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§1 INTRODUCTION

DEFINITION 1.1 (THE TRANSFER MAP). Let G be a group and H ⩽ G be a subgroup
of finite index, say n. Let t1, . . . , tn be a left traversal for H in G. For every g ∈ G, and
1 ⩽ i ⩽ n,

gti = tji hi

for some 1 ⩽ ji ⩽ n and hi ∈ H. Define

ψ(g) =
n

∏
i=1

hi (mod H′)

This defines a map ψ : G → Hab called the transfer.

PROPOSITION 1.2. The map ψ is independent of the choice of coset traversal of H in G.

Proof. Gadha mehnat. ■

THEOREM 1.3. Let T = {t1, . . . , tn} be a left traversal for H in G. Then, for each g ∈ G,
there is a subset T0 ⊆ T and positive integers nt for each t ∈ T0 such that

(a) ∑
t∈T0

nt = n.

(b) t−1gnt t ∈ H for all t ∈ T0.

(c) ψ(g) = ∏
t∈T0

t−1gnt t (mod H′).

(d) If g has finite order, then each nt divides |g|.

Proof. The group ⟨g⟩ acts on T by left multiplication and decomposes T into orbits. Let T0
be a set of representatives of these orbits. For each t ∈ T0, let nt denote the size of the orbit
containing t. Then, note that

gnt t = tH.
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There is some ht ∈ H such that ht = t−1gnt t. It follows that

ψ(g) = ∏
t∈T0

t−1gnt t (mod H′),

which proves all four parts of the theorem. ■

COROLLARY. If H is central and of finite index in G, then the transfer map ψ : G → Hab is
given by g 7→ gn (mod H′) where n = [G : H].

COROLLARY. If H is of finite index in G such that no two elements of H are conjugate in G,
then the restriction of the transfer map ψ|H is given by h 7→ hn where n = [G : H].

§2 SOME APPLICATIONS

PROPOSITION 2.1. Let A ⊴ G be abelian of finite index and ψ : G → A the transfer map.

(a) ψ(G) ⊆ Z(G).

(b) If G is finite and A is a Hall subgroup of G, then ψ(G) = ψ(A) = A ∩ Z(G). In this
case, G ∼= ψ(G)× ker ψ.

Proof. (a) Let t1, . . . , tn be a left traversal for A in G and choose a ∈ G. Let tji H = atiH.
Let g ∈ G be arbitrary. We know

ψ(a) =
n

∏
i=1

t−1
ji

ati.

Then,

g−1ψ(a)g =
n

∏
i=1

(tji g)
−1a(tig).

Since A is normal, it follows that {tig | 1 ⩽ i ⩽ n} is a left traversal for A in G. This
shows that g−1ψ(a)g = ψ(a) whence, ψ(a) is central in G.

(b) From (a), it follows that ψ(A) ⊆ ψ(G) ⊆ A ∩ Z(G). Note that the restriction of ψ
to A ∩ Z(G) is a 7→ an where n = [G : A]. Since A is a Hall subgroup, n is coprime
to |A|, hence, to |A ∩ Z(G)|. Consequently, the restriction of ψ to A ∩ Z(G) is an
automorphism. It now follows that A ∩ Z(G) ⊆ ψ(A).

Finally, consider the exact sequence

1 → ker ψ → G
ψ−→ A ∩ Z(G) → 1.

This splits on the right and the splitting is central. Hence, G ∼= ker ψ × ψ(G). This
completes the proof.

■
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THEOREM 2.2 (SCHUR). Let [G : Z(G)] < ∞. Then, G′, the commutator subgroup, is a
finite subgroup of G.

Proof. Let g1, . . . , gn be a left traversal for Z(G) in G. Then, G′ is generated by {[gi, gj] |
1 ⩽ i, j ⩽ n}, that is, G′ is finitely generated. Further, the transfer map ψ : G → Z(G)
is given by ψ(g) = gn. Since Z(G) is abelian, G′ ⊆ ker ψ. Hence, every element of G′ is
killed by n.

Consider H = G′ ∩ Z(G). This is a finite index abelian subgroup of G′, hence, is finitely
generated. Further, it is killed by n, whence it is finite. It follows that G′ is finite. ■

PROPOSITION 2.3. Let S ⊆ G be the set of elements of finite order in G. If S is finite, then
it is a subgroup of G.

Proof. Replace G by the subgroup generated by S. It suffices to show that G is finite, since
then it would follow that G = S. Being the intersection of finitely many groups of finite
index, we can conclude that H =

⋂
s∈S CG(s) has finite index in G. But H ⊆ Z(G) and

hence, [G : Z(G)] < ∞, consequently, |G′| < ∞. Finally, note that Gab is a finitely generated
torsion abelian group, hence, finite. This shows that G is finite, thereby completing the
proof. ■

PROPOSITION 2.4. Let G be a finite group of square free order.

§3 BURNSIDE’S COMPLEMENT THEOREM

DEFINITION 3.1 (FOCAL SUBGROUP). Let H ⩽ G be a subgroup. Then the focal subgroup
of H in G is defined as

FocG(H) = ⟨x−1y | x, y ∈ H, and are G − conjugate⟩.

THEOREM 3.2. Let G be finite, H ⩽ G a Hall subgroup and ψ : G → Hab the transfer map.
Then,

FocG(H) = H ∩ G′ = H ∩ ker ψ.

Proof. If y = gxg−1 for some g ∈ G, then x−1y = [x−1, g] ∈ G′ and hence, FocG(H) ⊆
H ∩ G′. On the other hand, G′ ⊆ ker ψ since ψ is a homomorphism to an abelian group.
Apriori, we have the following inclusions

FocG(H) ⊆ H ∩ G′ ⊆ H ∩ ker ψ.

Let g ∈ H ∩ ker ψ. It suffices to show that g ∈ FocG(H). Using Theorem 1.3,

ψ(g) = ∏
t∈T0

t−1gnt t (mod H′) = gn ∏
t∈T0

g−nt t−1gnt t (mod H′).

According to Theorem 1.3, we also know that t−1gnt t ∈ H and hence, each factor g−nt t−1gnt t ∈
FocG(H).

But since g ∈ ker(ψ), we must have that the product ψ(g) as an element of H, lies in
H′ ⊆ FocG(H). But since each factor g−nt t−1gnt t ∈ FocG(H), we must have gn ∈ FocG(H).
Recall that H is a Hall subgroup and hence, n is relatively prime to |H|, consequently,
relatively prime to |g|. As a result, g ∈ ⟨gn⟩ ⊆ FocG(H). This completes the proof. ■
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LEMMA 3.3 (BURNSIDE). Let P be a p-Sylow subgroup of G and suppose x, y ∈ CG(P)
are conjugate in G. Then x and y are conjugate in NG(P).

Proof. Suppose y = xg for some g ∈ G. Then, P ⊆ CG(y) ∩ CG(x). Consequently,

Pg ⊆ CG(x)g = CG(xg) = CG(y).

Since both P and Pg are Sylow p-subgroups of CG(y), there is a c ∈ CG(y) such that
Pcg = P. Therefore, cg ∈ NG(P), and

xcg = (xg)c = yc = y.

This completes the proof. ■

DEFINITION 3.4. A group G is said to have a normal p-complement if there is a normal
subgroup N ⊴ G such that [G : N] = pn where n = vp(|G|).

THEOREM 3.5 (BURNSIDE). Let P be a Sylow p-subgroup of G and suppose P ⊆ Z(NG(P)).
Then, G has a normal p-complement.

Proof. We contend that FocG(P) = 1. Indeed, suppose x, y ∈ P are conjugate in G. Ac-
cording to our assumption on P, P ⊆ CG(P), therefore, there is some g ∈ NG(P) such
that y = gxg−1. But since P ⊆ Z(NG(P)), we must have y = x and hence, FocG(H) = 1.
Using Theorem 3.2, we see that P ∩ ker ψ = 1 where ψ : G → Pab = P is the transfer
map. Therefore, |ψ(P)| = |P|, whence ψ is surjective. This shows that ker ψ is a normal
p-complement in G. ■

THEOREM 3.6. Let G be a finite group such that every Sylow subgroup of G is cyclic. Then
G is solvable.

Proof. Let p be the smallest prime dividing the order of G and P be a Sylow p-subgroup.
Due to the N/C-theorem, there is an injection NG(P)/CG(P) ↪→ Aut(P). If |P| = pr, then
Aut(P) has order pr−1(p − 1). But since both NG(P) and CG(P) contain P, the order of the
quotient NG(P)/CG(P) cannot be divisible by p, hence, must be 1. Thus, P ⊆ Z(NG(P)).
Due to Theorem 3.5, G has a normal p-complement, say N.

This fits into a short exact sequence

1 → N → G → G/N → 1,

where G/N is a p-group, hence, solvable and N ⊊ G is a proper subgroup divisible by
one less prime and hence, solvable due to an inductive argument. This completes the
proof. ■
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