Rings of Continuous Functions

Swayam Chube
December 16, 2024

§1 C(X)
8§ Maximal Ideals
THEOREM 1.1. Let X be a compact Hausdorff space. Every maximal ideal in C(X) is of
the form
my = {f € C(X): f(x) =0}.
Further, the natural map
X — MaxSpec C(X) X — my
is a homeomorphism when the latter is endowed with the Zariski topology.

PROPOSITION 1.2. Let X be a compact Hausdorff space. Every prime ideal in C(X) is
contained in a unique maximal ideal.

THEOREM 1.3 (SURY). Every maximal ideal in C[0, 1] is uncountably generated.

Proof. Suppose ¢ € [0,1] such that m. is countably generated, by say (f1, f2,...). Upon
multiplying by a suitable real scalar, we may suppose that || ;|| < 1. Define f € C|[0,1] by

Since f € m,, thereisanr > 1and g1,...,g- € C[0,1] such that f = g1 f1 + - - + g/ fr. Let
M > 0be such that ||g;|| < M for 1 <i < r. Then,

ol < M ):1 ()]

Using continuity, we can choose a neighborhood U of c in [0, 1] on which
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Further, note that not all the f;’s (for 1 < i < r) can vanish on U, since that would mean f
vanishes on U, and hence, every f; (for i >> 1) vanishes on U.
Consequently, there is some xo € U and 1 < j < r such that f;(x) # 0. In particular,
this means
|fj(x0)]

o)l <

Putting all this together, we have

£ (x0 Mzm r<MZV'“0 -l
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a contradiction. This completes the proof. u

8§ Krull Dimension

Throughout this (sub)section, X denotes a compact Hausdorff space. For every x € X,

there is a maximal ideal
my = {f € C(X): f(x) =0}.

These are the only maximal ideals in C(X). The goal of this (sub)section is to prove the
following

THEOREM 1.4. If there is a point p € X and an f € C(X) such that f(p) = 0 and there is
no neighborhood of p on which f vanishes, then C(X) has infinite Krull dimension.

DEFINITION 1.5. A partially ordered ring is a pair (A, =) where < is a partial order on A
such that

e x < yimpliesx+z <y +z,and
e 0= xand0 = y implies 0 < xy,

for all x,y,z € A. A totally ordered ring is a partially ordered ring (A, <) such that < isa
total order.

The ring C(X) has a canonical partial order, given by f < g if and only if f(x) < g(x)
forall x € X.

DEFINITION 1.6. An ideal a of a partially ordered ring A is said to be convex if whenever
a,b € Asuchthat0 <a<bandb € q,thena € a.

PROPOSITION 1.7. If (A, £) is a partially ordered ring, and a < A is a convex ideal, then
A/ahas a natural partial order given by:

(a+a) < (b+a) if a<0b
Proof. Standard. [

PROPOSITION 1.8. Let B3 be a prime ideal in C(X). Then, B is convex.
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Proof. Suppsoe 0 = f < ¢in C(X) and g € B. The function & : X — R given by

h(x) = {gg SEX§%8
g(x) =

is a continuous function such that f2 = ¢h € %3, whence f € 3. [

PROPOSITION 1.9. The ring A = C(X) /% is a totally ordered local domain. Further, the
primes of A are totally ordered by inclusion.

Proof. That it is a local domain follows from the fact that there is a unique maximal ideal
containing %B. For any f € C(X), f2 = |f|*> (mod B), and hence, f = |f| (mod P) or
f =—|f| (mod P). Consequently, f + P is comparable with 0 in A, whence A is totally
ordered.

Recall that the primes in A are of the form p = Q/°B for some prime Q D B. Since 9 is
convex, so is p.

Finally, let p and q be two primes in A and suppose a € g\ p. Then, for every b € q,
b < a,elsea € p. Hence, b € p. This shows that p C q, whence the primes are totally
ordered by inclusion. |

Let p € X be a point such that there is an f € C(X) such that f(p) = 0 but there is no
neighborhood of p on which f is identically 0. Upon multiplying by a suitable real scalar,
we may suppose that 0 < f(x) < e ? < 1on X.

PROPOSITION 1.10. The maximal ideal m, properly contains a prime ideal, say 1.

Proof. Consider the local ring C(X)m,. If m; does not properly contain a prime ideal, then
C(X)m, is a local ring of dimension 0, whence the maximal ideal is the nilradical. But this
ring is isomorphic to the ring of germs at p and the germ of f at p is not nilpotent since it
does not vanish on any neighborhood of p. |

Let
I, = {g € C(X): g vanishes on a neighborhood of p} C m,.

PROPOSITION 1.11. I, C B.

Proof. The localization map C(X) — C(X)m, is a surjective ring homomorphism whose
kernel is [,. Note that P = ‘B, since ‘B is prime. But upon contracting, we see that ‘B
must contain the kernel. |

Proof of Theorem 1.4. Let A = C(X) /. We shall show that A has infinite Krull dimension.
To this end, it suffices to show that we can find a prime ideal Q such thatf C Q C m,,
since this process can then be repeated ad infinitum.

Define the function g : X — R by

e f(x) #0
) = | Tog
$x) {0 N =0



This is a continuous function on X. Further, from basic calculus, it is evident that for every
positive integer k, there is a neighborhood of 0 in [0, c0) on which ¢|log ¢|* < 1. Hence, for
every positive integer k, there is a neighborhood U of p on which g(x)¥ > f(x).

Since C(X)/ I, is ordered, we see that gk + I, 2 f+ I, for all positive integers k in
C(X)/I,. Since A is a quotient of C(X)/I,, we have that ¢ + B = f + P for all positive
integers k in A.

Leta,b € A denote the images of f and g respectively. Then a < b* for all positive
integers k. Note that by construction, 0 < g(x) < % on all of X. Suppose A has no prime
ideals other than the maximal ideal and (0), then the radical of (a) < A, which is the
intersection of all primes containing (a) must be equal to the maximal ideal.

In particiular, there is a positive integer n such that b" € (a), whence there is some
¢ € A such that b" = ac. Since 0 < a,b, we have that 0 < c¢. Therefore, we can find some
0 < h € C(X) such that c is the image of 1 in A. Since the supremum of g on X is smaller
than %, and h is bounded on X (since X is compact), we have that for sufficiently large
positive integers k, 0 < ¢"h < 1. That is, for sufficiently large k, 0 < bkc < 1.

Hence, for all sufficiently large k, we have

a <t =qafe)<a = =4

Consequently, bN = bN*1 for sufficiently large N. Since A is a domain, this is possible if
and only if b € {0,1}, neither of which is the case. This completes the proof. |

PROPOSITION 1.12. Let X be a compact Hausdorff space such that C(X) consists of only
the locally constant functions on X. Then X is a finite set.

Proof. We first show that every G;-set in X is open. To this end, suppose Uy, Uy, ... isa
collection of open subsets of X containing a point p € X. Urysohn’s lemma furnishes
continuous functions f, : X — [0, 1] such that f,(p) = 1 and f,, vanishes on X \ U,,. Define
f:X —1[0,1] by
= 1
f(x) = Zz—nfn(x) x € X.

This series converges uniformly due to the Weierstrass M-test, whence f is continuous,
i.e., locally constant. Thus, there is a neighborhood V of p in X on which f is identically 1.
Note that if f(7) = 1 then g € U, forall n > 1. Thus,

VC (U, = () Unisopen.

n=1 n=1

Next, given disjoint points 4, b € X, there is a continuous function f : X — [0,1] such
that f(a) = 0and f(1) = b. Note that the zero set of f is open because f is locally constant.
Whence, we have a disjoint union of clopen sets U, ;, LI U}, , such thata € U, and b € Uy ,.

Suppose now that X is not finite and choose a countably infinite set A C X. Consider
the collection .7 of sets S such that

e Sisa collection of pairs (a,b) witha,b € A and a # b.

4



e Foralla # bin A, exactly one of (a,b) and (b,a) isin S.

Note that every S € .¥ is a countable set. Next, define

Us= () Uy
(ab)es

Since every G; in X is open, every Us is clopen. Further,

X=|] Us
Ses

Finally, note that the elements of A lie in disjoint Ug’s by construction. As a result, at least
countably many of the Ug’s are non-empty. Hence, we have expressed X as a disjoint
union of at least countably many disjoint open sets, a contradiction to the compactness of
X. This completes the proof. |

To summarize, we have:

THEOREM 1.13. Let X be a compact Hausdorff space. Then,
e dim C(X) = 0if X is a finite set.
e dim C(X) = oo in all other cases.

Proof. If X is finite, then C(X) = R" as a ring, whence dim C(X) = 0. The other cases have
been handled above. |
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