$$\prod_{i=1}^{\infty} \mathbb{Z}$$ ## Swayam Chube ## December 8, 2024 In $G = \prod_{i=1}^{\infty} \mathbb{Z}$, there are the "standard basis vectors" $\{e_i : i \geqslant 1\}$ given by $$e_i(j) = \begin{cases} 1 & i = j \\ 0 & \text{otherwise.} \end{cases}$$ These are linearly independent over \mathbb{Z} and hence generate a free abelian subgroup of G, which we denote by H. **LEMMA 1.** Let $f: G \to \mathbb{Z}$ be a homomorphism such that $f|_H = 0$. Then f = 0. *Proof.* As a consequence of the hypothesis, it is easy to see that $f(a_1, a_2, ...) = f(b_1, b_2, ...)$ if $a_i = b_i$ for all but finitely many $i \ge 1$. Let $p \ge 2$ be any prime and $(a_n)_{n \ge 1}$ be any sequence of integers. Our observation above yields that for all $n \ge 1$, $$f(a_1p, a_2p^2, \dots) = f(\underbrace{0, \dots, 0}_{n-1 \text{ times}}, a_np^n, a_{n+1}p^{n+1}, \dots).$$ The right hand side is divisible by p^n and hence, $p^n \mid f(a_1p, a_2p^2, \dots)$ for all $n \ge 1$. This is possible if and only if $$f(a_1p,a_2p^2,\dots)=0.$$ Finally, let $(a_n)_{n\geqslant 1}\in G$. Since 2^n and 3^n are coprime for all $n\geqslant 1$, there are $b_n,c_n\in\mathbb{Z}$ such that $a_n=b_n2^n+c_n3^n$. Thus, $$f(a_1, a_2,...) = f(2b_1, 4b_2,...) + f(3c_1, 9c_2,...) = 0.$$ This completes the proof. **THEOREM 2.** *G* is not a free abelian group. *Proof.* Suppose *G* were free, then there is a set *S* and an isomorphism $\varphi : G \to F = \bigoplus_{S} \mathbb{Z}$. Since *G* is uncountable, so is *S*. Let $\pi_s : F \to \mathbb{Z}$ denote the projection onto the *s*-th coordinate. For each $i \ge 1$, $\varphi(e_i)$ has only finitely many nonzero coordinates, say $S_i \subseteq S$. Then, $\bigcup_i S_i$ is a countable subset of S, whence $T = S \setminus \bigcup_i S_i$ is still uncountable, in particular, nonempty. For each $t \in T$, $\pi_t \circ \varphi(e_i) = 0$ for all $i \ge 1$ and hence, $\pi_t \circ \varphi|_H = 0$. Due to the preceding lemma, $\pi_t \circ \varphi = 0$ for all $t \in T$, but this is absurd, since φ is surjective. **LEMMA 3.** If $f: G \to \mathbb{Z}$ is a homomorphism, then $f(e_i) = 0$ for all but finitely many $i \ge 1$. *Proof.* Suppose not, then there is a sequence $1 \le i_1 < i_2 < \cdots$ such that $f(e_{i_j}) \ne 0$. By composing f with a suitable endomorphism of G, we may suppose that $i_j = j$ and $f(e_{i_j}) > 0$ for all $j \ge 1$. Let $a_i = f(e_i)$ and p be a prime not dividing a_1 . Define two sequences $(x_n)_{n \ge 1}$ and $(y_n)_{n \ge 1}$ by setting $x_1 = 1$, $$x_{n+1} = pf(x_1, \dots, x_n, 0, 0, \dots)$$ for $n \ge 1$, and $y_1 = 1$, $$y_n = f(x_1, \dots, x_{n-1}, 0, 0, \dots)$$ for $n \ge 2$. Hence, $x_n = py_n$ for $n \ge 2$. Note that for $n \ge 2$ $$y_{n+1} = y_n + a_n x_n = y_n + p a_n y_n = y_n (1 + p a_n) \geqslant (p+1) y_n.$$ In particular, $y_n \to \infty$ as $n \to \infty$. Also, multiplying both sides of the above equation by p, we have $$x_{n+1} = x_n(1 + pa_n) \quad \text{for } n \geqslant 2.$$ Therefore, for $n \ge 2$, $y_n \mid x_m$ whenever $m \ge n$. We can write $$f(x_1, x_2,...) = y_n + f(0,...,0, x_n, x_{n+1},...).$$ Since y_n divides the right hand side, $y_n \mid f(x_1, x_2, ...)$ for all $n \ge 1$. But y_n grows without bound, and hence, $f(x_1, x_2, ...) = 0$. Finally, note that $$0 = f(x_1, x_2, \dots) = a_1 + f(0, x_2, x_3, \dots) \equiv a_1 \pmod{p},$$ since $p \mid x_i$ for all $i \ge 2$. This is absurd, since $p \nmid a_1$. **THEOREM 4.** Hom_{**Z**}(G, **Z**) is a free abelian group with basis π_i : $G \to \mathbb{Z}$, the canonical projections. *Proof.* Follows from Lemma 1 and Lemma 3