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§1 SYLOW THEORY

�� The Three Theorems

In this section, we shall state and prove the three Sylow theorems.

THEOREM 1.1 (SYLOW’S FIRST THEOREM). Let G be a finite group and p be a prime
dividing the order of G with k ∈ N such that pk∥|G|. Then, there is a subgroup P ⩽ G
with |P| = pk.

We denote the set of all p-Sylow subgroups by Sylp(G).

THEOREM 1.2 (SYLOW’S SECOND THEOREM). Let G be a finite group and p be a prime
dividing the order of G. Then, all subgroups in Sylp(G) are conjugate.
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In order to prove the above theorem, we require the following lemmas:

LEMMA 1.3. Let G be a finite group, p a prime dividing |G| and P ∈ Sylp(G). If H is a
p-group contained in NG(P), then H is contained in P.

LEMMA 1.4. Let G be a finite group, p a prime dividing |G|, H a p-subgroup and P ∈
Sylp(G). Then, there is x ∈ G such that xHx−1 ⊆ P.

THEOREM 1.5 (SYLOW’S THIRD THEOREM). Let G be a finite group and p a prime
dividing |G|. Let np be the cardinality of Sylp(G). Then,

1. np = |G|/|NG(P)| for any P ∈ Sylp(G)

2. np | |G|

3. np ≡ 1 (mod p)

�� Some Related Results

Henceforth, unless specified otherwise, G is a finite group and p is a prime dividing the
order of G.

LEMMA 1.6. Let G be a finite group and P be a p-subgroup of G. Then, there is a p-Sylow
subgroup of G containing P.

Proof. Choose any Q ∈ Sylp(G). Using Lemma 1.4, there is x ∈ G such that xPx−1 ⊆ Q,
and equivalently, P ⊆ x−1Qx, which is also a p-Sylow subgroup. This completes the
proof. ■

COROLLARY 1.7. Let G be a finite group and H a subgroup. If P ∈ Sylp(H), then there is
Q ∈ Sylp(G) such that P = H ∩ Q.

Proof. Since P is a p-subgroup of G, due to Lemma 1.6, there is a p-Sylow subgroup
Q containing it. We shall show that P = H ∩ Q. Obviously, P ⊆ H ∩ Q, therefore,
vp(|H ∩ Q|) ⩾ vp(|P|) = vp(H). But since H ∩ Q is a subgroup of H, we must have
vp(|H|) ⩾ vp(|H ∩ Q|), as a result, vp(|H|) = vp(|H ∩ Q|) and P = H ∩ Q, since H ∩ Q is
a p-group owing the fact that it is a subgroup of Q. ■

THEOREM 1.8. Let P ∈ Sylp(G) and H be a subgroup of G such that NG(P) ⊆ H. Then,
NG(H) = H and [G : H] ≡ 1 (mod p).

Proof. Let x ∈ NG(H). Then, Px ⊆ H and is also an element of Sylp(H). Using Theorem 1.2,
there is h ∈ H such that Px = Ph, equivalently, x−1h ∈ NG(P) ⊆ H, implying that x ∈ H.

Now, we have

[G : H] =
[G : NG(P)]
[H : NG(P)]

=
np(G)

np(H)
≡ 1 (mod p)

■
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In particular, we have the following attractive result:

COROLLARY 1.9. Let P ∈ Sylp(G). Then, NG(NG(P)) = NG(P).

THEOREM 1.10 (FRATTINI ARGUMENT). Let N be a normal subgroup of G and P ∈
Sylp(N), then G = NG(P)N.

Proof. Let g ∈ G. Since N P G, Pg ⊆ Ng ⊆ N, Pg ∈ Sylp(N), as a result, there is n ∈ N

such that (Pg) = Pn, equivalently, Pn−1g = P. This immediately implies n−1g ∈ NG(P),
therefore, g ∈ NNG(P) = NG(P)N, completing the proof. ■

§2 NILPOTENT GROUPS

DEFINITION 2.1 (NILPOTENT GROUPS). A group G is said to be nilpotent if there is a
finite collection of normal subgroups H0, . . . , Hn with

1 = H0 ⊆ H1 ⊆ · · · ⊆ Hn = G

and such that
Hi+1/Hi ⊆ Z(G/Hi)

for 0 ⩽ i < n.

The Upper Central Series and the Lower Central Series are often useful in the analysis
of nilpotent groups.

DEFINITION 2.2 (UPPER CENTRAL SERIES). For any group G, define the Upper Central
Series as a sequence of groups,

1 = Z0 P Z1 P · · ·
such that

1. Each Zi is characteristic in G

2. Zi+1/Zi = Z(G/Zi)

DEFINITION 2.3 (LOWER CENTRAL SERIES). For any group G, define the Lower Central
Series as a sequence of groups,

G = G0 ⊵ G1 ⊵ · · ·
such that Gi+1 = [G, Gi]

�� Analyzing The Upper And Lower Central Series

LEMMA 2.4. For all i ⩾ 0, let πi : G ↠ G/Zi denote the projection. Then, Zi+1 =
π−1

i (Z(G/Zi)).

Proof. Obvious. ■
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LEMMA 2.5. For all i ⩾ 0, Zi is characteristic in G

Proof. We shall show this by induction on i. The statement is obviously true for Z0 = {1}.
Suppose we have shown that the statement holds up to i ⩾ 0. Let φ : G → G be an
automorphism of groups. We now have the following commutative diagram:

G G

G/Zi G/Zi

φ

πi f πi

∃! ψ

Since ker πi ◦ φ = φ−1(ker πi) = Zi, due to the universal property of the quotient, there
is a unique homomorphism φ : G/Zi → G/Zi such that the above diagram commutes.
Define f = πi ◦ φ. Then, Zi = ker f = π−1

i (ker ψ), and thus, ker ψ = 1. This implies that
ψ is injective. Further, since πi is surjective, so is f = πi ◦ φ, implying that ψ must be
surjective. As a result, ψ is an automorphism of groups.

Let g ∈ Zi+1, then πi(φ(g)) = ψ(πi(g)). We know, due to Lemma 2.4, that π(g) ∈
Z(G/Zi) and therefore, ψ(πi(g)) ∈ Z(G/Zi), consequently πi(φ(g)) ∈ Z(G/Zi) and thus,
φ(g) ∈ Zi+1.

Since we have shown for all automorphisms φ : G → G, that φ(Zi+1) ⊆ Zi+1, then
φ−1(Zi+1) ⊆ Zi+1. This immediately gives us that φ(Zi+1) = Zi+1 for all automorphisms
φ : G → G and Zi+1 is characteristic. ■

LEMMA 2.6. For all i ⩾ 0, we have [G, Zi+1] ⊆ Zi.

Proof. Let g ∈ G and x ∈ Zi+1. Let πi : G → G/Zi be the natural projection. Then,

πi([g, x]) = [πi(g), πi(x)] = 1

where the last equality follows from the fact that πi(x) ∈ πi(Zi+1) = Z(G/Zi). This
immediately implies that [g, x] ∈ Zi and the desired conclusion. ■

LEMMA 2.7. For all i ⩾ 0, Gi is characteristic in G.

Proof. We shall show this by induction on i. The base case with G0 = G is trivial. Let
φ : G → G be an automorphism of groups. Then, for all g ∈ G and x ∈ Gi, it is not hard
to see that φ([g, x]) = [φ(g), φ(x)] ∈ [G, Gi] = Gi+1. Therefore, for all automorphisms
φ : G → G, φ(Gi+1) ⊆ Gi+1. This implies that φ(Gi+1) = Gi+1, and completes the
induction. ■

LEMMA 2.8. For all i ⩾ 0, Gi/Gi+1 ⊆ Z(G/Gi+1).

Proof. Let πi+1 : G → G/Gi+1 denote the natural projection. Let x ∈ Gi and g ∈ G, then

1 = πi+1([x, g]) = [πi+1(x), πi+1(g)]

since πi+1 is surjective, πi+1(x) ∈ Z(G/Gi+1). This completes the proof. ■

THEOREM 2.9. For a group G, the following are equivalent,

4



1. For some n ⩾ 0, Zn = G

2. For some m ⩾ 0, Gm = 1

3. G is nilpotent

Proof. We shall show that (1) =⇒ (2) =⇒ (3) =⇒ (1), which would imply the desired
conclusion.

• (1) =⇒ (2) : We have a finite series

1 = Z0 ⊆ Z1 ⊆ · · · ⊆ Zn = G

We shall show, through induction on i, that Gi ⊆ Zn−i. The base case with i = 0 is
obviously true. Using Lemma 2.6, we have, for all i ⩽ n − 1,

Gi+1 = [G, Gi] ⊆ [G, Zn−i] ⊆ [G, Zn−i−1] ⊆ Zi+1

which completes the induction. Finally, we have Gn ⊆ Z0 = 1, implying the desired
conclusion.

• (2) =⇒ (3) : Simply define Hi = Gn−i for all 0 ⩽ i ⩽ n. Due to Lemma 2.8, we have
that Hi+1/Hi ⊆ Z(G/Hi).

• (3) =⇒ (1) : We shall show that for all i ⩾ 0, Hi ⊆ Zi. The base case with i = 0 is
trivial. Consider the following commutative diagram:

G G/Zi

G/Hi

πi

π′
i ∃! ϕ

Since Hi ⊆ Zi, using the universal property of the quotient, there is an epimorphism
ϕ : G/Hi → G/Zi such that the above diagram commutes. Let x ∈ Hi+1. Then,
π′

i(x) ∈ Z(G/Hi), therefore, for all g ∈ G

1 = ϕ
(
π′

i([g, x])
)
= πi([g, x]) = [πi(g), πi(x)]

Now, since πi is surjective, πi(x) ∈ Z(G/Zi), and thus, x ∈ Zi+1. This implies the
desired conclusion.

■
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�� Related Results for Nilpotent Groups

LEMMA 2.10. Every finite p-group is nilpotent.

Proof. Let G be a finite p-group. We shall show that the upper central series is finite by
showing the proper containment Zi ⊊ Zi+1 whenever Zi ⊊ G which would imply the
desired conclusion. Let πi : G → G/Zi denote then natural projection. We know, due to
Lemma 2.4, that Zi+1 = π−1

i (Z(G/Zi)) and since G/Zi is a non-trivial p-group, it must
have a non-trivial center, therefore, Zi ⊊ Zi+1. This completes the proof. ■

LEMMA 2.11. Let G be a nilpotent group and H, a proper subgroup of G. Then, H ⊊
NG(H).
Note that finiteness of G is NOT required.

Proof. Since G is nilpotent, the upper central series 1 = Z0 ⊆ Z1 ⊆ · · · ⊆ Zn = G is strictly
increasing (with respect to containment). Let k be the maximal index such that Zk ⊆ H,
that is to say, Zk+1 ⊊ H. Now, using Lemma 2.6,

[Zk+1, H] ⊆ [Zk+1, G] ⊆ Zk ⊆ H

as a result, Zk+1 ⊆ NG(H) which completes the proof. ■

LEMMA 2.12. Let G be a finite nilpotent group. For every prime p dividing the order of G,
the p-Sylow subgroup P is normal and therefore unique.

Proof. Recall from the study of Sylow subgroups that NG(NG(P)) = NG(P). This com-
bined with Lemma 2.11 implies that NG(P) = G, and P is normal in G which immediately
implies uniqueness. ■

LEMMA 2.13. Let G1, . . . , Gn be nilpotent groups. Then, their direct product G1 × · · · × Gn
is also nilpotent.

Proof. The central series of the product is the pointwise product of the individual central
series. ■

THEOREM 2.14. A finite group is nilpotent if and only if it is a direct product of p-groups.

Proof. Suppose G is a finite nilpotent group, then due to Lemma 2.12, the Sylow subgroups
of G are normal and it is well known that in this case, G is the direct product of the Sylow
subgroups.

Conversely, if G is the direct product of p-groups, then using Lemma 2.13 and Lemma 2.10,
we have that G is nilpotent. ■

PROPOSITION 2.15. Let G be a finite group. If H ⊊ NG(H) for every proper subgroup H
of G, then G is nilpotent.

Proof. Let P be a Sylow subgroup of G. Since NG(P) = NG(NG(P)), we must have that
NG(P) = G, consequently, P is normal in G. It follows that G is a (internal) direct product
of its Sylow subgroups, i.e., a direct product of p-groups, each of which is nilpotent. Hence,
G is nilpotent. ■

6



THEOREM 2.16. Every subgroup and quotient of a nilpotent group is nilpotent.

Proof. Let G be a nilpotent group and H a subgroup of G. Let H0 ⊇ H1 ⊇ · · · be the lower
central series of H. We shall show by induction on i, that Hi ⊆ Gi. The base case with i = 0
is trivial. We now have

Hi+1 = [H, Hi] ⊆ [G, Hi] ⊆ [G, Gi] = Gi+1

this completes the induction. Finally, since the lower central series of G is finite, the lower
central series of H must be finite too, implying that H is nilpotent.

On the other hand, let N be a normal subgroup of G and G′ = G/N. Let π : G → G′

denote the natural projection. We shall show by induction on i that G′
i = π(Gi). The base

case with i = 0 is trivial. We have

G′
i+1 = [G′, G′

i ] = π([G, Gi]) = π(Gi+1)

This completes the induction and implies that the lower central series of G′ is finite. ■

LEMMA 2.17. A group G is nilpotent if and only if G/Z(G) is nilpotent.

Proof. One direction of the statement is trivial due to Theorem 2.16. Now suppose G̃ =

G/Z(G) is nilpotent and let π : G → G/Z(G) denote the natural projection. Let G̃ =

G̃0 ⊇ G̃1 ⊇ · · · ⊇ G̃n = 1 denote the lower central series of G̃. We shall show by induction
on i that Gi ⊆ π−1(G̃i). We have

π(Gi+1) = π([G, Gi]) = [π(G), π(Gi)] ⊆ [G̃, G̃i] = G̃i+1

This completes the induction and implies the desired conclusion. ■

LEMMA 2.18. Let G be a nilpotent group and N a non-trivial normal subgroup of G. Then,
Z(G) ∩ N is non-trivial.

Proof. Let 1 = Z0 ⊆ Z1 ⊆ · · · ⊆ Zn = G denote the upper central series of G. Let k
be the unique index such that Zk ∩ N = 1 while Zk+1 ∩ N ̸= 1. We shall show that
G ∩ Zk+1 ⊆ Z(G). Indeed, we have

[G, N ∩ Zk+1] ⊆ [G, N] ∩ [G, Zk+1] ⊆ N ∩ Zk = 1

where we used that for all normal subgroups N, [G, N] ⊆ N and Lemma 2.6.
Since [G, N ∩ Zk+1] = 1, we must have that 1 ̸= N ∩ Zk+1 ⊆ Z(G), which completes

the proof. ■

�� The Fitting Subgroup

DEFINITION 2.19. Let G be a finite group. For every prime p, let Sylp(G) denote the
collection of all Sylow p-subgroups of G. Define

O(G) =
⋂

H∈Sylp(G)

H.
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Since all Sylow p-subgroups of G are conjugate, O(G) is a normal p-subgroup of G. For
distinct primes p ̸= q, Op(G) ∩ Oq(G) = {1} and hence, Op(G) commutes with Oq(G).

PROPOSITION 2.20. Op(G) contains every normal p-subgroup of G.

Proof. Let P P G be a normal p-subgroup. It is well-known that there is a Sylow p-
subgroup of G containing P. But since all the Sylow p-subgroups of G are conjugate, P
must be contained in all of them, and hence, in Op(G). ■

Consider the product map

µ : ∏
p|G

Op(G) −→ G,

given by µ
(
(xp)

)
= ∏ xp. We contend that this map is injective. Let H be the image of

µ. Since each Op(G) is contained in H, their orders must divide the order of H. Further,
since they are coprime, we have that the order of H is equal to the order of the product
∏p Op(G) and hence, the map must be injective.

DEFINITION 2.21. The image of µ is denoted by F(G) and is called the Fitting subgroup.

PROPOSITION 2.22. F(G) is a normal nilpotent subgroup of G. Further, it contains every
nilpotent normal subgroup of G.

Proof. Being a product of normal subgroups, F(G) is normal. It is nilpotent as it is isomor-
phic to a direct product of p-groups, each of which is nilpotent.

Let N P G be a normal nilpotent subgroup of G and suppose P ∈ SylP(N). Then, P
is normal in G. For any g ∈ G, Pg is also contained in N (owing to N being normal in G)
and has the same cardinality as P, i.e. is a Sylow p-subgroup of N. Consequently, P = Pg

and P is normal in G, whence P is contained in Op(G) ⊆ F(G). This shows that all Sylow
subgroups of N are contained in F(G). Since N is the product of its Sylow subgroups, we
have shown that N is contained in F(G). ■

PROPOSITION 2.23. F(G) is characteristic in G.

Proof. Let φ ∈ Aut(G). Note that φ(F(G)) is also nilpotent and normal in G. Consequently,
it must be contained in F(G), whence the conclusion follows. ■

PROPOSITION 2.24. If N P G, then F(N) ⊆ F(G).

Proof. We know that F(N) is nilpotent and hence, it suffices to show that it is normal in
G. For any g ∈ G, the map x 7→ g−1xg = xg is an automorphism of N. Since F(N) is
characteristic in N, we have that F(N)g ⊆ F(N), whence the conclusion follows. ■
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§3 SOLVABLE GROUPS

DEFINITION 3.1 (DERIVED SERIES). Let G be a group. The derived series of a group is
given by the sequence of subgroups

G = G(0) ⊇ G(1) ⊇ · · ·

such that G(i+1) = [G(i), G(i)].

DEFINITION 3.2 (SOLVABLE GROUPS). A group G is said to be solvable if there is n ⩾ 0
and a series G = H(0) ⊇ H(1) ⊇ · · · H(n) = 1 such that for all 0 ⩽ i ⩽ n − 1, each H(i+1) is
normal in H(i) and H(i)/H(i+1) is Abelian.

�� Analyzing the Derived Series

LEMMA 3.3. For all i ⩾ 0, G(i) is characteristic in G.

Proof. We shall show this statement by induction on i. The base case with i = 0 is trivial.
Let φ : G → G be an automorphism of groups. Then,

φ(G(i+1)) = φ([G(i), G(i)]) = [φ(G(i)), φ(G(i))] = G(i+1)

■

THEOREM 3.4. For any group G, the following are equivalent

1. There is n ⩾ 0 such that G(n) = 1

2. G is solvable

Proof.

• (1) =⇒ (2) : Simply choose H(i) = G(i).

• (2) =⇒ (1) : We shall show by induction on i that G(i) ⊆ H(i). The base case with
i = 0 is trivial. Now, for all 0 ⩽ i ⩽ n − 1,

G(i+1) = [G(i), G(i)] ⊆ [H(i), H(i)] ⊆ H(i+1)

where the last containment follows from the fact that H(i)/H(i+1) is Abelian. This
completes the proof.

■

LEMMA 3.5. All nilpotent groups are solvable.

Proof. Let G = G0 ⊇ G1 ⊇ · · · ⊇ Gn = 1 be the lower central series. We shall show by
induction on i that for all 0 ⩽ i ⩽ n, G(i) ⊆ Gi. The base case with i = 0 is trivial. For i ⩾ 0,
we have

G(i+1) = [G(i), G(i)] ⊆ [Gi, Gi] ⊆ [G, Gi] = Gi+1

This completes the induction step and implies the desired conclusion. ■
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COROLLARY 3.6. All p-groups are solvable.

THEOREM 3.7. Let 1 → N α−→ G π−→ H → 1 be a short exact sequence. Then, G is
solvable if and only if both N and H are solvable.

Proof. Without loss of generality, we may assume N to be a normal subgroup in G and H
its corresponding quotient.

Suppose G is solvable. Then, we can inductively show that N(i) ⊆ G(i), implying the
solvability of N(i). On the other hand, π(G(i)) = H(i), again implying the solvability of H.

Conversely, suppose both N and H are solvable. Then, π(G(n)) = 1 for some n ⩾ 0,
therefore, G(n) ⊆ N. From here, it isn’t hard to show that G(n+i) ⊆ N(i), implying the
solvability of G. This completes the proof. ■

COROLLARY 3.8. Let G be a solvable group. If H is a subgroup of G, then H is solvable.

PROPOSITION 3.9. A minimal normal subgroup of a solvable group is an elementary
abelian p-group.

�� Two theorems of P. Hall

THEOREM 3.10 (HALL). Let G be a solvable group of order |G| = ab, where gcd(a, b) = 1.

Existence: G admits a subgroup of order a.

Conjugacy: Any two subgroups of order a are conjugate in G.

Proof. Induct on |G|. The base cases where |G| is a prime number are trivially established.
Case 1. G contains a non-trivial normal subgroup H of order a′b′, where a′ | a, b′ | b, and

b′ < b.
Existence. In this case, G/H is a solvable group of order group of order (a/a′)(b/b′) < ab.
Due to the induction hypothesis, G/H admits a subgroup A/H of order a/a′, where A is
a subgroup of G of order ab′ < ab. Since A is solvable, the induction hypothesis applies to
A, which then admits a subgroup of order a.
Conjugacy. Let A and A′ be subgroups of G of order a. Note that AH is a subgroup of G of
order

|AH| = |A||H|
|A ∩ H| ⩽ |A| |H|

|A ∩ H| .

Note that |A ∩ H| divides |H| = a′b′ and since gcd(a′, b′) = 1 and |A ∩ H| divides |A| = a,
we see that |H|/|A ∩ H| ⩽ b′. It follows that |AH| ⩽ ab′. But, on the other hand, AH
contains A and H as subgroups, whence a | |AH| and a′b′ | |AH|, whence ab′ | |AH|, that
is, |AH| = ab′. Similarly, one can argue that |A′H| = ab′.

Now, |G/H| = a/a′ · b/b′ and |AH/H| = |A′H/H| = a/a′. The induction hypothesis
applies and these groups are conjugate in G/H, whence AH and A′H are conjugate in
G. That is, there is an x ∈ G such that xAHx−1 = A′H. Therefore, xAx−1 and A′ are
subgroups of A′H of order a, and since |A′H| < |G|, the induction hypothesis applies once
again, and A nad A′ are conjugate in G.
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It follows from the first case that if there is a non-trivial proper normal subgroup whose
order is not divisible by b, then the theorem has been proved. We may therefore assume
that b | |H| for every non-trivial normal subgroup H of G. If H is a minimal normal sub-
group of G, then due to Proposition 3.9, H is an elementary abelian p-group. It follows that
b = pm = |H| for some m ⩾ 1. Thus, H is a normal (hence unique) Sylow p-subgroup of
G. So we have shown that every minimal normal subgroup of G is the Sylow p-subgroup,
and hence, G admits a unique minimal normal subgroup. The problem is no reduced to
the following:

Case 2. |G| = apm, where p ∤ a, and G has a normal abelian Sylow p-subgroup H, and H
is the unique minimal normal subgroup in G.
Existence. The group G/H is solvable of order a. If K/H is a minimal normal subgroup of
G/H, then |K/H| = qn for some prime q ̸= p due to Proposition 3.9; and so |K| = pmqn,
also note that K P G. If Q is a Sylow q-subgroup of K, then K = HQ. Let N∗ = NG(Q)
and let N = N∗ ∩ K = NK(Q). Then Theorem 1.10 gives G = KN∗. Since

G/K ∼= KN∗/K ∼= N∗/N∗ ∩ K = N∗/N,

we have |N∗| = |G||N|/|K|. But K = HQ, and Q ⊆ N ⊆ K gives K = HN, whence
|K| = |HN| = |H||N|/|H ∩ N|, so that

|N∗| = |G||N|
|K| =

|G||N||H ∩ N|
|H||N| =

|G|
|H| |H ∩ N| = a|H ∩ N|.

We claim that H ∩ N = 1. We show this in two stages:

• First, we show that H ∩ N ⊆ Z(K). Let x ∈ H ∩ N. Every k ∈ K has the form
k = hs for some h ∈ H and s ∈ Q. Since H is abelian, it suffices to show that x
commutes commutes with s. Note that the commutator [x, s] ∈ Q, since x normalizes
Q. On the other hand, [x, s] = x(sx−1s−1) ∈ H, because H is normal in G. Therefore,
[x, s] ∈ Q ∩ H = 1. Thus, H ∩ N ⊆ Z(K).

• Next, we show that Z(K) = 1. Since Z(K) is characteristic in K and K is normal in G,
we have that Z(K) P G. If Z(K) were non-trivial, then it would contain a minimal
normal subgroup of G, i.e., H due to uniqueness. But since K = HQ, and H is central
in K, we see that Q must be normal in K. A normal Sylow subgroup is characteristic
(owing to its uniqueness), and hence, Q P G. Again, this means H ⊆ Q, because
Q must also contain a minimal normal subgroup of G. This is absurd, since H is a
p-group. Thus, Z(K) = 1.

We have shown that |N∗| = a, thereby proving existence.
Conjugacy. Let A be another subgroup of G of order a. Since |AK| is divisible by a and by
|K| = pmqn, it follows that |AK| = apm = |G|, that is, AK = G. Hence,

G
K

∼=
AK
K

∼=
A

A ∩ K
,

so |A ∩ K| = qn. From Sylow’s theorem, A ∩ K is conjugate to Q. It follows that N∗ =
NG(Q) is conjugate to NG(A ∩ K), whence a = |NG(A ∩ K)|. Since A ⊆ NG(A ∩ K), we
must have A = NG(A ∩ K) and that A is conjugate to N∗ as desired. ■
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§4 SUBNORMALITY

DEFINITION 4.1. Let G be a group. A subgroup S ⊆ G is said to be subnormal in G if there
exist subgroups Hi of G such that

S = H0 P H1 P · · · P Hr = G.

In this situation, we write S ◁◁ G. The smallest integer r for which the above holds is
called the subnormal depth of S in G.

REMARK 4.2. Note that the definition of a subnormal subgroup behaves well with respect
to “contraction”. That is, if S ◁◁ G and H is any subgroup of G, then S ∩ H ◁◁ H. As a
result, if S, T ◁◁ G, then S ∩ T ◁◁ G.

Now, suppose φ : G → G is a surjective group homomorphism and S ◁◁ G. Then,
φ(S) ◁◁ G, since the image of a subnormal series under φ is still subnormal.

LEMMA 4.3. Let G be a finite group. Then G is nilpotent if and only if every subgroup of
G is subnormal.

Proof. Suppose G is nilpotent and H is a proper subgroup of G. Define H0 = H and
Hi+1 = NG(Hi). Then, either Hi+1 = G or Hi ⊊ Hi+1. This gives us a subnormal series for
H.

Conversely, suppose every subgroup of G is subnormal and let H be a proper subgroup.
There is a sequence

H = H0 ◁ H1 ◁ · · · ◁ Hn = G.

In particular, we may assume that Hi ⊊ Hi+1 for 0 ⩽ i ⩽ n − 1. Hence, H ⊊ H1 ⊆ NG(H).
Due to Proposition 2.15, we see that G must be nilpotent. ■

PROPOSITION 4.4. Let G be a finite group and H ⩽ G. Then H ⊆ F(G) if and only if H is
nilpotent and subnormal in G.

Proof. Since F(G) is nilpotent, if H were contained in F(G), then it would be niloptent too.
Further, due to the preceding lemma, H ◁◁ G and F(G) ◁ G, whence H ◁◁ G.

We prove the converse by induction on |G|. If H = G, then there is nothing to prove,
since G would be nilpotent and F(G) = G. Suppose now that H ⊊ G. There is a subnormal
series

H = H0 ◁ H1 ◁ · · · ◁ Hn = G.

where every successive containment is proper. Set M = Hn−1 ◁ G. The inductive
hypothesis applies since H is nilpotent and subnormal in M, consequently, H ⊆ F(M) ⊆
F(G), due to Proposition 2.24, thereby completing the proof. ■

DEFINITION 4.5. A minimal normal subgroup of a group G is a non-identity normal sub-
group of G that does not admit any non-trivial normal subgroups. The socle of a finite
group G is defined to be the subgroup generated by all minimal normal subgroups of G,
which is precisely their product.

12



If M and N are two minimal normal subgroups of G, then M ∩ N = {1} and hence,
every element of M commutes with every element of N. Thus, Soc(G) is precisely the
product of all minimal normal subgroups of G and is a normal subgroup of G. Further, if
G is a finite group that is not trivial, then it admits a non-trivial minimal finite group, and
hence, Soc(G) is non-trivial.

PROPOSITION 4.6. Let G be a finite group. Then Soc(G) is characteristic in G.

Proof. Let φ ∈ Aut(G). For a minimal normal subgroup M of G, φ(M) is also a minimal
normal subgroup of G. Consequently, φ permutes the minimal normal subgroups of G
and thus stabilizes the socle. ■

THEOREM 4.7. Let G be a finite group, S ◁◁ G, and M a minimal normal subgroup of G.
Then M ⊆ NG(S).

Proof. Induction on |G|. If S = G, then there is nothing to prove, so we can suppose that
S ⊊ G. Since S ◁◁ G, arguing as in the preceding proof, we can choose a normal subgroup
N ⊊ G such that S ◁◁ N ◁ G.

If M ∩ N = 1, then every element of M commutes with every element of N, and hence,
M ⊆ CG(N) ⊆ CG(S) ⊆ NG(S). Suppose now that M ∩ N is non-trivial. But since M is a
minimal normal subgroup, M = M ∩ N, i.e. M ⊆ N.

The inductive hypothesis applies to N, whence every minimal normal subgroup of
N normalizes S, consequently, Soc(N) normalizes S. Therefore, it suffices to show that
M ⊆ Soc(N).

Since N is a finite group and M is a non-trivial normal subgroup of N, it contains a
minimal normal subgroup. That is, M ∩ Soc(N) ̸= 1. Since Soc(N) is characteristic in N,
it must be normal in G. Owing to the minimality of M in G, M ∩ Soc(N) = M, that is,
M ⊆ Soc(N) as desired. ■

THEOREM 4.8 (WIELANDT). Let G be a finite group and S, T ◁◁ G. Then ⟨S, T⟩ ◁◁ G.

Proof. Induction on |G|. Suppose G is non-trivial, choose a minimal normal subgroup
M of G and set G = G/M. By abuse of notation, we use the “overbar” to denote the
homomorphism G → G. Note that

⟨S, T⟩ = ⟨S, T⟩ = ⟨S, T⟩M,

since M is the kernel of G → G. The inductive hypothesis applies to G and hence,
⟨S, T⟩ ◁◁ G. There is a natural bijection between the subgroups of G containing M
and the subgroups of G, which preserves normality and hence, subnormality. Therefore,
⟨S, T⟩M ◁◁ G.

Finally, note that M ⊆ NG(S), NG(T) and hence, M ⊆ NG(⟨S, T⟩), whence ⟨S, T⟩ ◁
⟨S, T⟩M ◁◁ G, whence the conclusion follows. ■

LEMMA 4.9. Let G be a group and H ⩽ G. If HHx = G for some x ∈ G, then H = G.

Proof. Write x = uv, where u ∈ H and v ∈ Hx. Then xv−1 = u and we have

Hx = (Hx)v−1
= Huv−1

= Hu = H.

Then G = HHx = HH = H, as desired. ■
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THEOREM 4.10 (WIELANDT ZIPPER LEMMA). Let G be a finite group and S ⩽ G such
that S ◁◁ H for every proper subgroup H of G containing S. If S is not subnormal in G,
then there is a unique maximal subgroup of G containing S.

Proof. We induct on |G : S|. Since S is not normal, NG(S) ⊊ G, and thus NG(S) ⊆ M for
some maximal subgroup M of G. We must show that this M is unique. Suppose that S ⊆ K
is another maximal subgroup of G. We shall show that K = M.

By our hypothesis, S ◁◁ K. Suppose first that S P K. Then K ⊆ NG(S) ⊆ M and hence
due to maximality, K = M, as desired. We can suppose, therefore, that S is not normal in
K. Choose the shortest subnormal series

S = H0 ◁ H1 ◁ · · · ◁ Hr = K,

where r ⩾ 2, since S is not normal in K. Also, S is not normal in H2 since otherwise we
could delete H1 to obtain a shorter subnormal series. Let x ∈ H2 be such that Sx ̸= S,
and write T = ⟨S, Sx⟩ ⊋ S. Note that T ⊆ K. Also, Sx ⊆ Hx

1 = H1 ⊆ NG(S), and thus,
T ⊆ NG(S) ⊆ M. Furthermore, we have that S ◁ T ⊊ G.

Note that Sx also satisfies the hypothesis of the theorem because conjugation by x is
an automorphism of G. We claim that the subgroup T = ⟨S, Sx⟩ also satisfies the same
hypothesis. In particular, we need to show that if T ⊆ H ⊊ G, then T ◁◁ H and T is not
subnormal in G.

First, if T ⊆ H ⊊ G, then S ⊆ H, and thus S ◁◁ H, and similarly, Sx ◁◁ H, conse-
quently, due to Theorem 4.8, T ◁◁ H. Also, S ◁ T and so if T ◁◁ G, then it would follow
that S ◁◁ G, a contradiction. Thus T is not subnormal in G.

Our inductivev hypothesis applies to T since it properly contains S, and hence T is
contained in a unique maximal subgroup of G. But since T ⊆ M and T ⊆ K, we have that
M = K, as desired. ■

DEFINITION 4.11. For a subgroup H of a group G, let HG denote the smallest normal
subgroup of G containing H. This is known as the normal closure of H in G.

THEOREM 4.12 (BAER). Let G be a finite group and H ⩽ G. Then H ⊆ F(G) if and only if
⟨H, Hx⟩ is nilpotent for all x ∈ G.

Proof. If H ⊆ F(G), then Hx ⊆ F(G) for every x ∈ G, since F(G) P G. Hence, ⟨H, Hx⟩ ⊆
F(G). But since F(G) is nilpotent, so is ⟨H, Hx⟩.

Conversely, suppose ⟨H, Hx⟩ is nilpotent for every x ∈ G. We induct on |G|. Taking
x = 1, we see that H is nilpotent, whence it suffices to prove that H ◁◁ G.

Suppose H is not subnormal in G. For any proper subgroup K of G containing H,
the induction hypothesis applies to K and hence, H ⊆ F(K), that is, H ◁◁ K. Due to
Wielandt’s Zipper Lemma, there is a unique maximal subgroup M of G containing H.

If ⟨H, Hx⟩ = G, then G is nilpotent and F(G) = G, and H ◁◁ G, a contradiction. Thus,
⟨H, Hx⟩ ⊊ G for all x ∈ G. This subgroup must be contained in a maximal subgroup of
G; but since it contains H, and there is a unique maximal subgroup M containing H, we
conclude that Hx ⊆ M for all x ∈ G. Therefore, HG ⊆ M ⊊ G.

Since HG is normal and properly contained in G, the induction hypothesis applies and
H ◁◁ HG ◁ G, that is, H ◁◁ G, a contradiction. This completes the proof. ■
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THEOREM 4.13 (ZENKOV). Let G be a finite group and A, B ⩽ G be abelian subgroups. If
M is a minimal element in the set

{A ∩ Bg : g ∈ G} ,

then M ⊆ F(G).

Proof. The set {A ∩ Bg : g ∈ G} remains unchanged upon replacing B with Bg. Therefore,
we may assume that M = A ∩ B. We prove the statement by induction on |G|. First,
suppose that G = ⟨A, Bg⟩ for some g ∈ G. Since A and Bg are abelian, we have A ∩ Bg ⊆
Z(G), and hence,

A ∩ Bg = (A ∩ Bg)g−1
= Ag−1 ∩ B ⊆ B.

It follows that A ∩ Bg ⊆ A ∩ B ⊆ M, and by the minimality of M, we have M = A ∩ Bg ⊆
Z(G) ⊆ F(G), as desired.

Next, assume that ⟨A, Bg⟩ ⊊ G for all g ∈ G. To show that M is contained in F(G), it
suffices to show that every Sylow p-subgroup P of M is contained in F(G) (because every
group is generated by its Sylow subgroups). Due to Theorem 4.12, it suffices to show that
⟨P, Pg⟩ is nilpotent for every g ∈ G.

Fix g ∈ G, and let H = ⟨A, Bg⟩ ⊊ G, and C = B ∩ H. For h ∈ H, we have

A ∩ Ch = A ∩ (B ∩ H)h = A ∩ Bh ∩ H = A ∩ Bh.

In particular, M = A∩ B = A∩ B∩ H = A∩C is minimal in the set {A∩Ch : h ∈ H} since
its minimal in the larger set {A∩ Bg : g ∈ G}. By the inductive hypothesis, P ⊆ M ⊆ F(H),
and hence, P ⊆ Op(H), since Op(H) is the unique Sylow p-subgroup of F(H). Also,
Pg ⊆ Bg ⊆ H, and since Op(H) is a normal subgroup, we have that Op(H)Pg is a p-group
containing ⟨P, Pg⟩. In particular, ⟨P, Pg⟩ is a p-group, whence is nilpotent, as desired. ■

COROLLARY 4.14. Let A be an abelian subgroup of a non-trivial finite group G, and
suppose that |A| ⩾ |G : A|. Then A ∩ F(G) is non-trivial.

Proof. If A = G, then there is nothing to prove. Suppose now that A ⊊ G. If g ∈ G, then
|A||Ag| = |A|2 ⩾ |A||G : A| = |G|. Further, due to Lemma 4.9, AAg ⊊ G. Hence,

|G| > |AAg| = |A||A|g
|A ∩ Ag| ⩾

|G|
|A ∩ Ag| ,

and thus A ∩ Ag is non-trivial. Since this holds for all g ∈ G, we can apply Theorem 4.13 to
deduce that there is a g ∈ G such that A ∩ Ag ⊆ F(G), whence A ∩ F(G) is non-trivial. ■

�� Theorems of Luccini and Horosevskii

THEOREM 4.15 (LUCCINI). Let A be a proper cyclic subgroup of a finite group G, and
let K = coreG(A). Then |A : K| < |G : A|, and in particular, if |A| ⩾ |G : A|, then K is
non-trivial.
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Proof. Induction on |G|. Note that A/K is a proper cyclic subgroup of G/K and the core of
A/K in G/K is trivial. If K is non-trivial, then the inductive hypothesis applies and we
deduce that

|A/K| = |A/K : coreG/K(A/K)| < |G/K : A/K| = |G : A|.

We may now assume that K = 1, and we shall show that |A| < |G : A|. Suppose
not, that is, |A| ⩾ |G : A|. Due to Corollary 4.14, A ∩ F(G) is non-trivial. In particular,
F(G) is non-trivial, so we can choose a minimal normal subgroup E of G with E ⊆ F(G)
(since F(G) is normal in G). Due to Lemma 2.18, E ∩ Z(F(G)) is non-trivial; but since
Z(F(G)) is characteristic in F(G), it is normal in G. Due to the minimality of E, we must
have E ⊆ Z(F(G)), in particular, E is abelian. Being abelian, every Sylow subgroup of E
is characteristic in G, whence due to minimality, E itself must be a p-group. We contend
that E is an elementary abelian p-group. Indeed, consider Ẽ = {xp : x ∈ E}, which is
proper and characteristic in E, and hence, is normal in G. Due to minimality of E, Ẽ = 1,
as desired.

Since E ⊆ Z(F(G)), we see that E normalizes the non-trivial group A ∩ F(G), and of
course A normalizes this too. Then A ∩ F(G) P AE. Since coreG(A) = 1, we cannot have
AE = G, else A ∩ F(G) would be contained in the core. It follows that AE ⊆ G.

Set G = G/E, A = AE/E ⊊ G, M = coreG(A), with E ⊆ M and M P G. Note
that M ⊆ AE, and hence, AE ⊆ AM ⊆ AE, whence AM = AE. Due to the inductive
hypothesis, we must have |A : M| < |G : A|, that is, |AE : M| < |G : AE|.

G

AE

A M

B E

B ∩ E

Let B = A ∩ M so that B is cyclic. We have

|AE : A| = |AM : A| = |M : A ∩ M| = |M : B|,

and hence, |AE : M| = |A : B|. Therefore,

|M : B| = |AE : A| = |G : A|
|G : AE| <

|G : A|
|AE : M| =

|G : A|
|A : B| ⩽

|A|
|A : B| = |B|.

Before we proceed, note that E ⊆ M ⊆ AE = EA, and hence, because of what’s colloquially
known as Dedekind’s rule, M = E(A ∩ M) = EB = BE (since E P G).
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Suppose M is abelian, and let φ : M → M be the endomorphism φ(m) = mp. Then
E ⊆ ker φ since it is an elementary abelian p-group. It follows that

φ(M) = φ(EB) = φ(B) ⊆ B ⊆ A.

Now, M P G, and hence, φ(M) P G, and we conclude that φ(M) = 1, since coreG(A) = 1.
Then φ(B) = 1, and since B is cyclic, it follows that |B| ⩽ p. Then |M : B| < |B| ⩽ p, and
since M/B ∼= E/B ∩ E1, it is a p-group, it follows that M/B = 1, that is, M = B ⊆ A. But
M P G, and since M ⊆ A, we have M = 1, whence E = 1, a contradiction.

It follows that M is non-abelian, and since M/E ∼= B/B ∩ E is cyclic, we conclude that
E is not central in M2, and so E ∩ Z(M) ⊊ E. Again recall that Z(M) is characteristic in M
and hence normal in G. Due to the minimality of E, we must have E ∩ Z(M) = 1, and thus
Z(M) is cyclic because the restriction of the surjection M ↠ M/E is injective on Z(M).

Since B is an abelian subgroup of M and |M : B| < |B|, due to Corollary 4.14, we have
that B ∩ F(M) is non-trivial. Due to Proposition 2.24, F(M) ⊆ F(G), and so E centralizes
F(M) because E ⊆ Z(F(G)). Since every element of B ∩ F(M) commutes with every
element of B (since B is abelian) and every element of E, we see that B ∩ F(M) is a non-
trivial central subgroup of EB = M. Since Z(M) is cyclic, we see that B ∩ F(M) ⊆ Z(M)
is characteristic in Z(M) P G3, and hence, B ∩ F(M) is a non-trivial normal subgroup of G
contained in A, a contradiction. This completes the proof. ■

THEOREM 4.16 (HOROSEVSKII). Let σ ∈ Aut(G), where G is a non-trivial finite group.
Then the order o(σ) of σ as an element of Aut(G) is strictly smaller than |G|.
Proof. Let A = ⟨σ⟩ ⊆ Aut(G), so that A is a cyclic group of order equal to the order of σ
as an element of Aut(G). Set Γ = G ⋊θ A, where θ : A → Aut(G) is the obvious inclusion
map. We identify G and A with subgroups G × {1} and {1} × A of Γ. Note that the
conjugation action of A on G as elements of Γ is given by gτ = τ(g) ∈ G for τ ∈ A. By
definition of an automorphism, every non-identity element of A acts non-trivially on G,
and hence, A ∩ CΓ(G) = 1.

Since G is non-trivial and A is cyclic, due to Theorem 4.15, |A : K| < |Γ : A|, where K =
coreΓ(A). But then K ∩ G ⊆ A ∩ G = 1, and both K and G are normal in Γ, consequently,
their elements commute, that is, K ⊆ CΓ(G). Since K ⊆ A, we see that K ⊆ A ∩ CΓ(G) = 1,
that is, K is trivial. Thus,

o(σ) = |A| = |A : K| < |Γ : A| = G,

as desired. ■

�� Quasisimple Groups

Recall that for a group G, we denote the commutator subgroup [G, G] by G′. A group is
said to be perfect if G = G′. We denote the further commutators of G by G′′ = [G′, G′] and
G′′′ = [G′′, G′′]. A group is said to be simple if it admits precisely two normal subgroups.
In particular, the trivial group is not simple.

1These quotients make sense because M is abelian.
2Recall that if G/Z(G) is cyclic, then G is abelian.
3Every subgroup of a cyclic group is characteristic.
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LEMMA 4.17. Let G be a group and suppose that G/Z(G) is simple. Then G/Z(G) is
non-abelian, and G′ is perfect. Also G′/Z(G′) is isomorphic to the simple group G/Z(G).

Proof. Let Z = Z(G). If G/Z abelian simple, then it must be cyclic, and hence, G is abelian,
whence G = Z, a contradiction. Thus, G/Z is a non-abelian group, in particular, G is not
solvable, thus G′′′ ̸= 1, so G′′ is not abelian, and hence, G′′ ̸⊆ Z.

Since G/Z is simple, Z is a maximal normal subgroup of G and G′′ ̸⊆ G, and thus,
G′′Z ⊋ Z is a normal subgroup of G, and we conclude that G′′Z = G. Then

G
G′′ =

G′′Z
G′′

∼=
Z

Z ∩ G′′ ,

which is abelian. Thus, G′ ⊆ G′′ ⊆ G′, whence G′ is perfect.
Finally, since G = G′′Z = G′Z, we have

G′

Z ∩ G′
∼=

G′Z
Z

=
G
Z

is simple. It follows that Z ∩ G′ is a maximal normal subgroup of G′, and since G′ is
non-abelian, we see that Z ∩ G′ ⊆ Z(G′) ⊊ G′, and hence, Z ∩ G′ = Z(G′). Thus,

G′

Z(G′)
=

G′

Z ∩ G′
∼=

G′Z
Z

=
G
Z

,

as desired. ■

DEFINITION 4.18. A group G is said to be quasisimple if G/Z(G) is simple and G is perfect.

LEMMA 4.19. Let G be quasisimple. If N is a proper normal subgroup of G, then N ⊆ Z(G).
Also, every nonidentity homomorphic image of G is quasisimple.

Proof. Again, let Z = Z(G), so that Z is a maximal normal subgroup of G, and let N ◁ G
with N ⊊ G. If N ̸⊆ Z, then NZ ⊋ Z is a normal subgroup of G, and hence, NZ = G.
Then, we have that

G
N

=
NZ
N

=
Z

N ∩ Z
is abelian, and so G = G′ ⊆ N ⊊ G, a contradiction. Hence, N ⊆ G.

Next, we must show that G = G/N is quasisimple. We know that (G)′ = G′ = G, and
thus G is perfect. Further, since N ⊆ Z, we have G/Z ∼= G/Z is simple and non-abelian.
Thus, Z(G) = Z, thereby completing the proof. ■

DEFINITION 4.20. A subnormal quasisimple subgroup of an arbitrary finite group G is
called a component of G.

Before proceeding, we present a technical lemma due to P. Hall.

LEMMA 4.21 (P. HALL). Let G be a group (possibly infinite). Let x, y, z ∈ G, then

[x, y−1, z]y[y, z−1, x]z[z, x−1, y]x = 1.
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Proof. Just write it out :-) ■

LEMMA 4.22 (THREE SUBGROUPS). Let X, Y, Z ⩽ G and suppose

[X, Y, Z] = 1 and [Y, Z, X] = 1.

Then [Z, X, Y] = 1.

Proof. Let x ∈ X, y ∈ Y, z ∈ Z. Then [x, y−1, z] = 1 and [y, z−1, x] = 0, consequently due
to Lemma 4.21, [z, x−1, y]x = 1 and hence [z, x−1, y] = 1. That is, [z, x−1] ∈ CG(y) for all
x ∈ X, y ∈ Y, and z ∈ Z. It follows that [Z, X] ⊆ CG(Y), and hence [Z, X, Y] = 1. ■

LEMMA 4.23. Let N be a minimal normal subgroup of a finite group G, and suppose that
H is a component of G with H ̸⊆ N. Then [N, H] = 1.

Proof. Note that H ∩ N ⊊ H and H ∩ N ◁ H, whence by Lemma 4.19, H ∩ N ⊆ Z(H).
Now, H ◁◁ G, and N is minial normal in G, whence due to Theorem 4.7, N ⊆ NG(H),
and hence, [N, H] ⊆ H. Since N is normal, we have [N, H] ⊆ N, consequently, [N, H] ⊆
N ∩ H ⊆ Z(H). Then [N, H, H] = 1 and [H, N, H] = 1. Due to Lemma 4.22, we must have
[H, H, N] = 1. Since H′ = H, we have [H, N] = 1 as desired. ■

THEOREM 4.24. Let H and K be distinct components of a finite group G. Then [H, K] = 1.

Proof. Induction on |G|. If both H and K are contained in a proper subgroup X of G, then
H and K are subnormal in X and hence, are distinct components of X. The inductive
hypothesis applies and [H, K] = 1. So we can assume henceforth that no proper subgroup
of G contains both H and K.

If G is simple, then being subnormal, both H and K must be one of {1, G}. If one of
H or K is 1, then there is nothing to prove. On the other hand, since H ̸= K, we cannot
have H = G = K. Thus, we may assume that G is a non-trivial non-simple group. Let
N ◁ G be a minimal normal subgroup (hence N ⊊ G). If one of the components, say K
were contained in N, then H ̸⊆ N (since they cannot be contained in a proper subgroup of
G), and due to Lemma 4.23 [H, K] ⊆ [H, N] = 1, as desired. We can therefore assume that
for every minimal normal subgroup N of G, we have H ̸⊆ N, and K ̸⊆ N.

Let G = G/N, where N is a minimal normal subgroup of G, and observe that H and
K are non-identity subnormal subgroups of G. Due to Lemma 4.19, both H and K are
quasisimple., and so they are components of G. If H ̸= K, then by the inductive hypothesis,
[H, K] = [H, K] = 1, and hence, [H, K] ⊆ N. Due to Lemma 4.23, [N, H] = [N, K] = 1, and
thus,

[H, K, H] = 1 and [K, H, H] = 1.

Due to Lemma 4.22, 1 = [H, H, K] = [H, K], since H′ = H owing to it being quasisimple.
It remains to analyze the case H = K, that is, HN = KN, and we can assume that this

equality holds for every minimal normal subgroup N of G. Since HN contains both H and
K, it follows that HN = G (since both H and K cannot be contained in a proper subgroup
of G). By Theorem 4.7, N ⊆ NG(H), and thus H ◁ HN = G, and similarly, K ◁ G, and
hence, [H ∩ K] ⊆ H ∩ K. If 1 ̸= [H, K] ◁ G, we could choose a minimal normal subgroup
N such that N ⊆ [H, K] ⊆ H ∩ K. Thus H = HN = KN = K, a contradiction. ■
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