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§1 INTRODUCTION

DEFINITION 1.1 (THE TRANSFER MAP). Let G be a group and H < G be a subgroup
of finite index, say n. Let t1,...,t, be a left traversal for H in G. For every ¢ € G, and
1<i<n,

gti = tjihi

forsome 1 < j; < nand h; € H. Define

n
p(g) =][hi (mod H')
i=1
This defines a map ¢ : G — H called the transfer.
PROPOSITION 1.2. The map  is independent of the choice of coset traversal of H in G.

Proof. Gadha mehnat. |

THEOREM 1.3.Let T = {f,...,t,} be a left traversal for H in G. Then, for each g € G,
there is a subset Ty C T and positive integers n; for each t € Ty such that

(a) Z ny = n.

teTy

(b) t~1g"t € Hforallt € Ty.
(© w(g) =[]t "g"t (mod H').

teTy
(d) If g has finite order, then each n; divides |g|.

Proof. The group (g) acts on T by left multiplication and decomposes T into orbits. Let Tj
be a set of representatives of these orbits. For each t € Ty, let nn; denote the size of the orbit

containing t. Then, note that
"t =tH.



There is some iy € H such that h; = t~1¢"t. It follows that

p(g) = [[t7'g™t (mod H'),

teTy
which proves all four parts of the theorem. u

COROLLARY. If H is central and of finite index in G, then the transfer map ¢ : G — H® is
given by ¢ — ¢" (mod H') where n = [G : H].

COROLLARY. If H is of finite index in G such that no two elements of H are conjugate in G,
then the restriction of the transfer map |y is given by h +— h" where n = [G : H].

§2 SOME APPLICATIONS

PROPOSITION 2.1. Let A < G be abelian of finite index and ¢ : G — A the transfer map.

(@) ¥(G) C Z(G).

(b) If G is finite and A is a Hall subgroup of G, then ¢(G) = ¢(A) = AN Z(G). In this
case, G = ¢(G) x ker ¢.

Proof. (a) Letty,...,t, be aleft traversal for A in G and choose a € G. Lett;;H = at;H.
Let ¢ € G be arbitrary. We know

ﬁ 1
= t. “at;
i1

Then,

n

a)g = [ [(t;9)a(t:g).

i=1
Since A is normal, it follows that {¢;g | 1 < i < n} is a left traversal for A in G. This
shows that ¢~ (a)g = ¥ (a) whence, ¥(a) is central in G.

(b) From (a), it follows that P(A) C ¥(G) € AN Z(G). Note that the restriction of ¢
to ANZ(G) isa +— a" where n = [G : A]. Since A is a Hall subgroup, 1 is coprime
to |A|, hence, to |A N Z(G)|. Consequently, the restriction of ¢ to AN Z(G) is an
automorphism. It now follows that AN Z(G) C y(A).

Finally, consider the exact sequence

1 kerp >G5 ANZ(G) = 1.

This splits on the right and the splitting is central. Hence, G = ker ¢ x ¥(G). This
completes the proof.
|



THEOREM 2.2 (SCHUR). Let [G : Z(G)] < 0. Then, G/, the commutator subgroup, is a
tinite subgroup of G.

Proof. Let g1,...,8n be a left traversal for Z(G) in G. Then, G’ is generated by {[g;, g;] |
1 < i,j < n}, thatis, G’ is finitely generated. Further, the transfer map ¢ : G — Z(G)
is given by ¢(g) = ¢". Since Z(G) is abelian, G’ C ker ¢. Hence, every element of G’ is

killed by n.
Consider H = G’ N Z(G). This is a finite index abelian subgroup of G’, hence, is finitely
generated. Further, it is killed by 1, whence it is finite. It follows that G’ is finite. [ |

PROPOSITION 2.3. Let S C G be the set of elements of finite order in G. If S is finite, then
it is a subgroup of G.

Proof. Replace G by the subgroup generated by S. It suffices to show that G is finite, since
then it would follow that G = S. Being the intersection of finitely many groups of finite
index, we can conclude that H = (\,c5 Cs(s) has finite index in G. But H C Z(G) and
hence, [G : Z(G)] < oo, consequently, |G| < co. Finally, note that G*? is a finitely generated
torsion abelian group, hence, finite. This shows that G is finite, thereby completing the
proof. |

PROPOSITION 2.4. Let G be a finite group of square free order.

§3 BURNSIDE’S COMPLEMENT THEOREM

DEFINITION 3.1 (FOCAL SUBGROUP). Let H < G be a subgroup. Then the focal subgroup
of H in G is defined as

Focg(H) = (x 'y | x,y € H, and are G — conjugate).

THEOREM 3.2. Let G be finite, H < G a Hall subgroup and ¢ : G — H® the transfer map.
Then,

Focg(H) = HNG' = HNker.
Proof. If y = gxg~! for some ¢ € G, then x 'y = [x~!,¢] € G’ and hence, Focg(H) C

H N G'. On the other hand, G’ C ker ¢ since ¢ is a homomorphism to an abelian group.
Apriori, we have the following inclusions

Focg(H) C HNG' C HNker.
Let ¢ € H Nker . It suffices to show that ¢ € Focg(H). Using Theorem 1.3,

p(g) =Tt '¢"t (mod H)=g"[[g ™t '¢"t (mod H).

teTy teTy

According to Theorem 1.3, we also know that t ~1¢™t € H and hence, each factor g~ ™t~ 1g"t €
FOCG (H ) .

But since g € ker(¢), we must have that the product {(g) as an element of H, lies in
H’' C Focg(H). But since each factor g~"t !¢t € Focg(H), we must have ¢" € Focg(H).
Recall that H is a Hall subgroup and hence, n is relatively prime to |H|, consequently,
relatively prime to |g|. As a result, g € (¢") C Focg(H). This completes the proof. ]

3



LEMMA 3.3 (BURNSIDE). Let P be a p-Sylow subgroup of G and suppose x,y € Cg(P)
are conjugate in G. Then x and y are conjugate in N (P).

Proof. Suppose y = x8 for some g € G. Then, P C Cs(y) N Cg(x). Consequently,
P8 C Cg(x)8 = Cg(x¥) = Cel(y)-

Since both P and P¢ are Sylow p-subgroups of Cs(y), there is a ¢ € Cg(y) such that
P = P. Therefore, cg € Ng(P), and

XS = () =y =
This completes the proof. |

DEFINITION 3.4. A group G is said to have a normal p-complement if there is a normal
subgroup N < G such that [G : N] = p" where n = v,(|G]|).

THEOREM 3.5 (BURNSIDE). Let P be a Sylow p-subgroup of G and suppose P C Z(Ng(P)).
Then, G has a normal p-complement.

Proof. We contend that Focg(P) = 1. Indeed, suppose x,y € P are conjugate in G. Ac-
cording to our assumption on P, P C Cg(P), therefore, there is some ¢ € Ng(P) such
that y = gxg~!. But since P C Z(Ng(P)), we must have y = x and hence, Focg(H) = 1.
Using Theorem 3.2, we see that P Nkery = 1 where ¢ : G — P% = P is the transfer
map. Therefore, |(P)| = |P|, whence ¢ is surjective. This shows that ker ¢ is a normal
p-complement in G. |

THEOREM 3.6. Let G be a finite group such that every Sylow subgroup of G is cyclic. Then
G is solvable.

Proof. Let p be the smallest prime dividing the order of G and P be a Sylow p-subgroup.
Due to the N/C-theorem, there is an injection Ng(P)/Cg(P) < Aut(P). If |P| = p", then
Aut(P) has order p"~!(p — 1). But since both Ng(P) and C(P) contain P, the order of the
quotient Ng(P)/Cg(P) cannot be divisible by p, hence, must be 1. Thus, P C Z(Ng(P)).
Due to Theorem 3.5, G has a normal p-complement, say N.

This fits into a short exact sequence

1-N—G—G/N-—=1,

where G/N is a p-group, hence, solvable and N C G is a proper subgroup divisible by
one less prime and hence, solvable due to an inductive argument. This completes the
proof. |
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