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§1 FINITE FREE RESOLUTIONS

DEFINITION 1.1. A module E is said to be stably free if there exists a finite free module F of
such that E ⊕ F is finite free.

E is said to have a finite free resolution if there is a resolution

0 → En → · · · → E0 → E → 0

such that each Ei is a finite free module.

PROPOSITION 1.2. Let M be projective. Then M is stably free if and only if M admits a
finite free resolution.

Proof. Suppose first that M is stably free. Then, there is a finite free F such that E = M ⊕ F
is finite free. Thus, 0 → F → E → M → 0 is a finite free resolution of M.

On the other hand, suppose M admits a finite free resolution,

0 → En → · · · → E0 → M → 0,

where n is the smallest such. We shall induct on this n. The base case with n = 0 is trivial
since M is free. Let M1 = ker (E0 → M). Then, M1 has a finite free resolution

0 → En → · · · → E1 → M1 → 0

of length n − 1 whence the induction hypothesis applies and there is a finite free F such
that M1 ⊕ F is finite free. Using the fact that M is projective, we have

M ⊕ (M1 ⊕ F) ∼= (M ⊕ M1)⊕ F ∼= E ⊕ F,

and hence, M is stably free. ■

DEFINITION 1.3. A resolution

0 → En → · · · → E0 → M → 0

is said to be stably free if each Ei is stably free for 0 ⩽ i ⩽ n.
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PROPOSITION 1.4. M has a finite free resolution of length n ⩾ 1 if and only if it has a
stably free resolution of length n.

Proof. Obviously every finite free resolution is stably free. Suppose now that M has a
stably free resolution of length n:

0 → En → · · · → E0 → M → 0

Choose any index 0 ⩽ i < i + 1 ⩽ n. There are finite free modules Fi, Fi+1 corresponding
to Ei, Ei+1 respectively. Set F = Fi ⊕ Fi+1. Then, we have a stably free resolution:

0 → En → · · · → Ei+1 ⊕ F → Ei ⊕ F → Ei−1 → · · · → E0 → M → 0,

with the modified map being (Ei+1 → Ei, idF).
Applying the above construction successively to pairs (E0, E1), (E1, E2) and so on, we

end up with a finite free resolution of M. ■

DEFINITION 1.5. M1 and M2 are said to be stably isomorphic if there exist finite free modules
F1 and F2 such that M1 ⊕ F1

∼= M2 ⊕ F2.

LEMMA 1.6 (SCHANUEL). Let 0 → K → P → M → 0 and 0 → K′ → P′ → M → 0 be
exact sequences where P and P′ are projective. Then K ⊕ P′ ∼= K′ ⊕ P.

Proof. Treat K and K′ as submodules of P and P′ respectively. The projectivity of P and P′

gives a commutative diagram

0 // K //

u
��

P //

w
��

M //

id

0

0 // K′ // P′ // M // 0

where u is the restriction of w to K. Consider the sequence 0 → K
f−→ P ⊕ K′ g−→ P′ → 0

where
f (x) = (x, u(x)) and g(y, z) = w(y)− z.

We contend that this is exact.

• Exactness at K is trivial.

• It is easy to see that g ◦ f = 0. Suppose (y, z) ∈ ker g, that is, w(y) = z. Since z ∈ K′,
we must have that y ∈ K whence u(y) = z, which proves exactness at P ⊕ K′.

• Choose some x′ ∈ P′. We can choose an x ∈ P such that the images of x and x′ in M
are the same. Thus, x′ − w(x) ∈ K′ whence exactness at P′ follows.

Finally, since P′ is projective, the sequence splits, giving us the desired conclusion. ■

LEMMA 1.7. Suppose M1 and M2 are stably isomorphic. Let

0 → N1 → E1 → M1 → 0 and 0 → N2 → E2 → M2 → 0

be exact sequences where E1 and E2 are stably free. Then N1 is stably isomorphic to N2.
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Proof. There are finite free modules F1, F2 such that M1 ⊕ F1
∼= M2 ⊕ F2. We may modify

the above short exact sequences to obtain

0 → N1 → E1 ⊕ F1 → M1 ⊕ F1 → 0 and 0 → N2 → E2 ⊕ F2 → M2 ⊕ F2 → 0.

Invoking Lemma 1.6,
N1 ⊕ E2 ⊕ F2

∼= N2 ⊕ E1 ⊕ F1.

Since both E1, E2 are stably free, there is a finite free module F such that both E1 ⊕ F and
E2 ⊕ F are finite free. Thus,

N1 ⊕ (E2 ⊕ F ⊕ F2) ∼= N2 ⊕ (E1 ⊕ F ⊕ F1)

and the conclusion follows. ■

DEFINITION 1.8. The minimal length of a stably free resolution of a module is called its
stably free dimension.

THEOREM 1.9. Let M be a module admitting a stably free resolution

0 → En → · · · → E0 → M → 0

of length n. Let
Fm → · · · → F0 → M

be an exact sequence with Fi stably free for 0 ⩽ i ⩽ m.

(a) If m < n− 1, then there exists a stably free module Fm+1 such that the above sequence
can be continued exactly to

Fm+1 → Fm → · · · → F0 → M

(b) If m = n − 1 and Fn = ker (Fn−1 → Fn−2). Then Fn is stably free.

Proof. For 0 ⩽ i ⩽ n, define Ki = ker(Ei → Ei−1) with the convention that E−1 = M.
Similarly, define K′

i = ker(Fi → Fi−1). Using Lemma 1.7, repeatedly along with the exact
sequences

0 → Ki → Ei → Ei−1 → 0 and 0 → K′
i → Fi → K′

i−1 → 0,

we conclude that Km and K′
m are stably isomorphic. Thus, there exist finite free modules

F, F′ such that Km ⊕ F ∼= K′
m ⊕ F′.

(a) m < n − 1 : We have

Em+1 ⊕ F ↠ Km ⊕ F ∼= K′
m ⊕ F′ → K′

m → 0.

Set Fm+1 = Em+1 ⊕ F which is easily seen to be stably free.

(b) m = n − 1 : We can choose Km = En. Then, En ⊕ F is stably free, whence so is
K′

m ⊕ F′, in particular, so is K′
m. This completes the proof. ■
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COROLLARY. If 0 → M1 → E → M → 0 is exact, M has stably free dimension ⩽ n, and E
is stably free, then M1 has stably free dimension ⩽ n − 1.

Proof. Let 0 → En → · · · → E0 → M → 0. We have an incomplete stably free resolution
E → M → 0. We may now invoke Theorem 1.9 with F0 = E to obtain a resolution

0 → Fn → · · · → F0 = E → M → 0.

But note that M1 = ker(E → M) and hence, there is a stably free resolution

0 → Fn → · · · → F1 → M1 → 0,

and the conclusion follows. ■

REMARK 1.10. Let 0 → M′ → M → M′′ → 0 be a short exact sequence of finitely
generated modules. Then, there are surjections φ : Rm → M′ and ψ : Rn → M′′, where
R is the base ring. There is also the canonical injection ι : Rm → Rm ⊕ Rn and the
canonical surjection π : Rm ⊕ Rn → Rn. Define the map Φ : Rm ⊕ Rn → M given by
Φ(x, y) = f (φ(x)) + ψ̃(y), where ψ̃ : Rn → M is a lift of the map ψ : Rn → M′′.

We contend that Φ is surjective. Indeed, let m ∈ M then there is a y ∈ Rn such that
ψ(y) = g(m). It is easy to see that m − ψ̃(y) ∈ ker g = im f and hence, there is an x ∈ Rm

such that f ◦ φ(x) = m − ψ̃(y). It follows that Φ(x, y) = m. Finally, the Snake Lemma
gives a nice exact diagram.

0

��

0

��

0

��

0 // M′
1

//

��

M1 //

��

M′′
1

//

��

0

0 // Rm ι //

φ
��

Rm ⊕ Rn π //

Φ
��

Rn //

ψ
��

ψ̃

yy

0

0 // M′
f

//

��

M g
//

��

M′′ //

��

0

0 0 0

LEMMA 1.11. Let M′′ be finitely presented and M finitely generated. If M′ is the kernel of
a surjection M ↠ M′′, then M′ is finitely generated.

Proof. We first prove this when M is finite free. Since M′′ is finitely presented, there is an
exact sequence 0 → K → F → M′′ → 0, where F is a finite free module and K is finitely
generated. Due to Lemma 1.6, M′ ⊕ F ∼= K ⊕ M, whence M′ is finitely generated.

Now, suppose M is just finitely generated. It can be written as the quotient of a free
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module F ↠ M. This gives a commutative diagram

0 // K //

��

F

!!��

0 // M′ //

��

M //

��

M′′ // 0

0 0

whence M′ is finitely generated. ■

THEOREM 1.12. Let 0 → M′ → M → M′′ → 0 be an exact sequence. If any two of these
modules have a finite free resolution, then so does the third.

Proof. There are three possible cases. We shall tacitly use Proposition 1.4 throughout this
proof.

M′ and M: We induct on the stable free dimension of M. For the base case with the stable
free dimension 0, M is stable free and the conclusion follows since M′ too has a
finite free resolution. Next, suppose the stable free dimension of M is n ⩾ 1. Due
to Remark 1.10 and Corollary 1, the stable free dimension of M1 is at most n − 1
whence the induction hypothesis applies and M′′

1 has a finite free resolution and the
conclusion follows.

M′ and M′′: Induct on the maximum of the stable free dimension of M′ and M′′. The base
case occurs when both M′ and M′′ have stably free dimension 0, that is, both are
stably free, consequently, projective. It follows that M ∼= M′ ⊕ M′′ is stably free.

Next, for the induction step, using Remark 1.10 and Corollary 1 we see that the
maximum of the stably free dimension of M′

1 and M′′
1 is at most n − 1, whereby the

induction hypothesis applies and the conclusion follows.

M and M′′: We induct on the stably free dimension of M′′. In the base case, M′′ is stably
free, in particular, projective, and hence, M′ ⊕ M′′ ∼= M, whence M′ is also stably
free.

As for the inductive step, again use Remark 1.10 and Corollary 1 to conclude. ■

§2 SERRE’S THEOREM

THEOREM 2.1. Let R be a Noetherian ring. If every finite R-module has a finite free
resolution, then every finite R[X]-module has a finite free resolution.

Proof. Let M be a finite R[X]-module. There is a filtration

M = M0 ⊋ M1 ⊋ · · · ⊋ Mn = 0,

where Mi/Mi+1
∼= R[X]/Pi for some prime Pi. In light of Theorem 1.12, it suffices to

prove the theorem in the case M = R[X]/P for some prime P.
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Suppose the theorem is false. Let Σ be the collection of all primes P such that R[X]/P
does not admit a finite free resolution. Choose P in Σ that maximizes p = P∩ R.

Let R0 = R/p, K0 its quotient field, P0 = P/pR[X] and M = R[X]/P. We may view
M as an R0[X]-module, equal to R0[X]/P0. Let f1, . . . , fn be a finite set of generators for
P0, and let f be a polynomial of minimal degree in P0.

We c an write fi = qi f + ri for 1 ⩽ i ⩽ n with qi, ri ∈ K0[X] and deg ri < deg f or ri = 0.
Let d0 be a common denominator for all coefficients of all qi, ri. Then, d0 ̸= 0 and

d0 fi = q′i f + r′i,

where q′i = d0qi, r′i = d0ri ∈ R0[X] Since deg f is minimal in P0, it follows that r′i = 0 for
all i, so d0P0 ⊆ ( f ).

Let N0 = P0/( f ), so that N0 is a module over R0[X], and hence, N0 can also be viewed
as an R[X]-module. When so viewed, we denote N0 by N. Let d ∈ R be any element
reducing to d0 mod p. Since d0 ̸= 0, d /∈ p.

The module N0 has a filtration such that each successive quotient is isomorphic to
R0[X]/Q0 where Q0 is an associated prime of N0. Let Q be the pullback of Q0 to R[X]. It
is easy to argue that these prime ideals Q are precisely the associated primes of N in R[X].
Since d0 kills N0, d must kill N and hence, d lies in every associated prime of N.

Note that each associated prime Q of N contains P and due to the preceding paragraph,
Q ∩ R ⊋ P ∩ R. Due to the maximality involved in the choice of P, every successive
quotient in the filtration of N has a finite free resolution, whence N has a finite free
resolution.

By assumption, p has a finite free resolution as an R-module, say

0 → En → · · · → E0 → p → 0.

Then
0 → En[X] → · · · → E0[X] → p[X] → 0

is a finite free resolution of p[X] ⊆ R[X] as an R[X]-module. From the exact sequence

0 → p[X] → R[X] → R0[X] → 0,

it follows that R0[X] has a finite free resolution as an R[X]-module.
There is a surjective R[X]-linear map µ f : R0[X] → ( f ), which is just multiplication by

f . The kernel of this map is trivial since R0[X] is an integral domain. It follows that ( f ) too
has a finite free resolution as an R[X]-module.

From the exact sequence of R[X]-modules

0 → ( f ) → P0 → N → 0,

we conclude that P0 has a finite free resolution as an R[X]-module. Next, from another
exact sequence of R[X]-modules

0 → pR[X] → P → P0 → 0,
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it follows that P has a finite free resolution as an R[X]-module. Finally from

0 → P → R[X] → R[X]/P → 0,

we conclude that R[X]/P admits a finite free resolution as an R[X]-module, a contradiction.
This completes the proof. ■

THEOREM 2.2 (SERRE). Let k be a field. Every finite projective module over k[X1, . . . , Xn]
admits a finite free resolution. Equivalently, is stably free.

§3 UNIMODULAR POLYNOMIAL VECTORS

DEFINITION 3.1. Let A be a commutative ring. An n-tuple ( f1, . . . , fn) ∈ An is said to be
unimodular if they generate the unit ideal in A. A unimodular vector is said to have the
unimodular extension property if there exists a matrix in GLn(A) with ( f1, . . . , fn)⊤ as the
first column.

REMARK 3.2. Note that a unimodular column vector ( f1, . . . , fn)⊤ has the unimodular
extension property if and only if some column vector obtained after a series of row and
column operations has that property.

THEOREM 3.3 (HORROCKS). Let (o,m, k) be a local ring and A = o[X]. Let f be a
unimodular column vector in A(n) such that some component in f has leading coefficient
1. Then f has the unimodular extension property.

Proof. If n = 1, then there is nothing to prove. Next, if n = 2, then ( f1, f2) = (1) and hence,
there are g1, g2 ∈ A such that f1g1 + f2g2 = 1, whence

det
(

f1 −g2
f2 g1

)
= 1.

Now, assume n ⩾ 3 and induct on the smallest degree d of a component of f with
leading coefficient 1. The base case with d = 0 is trivial. Suppose now that d ⩾ 1.
Using row operations, we may suppose that deg fi < d for i ̸= 1. Since there is a linear
combination ∑n

i=1 gi fi = 1, not all coefficients of f2, . . . , fn can lie in m, for if they did, then
g1 f1 ≡ 1 (mod m)[X], which is absurd, since f1 is not a unit modulo m[X].

Without loss of generality, suppose that some coefficient of f2 does not lie in m. Write

f1(X) = Xd + ad−1Xd−1 + · · ·+ a0 ai ∈ o

f2(X) = bsXs + · · ·+ b0 bi ∈ o, s ⩽ d − 1

such that some bi is a unit. Lt a be the ideal generated by all leading coefficients of
polynomials of the form g1 f1 + g2 f2 of degree ⩽ d − 1. We claim that a contains all the bi.
This can be seen inductively. First, bs lies in a because of Xd−s f2(X). Next, bs−1 is realised
as Xd−s f2(X)− bs f1(X) has leading coefficient bs−1 − bsad−1. But since a already contains
bs, it must also contain bs−1. Continue this way. Recall that one of the bi’s is a unit and
hence, a is the unit ideal.

7



Thus, there is a linear combination h = g1 f1 + g2 f2 having degree ⩽ d − 1 and leading
coefficient 1. If deg f3 < deg h, then h + f3 has leading coefficient 1 and degree ⩽ d − 1.
Now suppose deg f3 = deg h. If the leading coefficient of f3 is a unit, then multiply by its
inverse to make the leading coefficient 1. If, on the other hand, it is not a unit, then the
leading coefficient of h + f3 is a unit and hence, can be made 1 after multiplying by its
inverse. Now, the induction hypothesis applies, thereby completing the proof. ■

DEFINITION 3.4. Let A be a commutative ring. For two column vectors f , g ∈ A(n), we
write f ∼ g to mean that there exists M ∈ GLn(A) such that f = Mg, and we say that f is
equivalent to g over A.

PROPOSITION 3.5. Let (o,m, k) be a local ring. Let f be a unimodular vector in o[X](n)

such that some component has leading coefficient 1. Then f ∼ f (0) over o[X].

Proof. Note that f (0) ∈ o(n) has at least one component which is a unit, for if not, then
the constant term of any linear combination would always lie in m. Hence, it follows that
f (0) ∼ e1. On the the other hand, due to Theorem 3.3, f ∼ e1, thereby completing the
proof. ■

LEMMA 3.6. Let R be an integral domain, and S ⊆ R a multiplicatively closed subset
containing 1. Let X and Y be independent variables. If f (X) ∼ f (0) over S−1R[X], then
there is a c ∈ S such that f (X + cY) ∼ f (X) over R[X, Y].

Proof. Let M ∈ GLn(S−1R[X]) be such that f (X) = M(X) f (0). That is, M(X)−1 f (X) =
f (0). The right hand side is independent of X and hence, M(X + Y)−1 f (X + Y) = f (0)
when viewed over S−1R[X, Y]. Set G(X, Y) = M(X)M(X + Y)−1 ∈ S−1R[X, Y], then
G(X, Y) f (X + Y) = f (X).

By construction, we have G(X, 0) = I, the identity matrix and hence, we can write
G(X, Y) = I + YH(X, Y) for some matrix H(X, Y) with entries in S−1R[X, Y]. There is
some c ∈ S such that cH has entries in R[X, Y]. Then, G(X, cY) has entries in R[X, Y]. Now,
since deg M(X) is invertible in S−1R[X], it must be an element of S−1R. Further, since
deg M(X + cY) = det M(X), we have det G(X, cY) = 1, thereby completing the proof. ■

THEOREM 3.7. Let R be an integral domain, and let f be a unimodular vector in R[X](n),
such that one component has leading coefficient 1. Then f (X) ∼ f (0) over R[X].

Proof. Let J be the set of elements c ∈ R such that f (X + cY) is equivalent to f (X) over
R[X, Y]. We claim that J is an ideal.

• Let c ∈ J and a ∈ R. Then, f (X + caY) = f (X + c(aY)) is equivalent to f (X) over
R[X, aY], which is a subring of R[X, Y], whence the equivalence holds over the latter
too.

• Let c, c′ ∈ J. Then f (X + (c − c′)Y) is equivalent to f (X) over R[X, (c − c′)Y], which
is again a subring of R[X, Y], whence the equivalence holds over the latter too.
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We next contend that J is the unit ideal. Suppose not, then we can choose a maximal ideal m
containing J. Due to Proposition 3.5, f (X) is equivalent to f (0) over Rm[X], consequently,
using Lemma 3.6, there is a c ∈ R \ m such that f (X + cY) is equivalent to f (X) over
R[X, Y], a contradiction to the fact that J ⊆ m. Thus, J is the unit ideal in R and there exists
an M(X, Y) ∈ GLn(R[X, Y]) such that f (X + Y) = M(X, Y) f (X). Substituting X = 0, we
get f (Y) = M(0, Y) f (X) where M(0, Y) is also invertible and the conclusion follows. ■

THEOREM 3.8. Let k be a field and f a unimodular vector in k[X1, . . . , Xn](n). Then f has
the unimodular extension property.

Proof. The proof of this is quite similar to that of Noether Normalization. We induct on r.
Suppose first that r ⩾ 2. Let Yr = Xr and Xi = Yi + YNi

r for some suitable choice of Ni’s
such that at least one component of g(Y1, . . . , Yr) = f (X1, . . . , Xr) has leading coefficient
equal to 1.

Due to Theorem 3.7, using the fact that k[y1, . . . , Yr−1] is an integral domain, we have
that

g(Y1, . . . , Yr) = M(Y1, . . . , Yr)g(Y1, . . . , Yr−1, 0)

where M ∈ GLn (k[Y1, . . . , Yr]). Note that g(Y1, . . . , Yr−1, 0) is unimodular over k[Y1, . . . , Yr−1]
and hence, has the unimodular extension property, whence so does g(Y1, . . . , Yr). This
completes the induction step.

Finally, we must handle the base case of k[X], which is a PID. This is straightforward
for if f = ( f1, . . . , fn)⊤, then making repeated use of the Euclidean algorithm, we can make
one of the components a unit, since gcd( f1, . . . , fn) = 1. This completes the proof. ■

DEFINITION 3.9. A (commutative) ring A is said to have the unimodular extension property
if for every n ⩾ 1, every unimodular vector f ∈ A(n) has the property.the property.

LEMMA 3.10. Let A have the unimodular extension property. If E is a stably free A-module,
then E is free.

Proof. Let F be a finite free module of rank m such that E ⊕ F is finite free. We first show
that E is free when m = 1. That is, E ⊕ A ∼= A(n) for some positive integer n. We may
treat both E and A as submodules of A(n) and let u1 = (a11, . . . , an1)

⊤ be a basis for the
submodule A as an A-module. Consider the canonical projection A(n) → A. This map
sends u1 to 1 and being A-linear, it is of the form

(x1, . . . , xn)
⊤ 7→ α1x1 + · · ·+ αnxn

for some α1, . . . , αn ∈ A. Thus, u1 is unimodular.
The unimodular extension property furnishes an

M = (u1, . . . , un) =

a11 · · · a1n
... . . . ...

an1 · · · ann

 ∈ GLn(A).
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Using column operations, on M, one can make sure that u2, . . . , un ∈ E while maintaining
M ∈ GLn(A). Since u1, . . . , un form a basis for A(n), we see that u2, . . . , un must span E,
whence E is free.

Finally, if F has rank m ⩾ 2, then write F = F′ ⊕ A and use the first half of the proof to
induct downwards. ■

THEOREM 3.11 (QUILLEN-SUSLIN). Let k be a field. Every finite projective module over
k[X1, . . . , Xn] is free.

Proof. Let P be a projective module over k[X1, . . . , Xn]. Due to Theorem 2.2, P is stably free.
Next, due to Theorem 3.8 and Lemma 3.10, P must be free. ■
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