

A-module. There is a natural product on this module, which can be seen easily using coherent sequences.
That is,

[(xn)n≥0] · [(yn)n≥0] = [(xnyn)n≥0].

Thus, Â is an A-algebra, in particular, a ring in its own right.

Definition 8.29. Given inverse systems (Mn, θn) and (M′n, θ′n), a morphism of inverse systems f : (M′n)n →
(Mn)n is a family of maps fn : M′n → Mn for n ≥ 0 such that the diagram

M′n

fn

��

M′n+1

fn+1

��

θ′n+1
oo

Mn Mn+1
θn+1
oo

commutes for all n ≥ 0. Exactness of such a sequence has the obvious definition.

A morphism as above induces a map f∗ : lim←−
n

M′n → lim←−
n

Mn given by (xn) 7→ ( fn(xn)). The commuta-

tivity of the diagram ensures that the sequence on the right is coherent.
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Proposition 8.30. Let 0→ {An} → {Bn} → {Cn} → 0 be an exact sequence of inverse systems. Then

0→ lim←− An → lim←− Bn → lim←−Cn

is exact. Further, if {An} is a surjective system, then

0→ lim←− An → lim←− Bn → lim←−Cn → 0

is exact.

Proof. Define the map dA : ∏n An → ∏n An as

dA((an)) = (an − θn+1(an+1)).

Similarly, define dB and dC. These obviously are morphisms and fit into the following commutative dia-
gram.

0 // ∏n An //

dA

��

∏n Bn //

dB

��

∏n Cn //

dC

��

0

0 // ∏n An // ∏n Bn // ∏n Cn // 0

From the Snake Lemma, we have an exact sequence

0 −→ ker dA −→ ker dB −→ ker dC −→ coker dA.

It remains to show that dA is surjective when {An} is a surjective system. Indeed, let (an) ∈ ∏n An. Choose
any x0 ∈ A0 and inductively choose xn+1 such that θn+1(xn+1) = xn − an. Then, dA((xn)) = (an). This
completes the proof. ■

Corollary 8.31. Let
0 −→ M′ −→ M −→ M′′ −→ 0

be an exact sequence and (Mn)n≥0 a filtration of M with induced filtrations on M′ and M′′. If comple-
tions are taken with respect to these filtrations, the sequence

0 −→ M̂′ −→ M̂ −→ M̂′′ −→ 0

is exact.

Corollary 8.32. Let M be an A-module with filtration (Mn)n≥0 and completion M̂. Then, the comple-
tion M̂n of Mn with respect to the induced filtration is a submodule of M̂ and M̂/M̂n ∼= M/Mn for all
n ≥ 0.

Proof. The first assertion follows from the exactness of completion. As for the second assertion, again, using
the exactness of completion, we have

M̂
M̂n

∼=
(̂

M
Mn

)
.

Note that the induced topology on M/Mn is the discrete topology whence(̂
M
Mn

)
∼=

M
Mn

. ■
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Corollary 8.33. Let M be an A-module with filtration (Mn)n≥0. This induces a filtration (M̂n)n≥0 on

M̂ and ̂̂M ∼= M̂.

Proof. Note that the isomorphism M/Mn ∼= M̂/Mn. Now, consider the following commutative diagram.

0 // Mn+1 //
� _

��

M // M/Mn+1 //

����

0

0 // Mn // M // M/Mn // 0

Taking completions, we obtain another commutative diagram

M
Mn+1

//

��

M̂
Mn+1

//

��

M̂
M̂n+1

��

M
Mn

// M̂
Mn

// M̂
M̂n

where all the horizontal arrows are isomorphisms. Thus,

lim←−M/Mn ∼= lim←− M̂/M̂n. ■

Let M be an A-module. There is a canonical map M → M̂ given by m 7→ (m)n≥0. Upon tensoring with
Â, we have a map Â⊗A M→ Â⊗A M̂ which, on elementary tensors is given by

(an)n≥0 ⊗A m 7→ (an)⊗A (m)n≥0,

where we are denoting the elements of Â by Cauchy sequences.
Now, consider the map Â⊗A M̂→ M̂ given by

(an)n≥0 ⊗A (mn)n≥0 7→ (anmn)n≥0.

Composing this with the previous maps, we obtain a map ϕM : Â⊗A M→ M̂ given by

(an)n≥0 ⊗A m 7→ (anm)n≥0.

It is not hard to verify that this map is indeed Â-linear between Â-modules. Note that this map is valid for
all filtered modules M over a filtered ring A. So is the following theorem.

Theorem 8.34. If M is finitely generated, then ϕM is surjective. Further, if A is noetherian, then ϕM is an
isomorphism.

Proof. If M and N are two A-modules, then it is not hard to verify that the following diagram commutes:

(Â⊗A M)⊕ (Â⊗A N)
∼ //

ϕM⊕ϕN
��

Â⊗A (M⊕ N)

ϕM⊕N
��

M̂⊕ N̂ ∼
// M̂⊕ N

where the horizontal map on the bottom is given by (mi)i≥0 ⊕ (ni)i≥0 7→ (mi ⊕ ni)i≥0. Now, note that
ϕA : Â⊗A A → Â is obviously an isomorphism. Thus, inductively, ϕF is an isomorphism whenever F is a
finite dimensional free A-module.
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Now, if M is finitely generated, then, there is a finite dimensional free module F and an exact sequence
N → F → M→ 0. This fits into a commutative diagram,

N

ϕN
��

// F

ϕF ∼
��

// M

ϕM
��

// 0

N̂ // F̂ // M̂ // 0

with exact rows. Thus, ϕM is a surjection. Now, if A is noetherian, then N is finitely generated, since it is a
submodule of F, which is a noetherian A-module. Due to the Four Lemma, ϕM must be an injection whence
an isomorphism. This completes the proof. ■

8.3 a-adic filtration

Let A be a fitered ring with filtration (An)n≥0 and M a filtered A-module with filtration (Mn)n≥0. We shall
show that M̂ has the structure of a Â-module. Indeed, for (xn)n≥0 ∈ M̂ and (an)n≥0 ∈ Â, define

(an)n≥0 · (xn)n≥0 = (anxn)n≥0.

To see that this is well defined, suppose (an)n≥0 ∼ (a′n)n≥0 and (xn)n≥0 ∼ (x′n)n≥0. Then,

anxn − a′nx′n = an(xn − x′n) + (an − a′n)x′n.

Consider a basic open set Am containing 0. For sufficiently large n, xn − x′n ∈ Mm and an − a′n ∈ Am. The
conlusion now follows.

Next, we examine the functoriality of completion. If f : M → N is a homomorphism of filtered A-
modules, then there is an induced map f̂ : M̂→ N̂ of filtered Â-modules given by

f ((xn)n≥0) = ( f (xn))n≥0.

This map is obviously Â-linear. It is also not hard to see that

ĝ ◦ f = ĝ ◦ f̂ and îdM = idM̂

whence completion is a functor from the category of filtered A-modules to the category of Â-modules.

Proposition 8.35. Let A be a noetherian ring and 0 −→ M′
f−→ M

g−→ M′′ −→ 0 be a short exact sequence
of finitely generated A-modules. Then,

0 −→ M̂′
f̂−→ M̂

ĝ−→ M̂′′ −→ 0

is a short exact sequence of Â-modules where the completions are a-adic for some ideal a� A.

Proof. We may treat M′ as a submodule of M. The induced filtration is just (M′ ∩ an M)n≥0. Due to
Lemma 8.16, this is a stable a-filtration of M′ whence, is equivalent to the filtration (an M′)n≥0. Thus,
the completions are also isomorphic. Next, the induced filtration on M′′ is obviously (an M′′)n≥0. The
conclusion now follows from the exactness of completion. ■

Corollary 8.36. In particular, Â is a flat A-module when A is noetherian.
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Proposition 8.37. Let A be a noethering, b� A an ideal in A, and Â the a-adic completion for an ideal a� A.
Then,

(a) b̂ = bÂ.

(b) b̂n = b̂n.

(c) bn/bn+1 ∼= b̂n/b̂n+1 for all n ≥ 0.

(d) b̂ is contained in the Jacobson radical of Â.

Proof. (a) Consider the injection b ↪→ A. Upon tensoring with Â, we obtain an injection b⊗A Â ↪→ Â.
The image of b⊗A Â under this map is given by bÂ, which is also the extension of the ideal b under
canonical map A→ Â.

(b) Follows (a), since
b̂n = bn Â = (bÂ)n︸ ︷︷ ︸

since we are extending an ideal

= (b̂)n.

(c) Recall that A/bn ∼= Â/b̂n. Now, apply the third isomorphism theorem.

(d) For any a ∈ â, note that 1− a is a unit since it has an inverse 1 + a + a2 + · · · . This converges since
an ∈ an and the topology on Â is given by the fundamental system Â ⊇ â ⊇ â2 ⊇ · · · . Ths conclusion
now follows. ■

Corollary 8.38. If (A,m, k) is a noetherian local ring, then R̂ is a local ring with unique maximal ideal,
m̂.

Theorem 8.39 (Krull’s Intersection Theorem). Let A be a noethering, M a finitely generated A-module and
a� A an ideal. Let M̂ be the a-adic completion of M. Then, the kernel of the canonical map M→ M̂ consists of
precisely those elements of M that are annihilated by some element of 1 + a. That is,

∞⋂
n=0

an M =
{

x ∈ M | ∃a ∈ a, (1 + a)x = 0
}

.

Proof. Note that the kernel of the map is precisely equal to
⋂∞

n=0 a
n M. First, if x ∈ M is annihilated by 1 + a

for some a ∈ a, then

x = −ax = a2x = −a3x = · · · ∈
∞⋂

n=0
an M.

Conversely, let N =
⋂∞

n=0 a
n M. Then, due to Lemma 8.16, there is a positive integer n such that

ak N = ak(N ∩ an M) = N ∩ an+k M = N

for all k ≥ 0. Choosing k = 1 and applying Corollary 2.16, the desired conclusion follows. ■

Corollary 8.40. If A is a noetherian domain and a� A is a proper ideal, then
⋂∞

n=0 a
n = (0).

Proof. Every element of 1 + a is nonzero and thus cannot annihilate any other nonzero element. ■
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8.3.1 Associated Graded Stuff

Definition 8.41 (Associated Graded Ring). Let A be a filtered ring with filtration (An)n≥0. Define

Gn(A) := An/An+1 and G(A) :=
⊕
n≥0

Gn(A).

This has a natural multiplication structure given by (a + An+1)(b + Am+1) = ab + Am+n+1, where
a ∈ An and b ∈ Am. This gives G(A) the structure of a graded ring and is known as the associated
graded ring of A.

To see that the multiplication is well defined, suppose a′ ∈ An and b′ ∈ Am such that a + An+1 =
a′ + An+1 and b + Am+1 = b′ + Am+1. Then,

ab− a′b′ = (a− a′)b + a′(b− b′) ∈ Am+n+1.

Remark 8.3.1. If A has the a-adic filtration for an ideal a� A, then we denote G(A) by Ga(A) to be explicit.

Definition 8.42 (Associated Graded Module). Let A be a filtered ring with filtration (An)n≥0 and M a
filtered A-module with filtration (Mn)n≥0. Define

Gn(M) := Mn/Mn+1 and G(M) :=
⊕
n≥0

Gn(M).

This has a natural G(A)-module structure given by

(a + Am+1)(x + Mn+1) = ax + Mm+n+1

for a ∈ Am and x ∈ Mn. This is called the associated graded module of M.

To see that the multiplication is well defined, suppose a′ ∈ Am and x′ ∈ Mn such that a + Am+1 =
a′ + Am+1 and x + Mn+1 = x′ + Mn+1. Then,

ax− a′x′ = (a− a′)x + (x− x′)a′ ∈ Mm+n+1.

Definition 8.43 (Functoriality of G). Let A be a filtered ring with filtration (An)n≥0 and M, N filtered
A-modules with filtrations (Mn)n≥0 and (Nn)n≥0 respectively. Let f : M→ N be a homomorphism of
filtered A-modules.

Define G( f ) : G(M)→ G(N) on homogeneous elements by

G( f )(x + Mn+1) = f (x) + Nn+1.

This is a homomorphism of graded G(A)-modules. Further, it is functorial, which is not hard to verify.

Theorem 8.44. Let A be a noethering and a� A. Then,

(a) Ga(A) is a noethering.

(b) Ga(A) and Gâ(Â) are isomorphic as graded rings.

(c) if M is a finitely generated A-module, and (Mn)n≥0 is a stable a-filtration of M, then G(M) is a finitely
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generated Ga(A)-module.

Proof. (a) Let a = (x1, . . . , xs) as an A-module and let xi denote the image of xi under the projection
A ↠ A/a. It is obvious that Ga(A) ∼= A/a[x1, . . . , xs]. Therefore, Ga(A) is a nothering.

(b) Follows from Proposition 8.37.

(c) There is an n0 ≥ 0 such that Mn0+r = ar Mn0 for all r ≥ 0. We contend that G(M) is generated by⊕n0
n=0 Gn(M) as a Ga(A)-module. Indeed, consider some homogeneous element x ∈ Mn0+r/Mn0+r+1,

and x ∈ Mn0+r such that x = x + Mn0+r+1. Then, there is some y ∈ Mn0 and a ∈ ar such that ay = x.
It now follows that ay = x where y ∈ Gn0(M) and a is the image of a in ar/ar+1.

Finally, note that each Gn(M) is a finitely generated A/a-module for n ≤ n0. Whence, G(M) is a
finitely generated Ga(A)-module. ■

Lemma 8.45. Let A be a filtered ring and M, N filtered A-modules. Let ϕ̂ and G(ϕ) denote the induced maps
between the associated graded modules and completed modules respectively. Then,

(a) if G(ϕ) is injective, then ϕ̂ is injective.

(b) if G(ϕ) is surjective, then ϕ̂ is surjective.

Proof. The map ϕ induces maps αn : M/Mn → N/Nn, which is not hard to see from the universal property
of the quotient. This gives us a commutative diagram

0 // Mn/Mn+1

Gn(ϕ)

��

// M/Mn+1

αn+1

��

// M/Mn

αn

��

// 0

0 // Nn/Nn+1 // N/Nn+1 // N/Nn // 0

.

Due to the Snake Lemma, we have the following exact seqence

0→ ker Gn(ϕ)→ ker αn+1 → ker αn → coker Gn(ϕ)→ coker αn+1 → coker αn → 0.

Suppose G(ϕ) is injective. Then, each Gn(ϕ) is injective, whence we can inductively argue that ker αn = 0
for every n ≥ 0 since the base case ker α0 = 0 is trivial.

Consequently, α : {M/Mn} → {N/Nn} is an injective map of surjective systems. Consequently, under
the inverse limit, it induces an injective map ϕ̂ : M̂ → N̂. Similarly, one can handle the case when G(ϕ) is
surjective. This completes the proof. ■

Lemma 8.46. Let a� A such that A is complete in the a-topology and M an A-module with (Mn)n≥0 an a-
filtration of M in which M is Hausdorff. If G(M) is a finitely generated G(A)-module, then M is a finitely
generated A-module.

Proof. Suppose G(M) is generated by the homogeneous elements yi for 1 ≤ i ≤ s with homogeneous degree
of yi being n(i) ≥ 0. There is a corresponding xi ∈ Mn(i) whose image in Gn(i)(M) is yi. Let F(i) denote the

A-module A with a-filtration given by F(i)
k = an(i)+k. Finally, let F =

⊕s
i=1 F(i). Let ϕ(i) : F(i) → M denote

the map sending 1 ∈ F(i) to xi ∈ M. This induces a homomorphism of filtered A-modules ϕ : F → M. This
map in turn, induces a G(A)-module homomorphism G(ϕ) : G(F)→ G(M).
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According to the way we had chosen the xi’s, the map G(ϕ) is surjective and thus, ϕ̂ : F̂ → M̂ is
surjective. Let α : F → F̂ and β : M→ M̂ denote the canonical maps. The following diagram commutes.

F
ϕ
//

α
��

M

β
��

F̂
ϕ̂

// M̂

Since A is complete in the a-adic topology we see that A ∼= Â and since F is a free A-module, the map α
must be an isomorphism. Further, since M is Hausdorff in its chosen filtration, the map β is an injection.
Since the map ϕ̂ ◦ α is a surjection, it must be the case that ϕ is a surjection, consequently, M is finitely
generated. ■

Corollary 8.47. With the hypotheses of Lemma 8.46, if G(M) is a noetherian G(A)-module, then M is
a noetherian A-module.

Proof. Let M′ ⊆ M be a submodule. We shall show that M′ is finitely generated. If (Mn)n≥0 is the filtration
of M, then the induced filtration (M′ ∩Mn)n≥0 is also an a-filtration, which we denote by (M′n)n≥0. Note
that the inclusion M′n ↪→ Mn induces an injective homomorphism M′n/M′n+1 ↪→ Mn/Mn+1. Thus, the
inclusion map M′ ↪→ M which is also a map of filtered modules, induces an injective map G(M′) ↪→ G(M).
Since G(M) is noetherian, G(M′) must be a finitely generated Ga(A)-module. Finally, we also have

{0} ⊆
∞⋂

n=0
M′n ⊆

∞⋂
n=0

Mn = {0}.

Now, we can complete using Lemma 8.46. ■

Theorem 8.48. If A is a noethering and a� A, then the a-adic completion Â of A is a noethering.

Proof. Due to Theorem 8.44, Ga(A) ∼= Gâ(Â) and Ga(A) is a noethering. Apply Corollary 8.47 to the
complete ring Â and take M = Â with the filtration (ân)n≥0. Note that this filtration induces a Hausdorff
topology since â is contained in the Jacobson radical of Â. This completes the proof. ■

Theorem 8.49. Let (A,m, k) be a noetherian local ring and M, N be finitely generated A-modules. Let (̂·)
denote the m-adic completion. If M̂ ∼= N̂, then M ∼= N.

Proof. ■
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Chapter 9

Dimension Theory

9.1 Hilbert Polynomial

Throughout this section, let A =
⊕∞

n=0 An be a noetherian graded ring and λ a Z-valued additive function
on the category of A-modules.

Definition 9.1 (Euler-Poincaré Series). Associate with each A-module M, the Euler-Poincaré series,

Pλ(M, t) =
∞

∑
n=0

λ(Mn)tn ∈ ZJtK.

We often write P(M, t) for Pλ(M, t) when the additive function is clear.

Theorem 9.2 (Hilbert-Serre). P(M, t) is a rational function in t of the form

P(M, t) =
f (t)

∏n
i=1(1− tni )

where f (t) ∈ Z[t].

Proof. Suppose A is generated over A0 by s homomgeneous elements, x1, . . . , xs. We shall induct on s. Let
ks denote the degree of xs. Then, for all n ≥ 0, we have an exact sequence

0→ Kn → Mn
xs−→ Mn+ks → Ln+ks → 0.

Thus,
λ(Kn)− λ(Mn) + λ(Mn+ks)− λ(Ln+ks).

Multiplying by tn+ks and adding, we obtain

0 = tks
∞

∑
n=0

λ(Kn)tn − tks
∞

∑
n=0

λ(Mn)tn +
∞

∑
n=0

λ(Mn+ks)t
n+ks −

∞

∑
n=0

λ(Ln+ks)t
n+ks

= tks P(Kn, t)− tks P(M, t) + P(M, t)− P(L, t) + g(t)

where g(t) ∈ Z[t]. Note that K =
⊕∞

n=0 Kn and L =
⊕∞

n=0 Ln is a graded A′ = A0[x1, . . . , xs−1]. Invoking
the induction hypothesis, we are done. ■
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Proposition 9.3. Let (A,m) be a noetherian local ring with q an m-primary ideal, M a finitely generated A-
module and (Mn)n≥0 a q-stable filtration. Then,

(a) M/Mn is of finite length for every n ≥ 0.

(b) for all sufficiently large n, this length is a polynomial g(n) of degree ≤ s where s is the least number of
generators of q.

(c) the degree and leading coefficient of g(n) is independent of the chosen filtration.

Proof. (a) Note that Mi/Mi+1 is naturally an A/q-module, which has finite length, since A/q is Artin
local. Using the additivity of length, we have

l(M/Mn) =
n

∑
i=1

(Mi−1/Mi),

which is finite.

(b)

(c) Let (M̃n)n≥0 be another q-stable filtration of M. Then, these two are equivalent filtrations, that is,
there is n0 > 0 such that Mn+n0 ⊆ M̃n and M̃n+n0 ⊆ Mn for all n ≥ 0. Thus, g̃(n + n0) ≥ g(n) and
g(n + n0) ≥ g̃(n). Consequently, limn→∞ g(n)/g̃(n) = 1. This completes the proof. ■

Definition 9.4 (Hilbert-Samuel Polynomial). With the notation of Proposition 9.3, the polynomial
g(n) corresponding to the filtration (qn)n≥0 is denoted by χM

q (n) and is called the Hilbert-Samuel poly-
nomial. For sufficiently large n, we have

χM
q (n) = l(M/qn M).

If M = A, we write χq(n) for χA
q (n) and call it the characteristic polynomial of the m-primary ideal q.

Corollary 9.5. Let (A,m) be a noetherian local ring and q an m-primary ideal in A. Then, the length
l(A/qn) is a polynomial χq(n) of degree ≤ s for sufficiently large n, where s is the least number of
generators of q.

Proposition 9.6. Let (A,m) be a noetherian local ring and q an m-primary ideal in A. Then,

deg χq(n) = deg χm(n).

Proof. There is a positive integer r > 0 such that mr ⊆ q ⊆ m. Then, for sufficiently large n, we have

χm(n) ≤ χq(n) ≤ χm(rn).

Since the χm and χq are polynomials for sufficiently large n, it must be th case that deg χm = deg χq. This
completes the proof. ■
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Definition 9.7. With the notation of Proposition 9.6, let d(A) denote the degree of χm.

9.2 Noetherian Local Rings

Throughout this section, let (A,m) be a noetherian local ring with maximal ideal m. Denote by δ(A),
the least number of generators of an m-primary ideal of A. From the last section, we already know that
δ(A) ≥ d(A).

Lemma 9.8. Let M be a finitely-generated A-module, x ∈ A not a zero-divisor in M, and M′ = M/xM. Then,

deg χM′
q ≤ χM

q − 1.

Proof. Let N = xM, and Nn = N ∩ qn M. Then, due to Lemma 8.16, (Nn)n≥0 is a q-stable filtration of N.
■ complete

this

Corollary 9.9. If x is not a zero-divisor in A, then d(A/(x)) ≤ d(A)− 1.

Proposition 9.10. d(A) ≥ dim A.

Proof. We shall induct on d(A). If d(A) = 0, then l(A/mn) is eventually constant. Therefore, mn = mn+1

for sufficiently large n, whence m = 0, i.e. A is artinian and dim A = 0.
Suppose now that d = 0 and let p0 ⊊ p1 ⊊ · · · ⊊ pr be any chain of prime ideals in A. If r = 0, then there

is nothing more to prove. If r > 0, then let x ∈ p1\p0 and let A′ = A/p0 with x′ denoting the image of x in
A′.

Let m′ denote the image of m under the surjection A ↠ A′. Then, (A′,m′) is a local ring with an induced
surjection A/mn ↠ A′/m′n through the following commutative diagram.

A // //

����

A′ // // A′/m′n

A/mn
∃

55 55

Consequently, l(A/mn) ≥ l(A′/m′n). Therefore, d(A) ≥ d(A′), due to the standard polynomial argument.
Now, d(A′/(x′)) ≤ d(A′)− 1 ≤ d(A)− 1 and hence, the induction hypothesis applies to A′/(x′), that

is, d(A′/(x′)) ≥ dim A′/(x′). Note that the image of the strictly ascending chain p1 ⊊ · · · ⊊ pr in A′/(x′)
is a strictly ascending chain of prime ideals of length r− 1 whence

r− 1 ≤ dim A′/(x′) ≤ d(A′/(x′)) ≤ d(A)− 1 =⇒ r ≤ d(A)

which completes the proof. ■

Corollary 9.11. If A is a noetherian local ring, then dim A is finite.
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Corollary 9.12. A prime ideal in a noethering has finte height. Therefore, the set of primes in a noether-
ing satisfies the descending chain condition.

Proposition 9.13. Let dim A = d. Then, there exists an m-primary ideal in A generated by d elements.
Therefore, dim A ≥ δ(A).

Proof. We shall inductively construct a sequence x1, . . . , xd of elements in A such that the ideal (x1, . . . , xi)
has height at least i. First, if d = 0, then A is an artinian local ring and the conclusion follows since m is
nilpotent.

Suppose now that d ≥ 1. There are finitely many minimal primes in A. Pick an x1 that lies in m but
not in any of the minimal primes. It follows from the choice of x1 that any prime ideal containing x1 must
have height at least 1. Let the sequence x1, . . . , xi have been constructed. Thus, any prime ideal containing
(x1, . . . , xi) has height at least i. Let {p1, . . . , pr} be the set of height i prime ideals containing (x1, . . . , xi).
Note that these would be minimal over x1, . . . , xi and hence, are finitely many. Usig prime avoidance, pick
an xi+1 ∈ m\⋃r

j=1 pr. It is not hard to argue that any prime containing (x1, . . . , xi+1) must have height at
least i + 1.

Finally, let a = (x1, . . . , xd). Then, any prime containing a must have height at least d and hence, must
be maximal. As a result, there is a unique minimal prime belonging to a, namely m, whence a is m-primary.
This completes the proof. ■

Putting everything together, we have the following theorem:

Theorem 9.14 (Dimension Theorem). For any notherian local ring A, the following integers are equal:

(a) dim A.

(b) the degree of the characteristic polynomial χm.

(c) the least number of generators of an m-primary ideal of A.

Corollary 9.15. dim A ≤ dimk(m/m2) where k = A/m is the residue field.

Proof. There are x1, . . . , xs ∈ m generating it such that their images in m/m2 form a k-basis. Thus,

dim A = δ(A) ≤ s = dimk(m/m2). ■

Corollary 9.16 (Krull’s Hauptidealsatz). Let A be a noethering and p� A a prime ideal. Then, the
following are equivalent:

(a) ht(p) ≤ n.

(b) There is an ideal a� A, generated by n elements, such that p is a minimal prime belonging to a.

Proof. ⇐= Let a = (x1, . . . , xn). In Ap, the ideal aAp is pAp-primary, since its radical is pAp, which is a
maximal ideal.

=⇒ We have dim Ap ≤ n and thus, there is a pAp-primary ideal b of Ap generated by n elements. Let a
denote the contraction of b in A. Then, a is generated by n elements and is contained in p. Moreover, p must
be the minimal prime containing a due to the order preserving bijection between the primes contained in p
and Spec(Ap). This completes the proof. ■

As an application, we have the following attractive result, taken from Hartshorne’s Algebraic Geometry.
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Proposition 9.17. Let A be a noetherian domain. Then, A is a UFD if and only if every height 1 prime in A is
principal.

Proof. The forward direction is trivial and does not require the noetherian hypothesis. Conversely, note
that every noetherian domain is a factorization domain and hence, it suffices to show that all irreducibles
in A are prime. Let f ∈ A be an irreducible and p ∈ Spec(A) be a minimal prime containing f . Due to
Corollary 9.16, ht(p) ≤ 1 and hence, is equal to 1, whence, is principal, say p = (x). Then, f = xy for some
y ∈ A. Since f is irreducible, we must have ( f ) = p, consequently, f is prime. This completes the proof. ■

9.3 Dimension Theory of Polynomial Algebras

This section has been taken from [Ser12].

Lemma 9.18. Let B = A[x], p ⊆ A a prime ideal and q ⊆ q′ two prime ideals in B lying over A such that
q ⊊ q′. Then, q = pB.

Proof. Note that B/pB ∼= (A/p)[x], and both the primes q and q′ must contain pB. Therefore, upon quoti-
enting out by pB, we have reduced to the case of A being an integral domain and p = (0).

Now, localize at S = A\{0} to reduce to the case of A being a field and p = (0). Note that q′ ∩ S = ∅
therefore, they extend to prime ideals in S−1B ∼= (S−1 A)[x]. But this is obvious, since any non-zero prime
ideal in A[x] is maximal, owing to it being a PID. This completes the proof. ■

Theorem 9.19. If B = A[x], then

dim A + 1 ≤ dim B ≤ 2 dim A + 1.

Lemma 9.20. Let B = A[x] and a� A. Let p� A be a minimal prime ideal containing a. Then, pB is a minimal
prime ideal containing aB in B.

Proof. Suppose pB were not minimal among the primes containing aB. Then, there is some prime q with
aB ⊆ q ⊊ pB. Note that q ∩ A is a prime ideal in A containing a and is contained in p, therefore, q ∩ A = p.
Consequently, due to Lemma 9.18, q = pB, a contradiction. ■

Proposition 9.21. Let A be a noethering and p� A a prime ideal. If B = A[x], then ht(p) = ht(pB).

Proof. Let n = ht(p). Then, there is a strictly ascending chain p0 ⊊ p1 ⊊ · · · ⊊ pn of prime ideals in A. Then,
p0B ⊆ p1B ⊊ · · · ⊊ pnB is a strictly ascending chain of prime ideals in B. Hence, ht(pB) ≥ n.

Conversely, there is an ideal a generated by n elements, contained in p such that p is minimal among
the primes containing a. Then, aB ⊆ pB, aB is generated by n elements and due to Lemma 9.20 and
Corollary 9.16, ht(pB) ≤ n. ■

Theorem 9.22. Let A be a noethering. Then,

dim(A[x1, . . . , xn]) = dim A + n.
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Proof. It suffices to prove the theorem for n = 1. Let B = A[x]. We know that dim(B) ≥ dim A + 1. We
shall show that dim(B) ≤ dim A + 1. Let q0 ⊊ · · · ⊊ qr be a strictly ascending chain of prime ideals in B.
Define pi = qi ∩ A for 0 ≤ i ≤ r. If all the pi’s are distinct, then r ≤ dim A.

Suppose now that the pi’s are not distinct. Let j be the maximum index such that pj = pj+1. Then,
qj = pjB. Due to Proposition 9.21, ht(pj) = ht(pjB) = ht(qj). Now, note that pj+1 ⊊ · · · ⊊ pr. Hence,

dim A ≥ r− (j + 1) + ht(pj) = r− (j + 1) + ht(qj) ≥ r− 1 =⇒ r ≤ dim A + 1.

This completes the proof. ■

Corollary 9.23. Let k be a field. Then, dim(k[x1, . . . , xn]) = n.

9.4 Dimension of a Variety

9.5 Dimension Theory of Affine k-Algebras

Theorem 9.24. Let A be an affine k-domain. Then, dim(A) = trdegk(Q(A)).

Proof. Follows from the Going Up Theorem and Noether’s Normalization Lemma. ■

Theorem 9.25. Let A be an affine k-domain and p ∈ Spec(A). Then,

dim(A) = dim(A/p) + ht(p)

Proof. Using Noether’s Normalization Lemma, there is a polynomial algebra B = k[y1, . . . , yn] ⊆ A such
that A/B is an integral extension. Hence, dim(A) = dim(B). Let q = p ∩ B. Due to the Going Down
Theorem, ht(q) = ht(p). Further, A/p is integral over B/q whence it suffices to prove the theorem for
polynoimal algebras A = k[x1, . . . , xn]. We shall do so by induction on ht(p).

Claim. If p ⊆ A = k[y1, . . . , yn] is a height 1 prime, then dim(A/p) = dim(A)− 1.
Let a ∈ p be a non-zero element. This admits a unique factorization in terms of irreducibles a = f1 · · · fr.

Hence, there is an fi ∈ p. Since ( fi) is a non-zero prime ideal, we must have p = ( fi). Since fi is non-zero, it
contains at least one monomial. Suppose, without loss of generality that yn occurs in this monomial.

fi(y1, . . . , yn) =
d

∑
j=0

gj(y1, . . . , yn−1)y
j
n

where gj ∈ k[y1, . . . , yn−1] with at least one of the gj’s being non-zero.
Note that y1, . . . , yn−1 ∈ A/p are algebraically independent. This is easy to see by examining the degree

of yn. But, we also see that yn ∈ Q(A/p) is algebraic over k[y1, . . . , yn−1] and hence, trdegk(Q(A/p)) =
n− 1, whence, dim(A/p) = n− 1 = dim(A)− 1. □

From the Claim, we see that the theorem is true for all height 1 primes. We shall now induct on ht(p).
Let r = ht(p). Then, there is a chain (0) ⊊ p1 ⊊ · · · ⊊ pr = p. Set B = A/p1. Then, dim(B) = dim(A)− 1
and ht(p/p1) = r− 1 and the induction hypothesis applies to obtain

dim(A)− 1 = dim(B) = dim(A/p) + ht(p/p1) = dim(A/p) + ht(p)− 1.

This completes the proof. ■
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Proposition 9.26. Let A be an affine k-domain with dim A = d. Then, every saturated, maximal chain (0) =
p0 ⊊ p1 ⊊ · · · ⊊ pn has length d.

Proof. We shall prove this by induction on d. The base case with d = 0 is trivial. Now, let B = A/p1. Then,
dim B = d − 1 and (0) = p1 ⊊ · · · ⊊ pn is a saturated, maximal chain and hence, has length d − 1. The
conclusion follows. ■

Theorem 9.27. Let A be an affine k-algebra. Then, given any two prime ideals p ⊆ q in A, every saturated
chain of prime ideals from p to q has the same length.

Proof. Let p = p0 ⊊ · · · ⊊ pr = q be a saturated chain. There are surjections

A/p = A/p0 ↠ A/p1 ↠ . . . ↠ A/pr = A/q.

And, dim(A/pi+1) = dim(A/pi)− 1. Consequently, dim(A/q) = dim(A/p)− r. This means

r = dim(A/p)− dim(A/q) = ht(q)− ht(p).

This completes the proof. ■

Corollary 9.28. Let A be an affine k-domain with dim A = d. Then, ht(m) = d for every maximal ideal
m ⊊ A.

9.6 Dimension Theory of Power Series Algebras

Lemma 9.29. A maximal ideal in AJxK is of the form (m, x) where m is a maximal ideal in A.

Proof. ■

Theorem 9.30. Let A be a noethering. Then, dim AJxK = dim A + 1.

Proof. Let p0 ⊊ · · · ⊊ pn be a chain of primes in A. Then,

p0JxK ⊊ · · · ⊊ pnJxK ⊆ pnJxK+ (x)

is a chain of prime ideals in AJxK. Hence, dim AJxK ≥ dim A + 1.
Conversely, let M be a maximal ideal in AJxK. Then, M = (m, x) where m is a maximal ideal in A. Let

n = htm, then there are elements a1, . . . , an ∈ A such that m is minimal over (a1, . . . , an). Consequently, m+
(x) is minimal over (a1, . . . , an, x) in AJxK. Hence, htM ≤ n + 1 ≤ dim A + 1. The conclusion follows. ■

Remark 9.6.1. The above result also follows from the fact that completions preserve dimension but that requires a
significant amount of machinery.
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