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§1 C(X)

�� Maximal Ideals

THEOREM 1.1. Let X be a compact Hausdorff space. Every maximal ideal in C(X) is of
the form

mx = { f ∈ C(X) : f (x) = 0} .

Further, the natural map

X −→ MaxSpec C(X) x 7−→ mx

is a homeomorphism when the latter is endowed with the Zariski topology.

PROPOSITION 1.2. Let X be a compact Hausdorff space. Every prime ideal in C(X) is
contained in a unique maximal ideal.

THEOREM 1.3 (SURY). Every maximal ideal in C[0, 1] is uncountably generated.

Proof. Suppose c ∈ [0, 1] such that mc is countably generated, by say ( f1, f2, . . . ). Upon
multiplying by a suitable real scalar, we may suppose that ∥ fi∥∞ ⩽ 1. Define f ∈ C[0, 1] by

f (x) =
∞

∑
n=1

√
| fn(x)|
2n .

Since f ∈ mc, there is an r ⩾ 1 and g1, . . . , gr ∈ C[0, 1] such that f = g1 f1 + · · ·+ gr fr. Let
M > 0 be such that ∥gi∥ ⩽ M for 1 ⩽ i ⩽ r. Then,

| f (x)| ⩽ M
r

∑
i=1

| fi(x)|.

Using continuity, we can choose a neighborhood U of c in [0, 1] on which√
| fi(x)| < 1

2i M
1 ⩽ i ⩽ r, ∀ x ∈ U.
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Further, note that not all the fi’s (for 1 ⩽ i ⩽ r) can vanish on U, since that would mean f
vanishes on U, and hence, every fi (for i ⩾ 1) vanishes on U.

Consequently, there is some x0 ∈ U and 1 ⩽ j ⩽ r such that f j(x) ̸= 0. In particular,
this means

| f j(x0)| <

√
| f j(x0)|

2j .

Putting all this together, we have

| f (x0)| ⩽ M
r

∑
i=1

| fi(x0)| < M
r

∑
i=1

√
| fi(x0)|
2i M

⩽ | f (x0)|,

a contradiction. This completes the proof. ■

�� Krull Dimension

Throughout this (sub)section, X denotes a compact Hausdorff space. For every x ∈ X,
there is a maximal ideal

mx = { f ∈ C(X) : f (x) = 0} .

These are the only maximal ideals in C(X). The goal of this (sub)section is to prove the
following

THEOREM 1.4. If there is a point p ∈ X and an f ∈ C(X) such that f (p) = 0 and there is
no neighborhood of p on which f vanishes, then C(X) has infinite Krull dimension.

DEFINITION 1.5. A partially ordered ring is a pair (A,≦) where ≦ is a partial order on A
such that

• x ≦ y implies x + z ≦ y + z, and

• 0 ≦ x and 0 ≦ y implies 0 ≦ xy,

for all x, y, z ∈ A. A totally ordered ring is a partially ordered ring (A,≦) such that ≦ is a
total order.

The ring C(X) has a canonical partial order, given by f ≦ g if and only if f (x) ⩽ g(x)
for all x ∈ X.

DEFINITION 1.6. An ideal a of a partially ordered ring A is said to be convex if whenever
a, b ∈ A such that 0 ≦ a ≦ b and b ∈ a, then a ∈ a.

PROPOSITION 1.7. If (A,≦) is a partially ordered ring, and a P A is a convex ideal, then
A/a has a natural partial order given by:

(a + a) ≦ (b + a) if a ≦ b.

Proof. Standard. ■

PROPOSITION 1.8. Let P be a prime ideal in C(X). Then, P is convex.
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Proof. Suppsoe 0 ≦ f ≦ g in C(X) and g ∈ P. The function h : X → R given by

h(x) =

{
f (x)2

g(x) g(x) ̸= 0

0 g(x) = 0

is a continuous function such that f 2 = gh ∈ P, whence f ∈ P. ■

PROPOSITION 1.9. The ring A = C(X)/P is a totally ordered local domain. Further, the
primes of A are totally ordered by inclusion.

Proof. That it is a local domain follows from the fact that there is a unique maximal ideal
containing P. For any f ∈ C(X), f 2 ≡ | f |2 (mod P), and hence, f ≡ | f | (mod P) or
f ≡ −| f | (mod P). Consequently, f +P is comparable with 0 in A, whence A is totally
ordered.

Recall that the primes in A are of the form p = Q/P for some prime Q ⊇ P. Since Q is
convex, so is p.

Finally, let p and q be two primes in A and suppose a ∈ q \ p. Then, for every b ∈ q,
b < a, else a ∈ p. Hence, b ∈ p. This shows that p ⊆ q, whence the primes are totally
ordered by inclusion. ■

Let p ∈ X be a point such that there is an f ∈ C(X) such that f (p) = 0 but there is no
neighborhood of p on which f is identically 0. Upon multiplying by a suitable real scalar,
we may suppose that 0 ⩽ f (x) < e−2 < 1 on X.

PROPOSITION 1.10. The maximal ideal mp properly contains a prime ideal, say P.

Proof. Consider the local ring C(X)mp . If mp does not properly contain a prime ideal, then
C(X)mp is a local ring of dimension 0, whence the maximal ideal is the nilradical. But this
ring is isomorphic to the ring of germs at p and the germ of f at p is not nilpotent since it
does not vanish on any neighborhood of p. ■

Let
Ip = {g ∈ C(X) : g vanishes on a neighborhood of p} ⊆ mp.

PROPOSITION 1.11. Ip ⊆ P.

Proof. The localization map C(X) → C(X)mp is a surjective ring homomorphism whose
kernel is Ip. Note that Pec = P, since P is prime. But upon contracting, we see that P
must contain the kernel. ■

Proof of Theorem 1.4. Let A = C(X)/P. We shall show that A has infinite Krull dimension.
To this end, it suffices to show that we can find a prime ideal Q such that P ⊊ Q ⊊ mp,
since this process can then be repeated ad infinitum.

Define the function g : X → R by

g(x) =

{
1

| log f (x)| f (x) ̸= 0

0 f (x) = 0.
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This is a continuous function on X. Further, from basic calculus, it is evident that for every
positive integer k, there is a neighborhood of 0 in [0, ∞) on which t| log t|k < 1. Hence, for
every positive integer k, there is a neighborhood U of p on which g(x)k ⩾ f (x).

Since C(X)/Ip is ordered, we see that gk + Ip ≧ f + Ip for all positive integers k in
C(X)/Ip. Since A is a quotient of C(X)/Ip, we have that gk +P ≧ f +P for all positive
integers k in A.

Let a, b ∈ A denote the images of f and g respectively. Then a ⩽ bk for all positive
integers k. Note that by construction, 0 ⩽ g(x) < 1

2 on all of X. Suppose A has no prime
ideals other than the maximal ideal and (0), then the radical of (a) P A, which is the
intersection of all primes containing (a) must be equal to the maximal ideal.

In particiular, there is a positive integer n such that bn ∈ (a), whence there is some
c ∈ A such that bn = ac. Since 0 < a, b, we have that 0 < c. Therefore, we can find some
0 ≦ h ∈ C(X) such that c is the image of h in A. Since the supremum of g on X is smaller
than 1

2 , and h is bounded on X (since X is compact), we have that for sufficiently large
positive integers k, 0 < gkh < 1. That is, for sufficiently large k, 0 ≦ bkc ≦ 1.

Hence, for all sufficiently large k, we have

a ≦ bn+k = a(bkc) ≦ a =⇒ bn+k = a.

Consequently, bN = bN+1 for sufficiently large N. Since A is a domain, this is possible if
and only if b ∈ {0, 1}, neither of which is the case. This completes the proof. ■

PROPOSITION 1.12. Let X be a compact Hausdorff space such that C(X) consists of only
the locally constant functions on X. Then X is a finite set.

Proof. We first show that every Gδ-set in X is open. To this end, suppose U1, U2, . . . is a
collection of open subsets of X containing a point p ∈ X. Urysohn’s lemma furnishes
continuous functions fn : X → [0, 1] such that fn(p) = 1 and fn vanishes on X \Un. Define
f : X → [0, 1] by

f (x) =
∞

∑
n=1

1
2n fn(x) x ∈ X.

This series converges uniformly due to the Weierstrass M-test, whence f is continuous,
i.e., locally constant. Thus, there is a neighborhood V of p in X on which f is identically 1.
Note that if f (q) = 1 then q ∈ Un for all n ⩾ 1. Thus,

V ⊆
∞⋂

n=1

Un =⇒
∞⋂

n=1

Un is open.

Next, given disjoint points a, b ∈ X, there is a continuous function f : X → [0, 1] such
that f (a) = 0 and f (1) = b. Note that the zero set of f is open because f is locally constant.
Whence, we have a disjoint union of clopen sets Ua,b ⊔ Ub,a such that a ∈ Ua,b and b ∈ Ub,a.

Suppose now that X is not finite and choose a countably infinite set A ⊆ X. Consider
the collection S of sets S such that

• S is a collection of pairs (a, b) with a, b ∈ A and a ̸= b.
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• For all a ̸= b in A, exactly one of (a, b) and (b, a) is in S.

Note that every S ∈ S is a countable set. Next, define

US =
⋂

(a,b)∈S

Ua,b.

Since every Gδ in X is open, every US is clopen. Further,

X =
⊔

S∈S

US.

Finally, note that the elements of A lie in disjoint US’s by construction. As a result, at least
countably many of the US’s are non-empty. Hence, we have expressed X as a disjoint
union of at least countably many disjoint open sets, a contradiction to the compactness of
X. This completes the proof. ■

To summarize, we have:

THEOREM 1.13. Let X be a compact Hausdorff space. Then,

• dim C(X) = 0 if X is a finite set.

• dim C(X) = ∞ in all other cases.

Proof. If X is finite, then C(X) = Rn as a ring, whence dim C(X) = 0. The other cases have
been handled above. ■
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