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Abstract

Taming the big bad wolves of Complex Analysis by nuking it.

§1 ANALYTIC COVERING MAPS

Recall first the definiton of a covering map in a general topological space.

DEFINITION 1.1 (ABSTRACT COVERING MAP). A map π : E → B is said to be a covering
map if there is an open cover {Uα} of B such that π−1(Uα) is homeomorphic to Uα × Dα

where Dα is a topological space with the discrete topology.

DEFINITION 1.2 (ANALYTIC COVERING MAP). Let Ω, G ⊆ C be open sets. An abstract
covering map π : Ω → G is said to be analytic if π is a holomorphic map.

PROPOSITION 1.3. Let π : Ω → G be an analytic covering map and f : H → G a
holomorphic map. If there is a continuous map f̃ : H → Ω such that π ◦ f̃ = f , then f̃ is
holomorphic.

Proof. Let z0 ∈ H. Then, there is a neighborhood U of f (z0) in G and a neighborhood V of
f̃ (z0) such that π is a biholomorphism from V to U. Let W be a neighborhood of z0 that
maps into V under f̃ . Then, on W, we have f̃ = π−1 ◦ f , which is holomorphic. ■

§2 MODULAR FUNCTION

DEFINITION 2.1 (MODULAR TRANSFORMATION). A modular transformation is a Möbius
transformation

M(z) =
az + b
cz + d

such that
(

a b
c d

)
∈ SL2(Z). The set of all modular transformations form a group, known

as the modular group. We often identify this group with SL2(Z).
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DEFINITION 2.2. Let Γ denote the subgroup of SL2(Z) generated by

τ =

(
1 2
0 1

)
and σ =

(
1 0
2 1

)
.

This group will be of particular interest during the construction of a modular function. It
is customary to denote this group by Γ(2) but we drop the “(2)” for brevity.

DEFINITION 2.3. Let G denote the region

{z = x + iy ∈ H : − 1 ⩽ x < 1, |2z − 1| > 1 and |2z + 1| ⩾ 1}.

THEOREM 2.4. Let G and Γ be as defined above. Then,

1. φ1(G) ∩ φ2(G) = ∅ whenever φ1 ̸= φ2 in Γ.

2. H =
⊔

φ∈Γ φ(G).

3.

Γ =

{(
a b
c d

)
∈ SL2(Z)

∣∣∣∣∣ a, d ≡ 1 (mod 2) and b, c ≡ 0 (mod 2)

}
.

Proof. ■

THEOREM 2.5. Let G and Γ be as defined above. Then, there is a holomorphic function
λ : H → C having the following properties:

1. λ ◦ φ = λ for all φ ∈ Γ.

2. λ is injective on G.

3. λ(H) = C\{0, 1}.

4. λ : H → C\{0, 1} is a covering map.

Proof. Let
G0 = {z = x + iy ∈ H : 0 < x < 1 and |2z − 1| > 1}.

Note that G0 is simply connected and thus, there is a conformal equivalence f0 : G0 → H.
Then, there is an extension of f to a homeomorphism f : G0 → H that maps ∂G0 → ∂H.
Upon composing with a suitable Möbius transformation, we may suppose that f (0) = 0,
f (1) = 1 and f (∞) = ∞.

Consider the following three pieces of ∂G0,

L1 = {z ∈ H : ℜ(z) = 0}
L2 = {z ∈ H : |2z − 1| = 1}
L3 = {z ∈ H : ℜz = 1}.

First, note that f is a bijection L1 ∪ L2 ∪ L3 → ∂H = R. Further, L1 and L3 must map to
half lines with 0 and 1 mapping to themselves. Therefore, L1 must map to (−∞, 1], L2 to
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[0, 1] and L3 to [1, ∞). Next, note that f (L1) ⊆ R and hence, due to the Schwarz Reflection
Principle, there is an extension of f to all of G, defined by f (−x + iy) = f (x + iy). Note
that this gives f (G) = C\{0, 1} and f (int G) = C\[0, ∞). Finally, define λ : H → C by

λ(z) = λ(φ−1(z)) when z ∈ φ(G).

We contend that the λ defined above is holomorphic. Consider the set ∆ = G ∪ σ−1(G) ∪
τ−1(G), whose interior contains G. It is not hard to argue, from the definition of λ that it is
continuous on ∆ and holomorphic on the interiors of the aforementioned three sets that
form it. Therefore, λ is holomorphic on the interior of ∆, in particular, on G.

Lastly, we show that λ is a covering map. To do this, we shall show that every point
in C\{0, 1} has an evenly covered neighborhood. First, suppose ζ ∈ C\[0, ∞) and choose
δ > 0 small enough so that B0 = B(ζ, δ) ⊆ C\[0, ∞) and U = f−1(B0) ⊆ G. Obviously,
λ−1(B0) =

⊔
φ∈Γ φ(U). Thus B0 is an evenly covered neighborhood of ζ.

Next, suppose t ∈ (0, 1) and choose δ > 0 small enough so that B0 = B(t, δ) ⊆ C\{0, 1}.
From the explicit definition of f , note that f−1(t) contains two points, {z+, z−} and
f−1(B0) contains two components U+ and U− containing z+ and z− respectively, such
that f−1(B ∩ ±H) = U±. The transformation σ defined previously maps |2z + 1| = 1
to |2z − 1| = 1, z− to z+ and hence, maps U− to U+. Consequently, U0 = U+ ∪ σ(U−)
is a neighborhood of z+ such that λ(U0) = λ(U+) ∪ λ(σ(U−)) = B0. Consequently, the
components of λ−1(B0) that are biholomorphically mapped to B0 are φ(U0) where φ ∈ Γ.

Finally, suppose t ∈ (1, ∞). Recall that L3 is mapped to [1, ∞) under f , which was
initially defined on G0. Arguing as in the previous paragraph, we see that there are two
points z± with neighborhoods U± that are mapped to one another under τ. Thus, it follow
again, that t has an evenly covered neighborhood. This completes the proof. ■

COROLLARY. There is a covering map µ : D → C\{0, 1}

§3 NORMAL FAMILIES

THEOREM 3.1 (MONTEL-CARATHÉODORY). Let Ω ⊆ C be a region and

F = { f : Ω → C | f is holomorphic and f (Ω) ⊆ C\{0, 1}}.

Then, F is a normal family in C(Ω, Ĉ).

Proof. To prove that F is normal, it suffices to show that for every disk D in Ω, the
restriction of F to D is normal. Hence, we may suppose without loss of generality that
Ω = D. To show normality, we shall show that every sequence of functions in F has a
subsequence that is uniformly bounded on compact subsets of D or has a subsequence
that converges uniformly to ∞ on compact subsets of D.

Let { fn} be a sequence of functions in F . Then, there is a point α ∈ Ĉ such that a
subsequence { fnk} of { fn(0)} converges to α. Replace { fn} by { fnk}.
Case 1: α ∈ C\{0, 1}.

Consider the analytic covering map µ : D → C\{0, 1} and let U be an evenly covered
neighborhood of α. Pick a component V of µ−1(U). Since D is simply connected, there are
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holomorphic lifts f̃n : D → D such that µ ◦ f̃n = fn and f̃n(0) ∈ V for sufficiently large
n. This is a sequence of functions that is uniformly bounded on compact subsets of D

and hence, has a subsequence { f̃nk} that converges to a holomorphic function f : D → C.
Note that | f (z)| ⩽ 1 for all z ∈ D and if | f (z)| = 1 for some z ∈ D, then f must be a
constant function β due to the Maximum Modulus Principle. In particular, this means
that f̃nk(0) → β. Note that µ|V is a biholomorphism and hence, admits a holomorphic (in
particular, continuous) inverse. Then, we have

(µ|V)−1(α) = lim
k→∞

(µ|V)−1( fnk(0)) = β,

which is absurd, since β /∈ D. Hence, | f (z)| < 1 for all z ∈ D.
We shall now show that { fnk} is uniformly bounded on compact subsets of D, whence

we would be done by Montel’s Theorem. Let K ⊆ D be a compact set. Then, there is an
M < 1 such that | f (z)| ⩽ M on K. Choose M < r < 1. Then, for sufficiently large k, we
have | f (z)− f̃nk(z)| < r − M. Thus, for all such k, we have | f̃nk(z)| < r. Note that µ is
bounded on B(0, r) and hence, fnk = µ ◦ f̃nk is uniformly bounded on K.

Case 2: α = 1.
Since D is simply connected and fn never vanishes on D for all n, there is a “square

root” gn : D → C. Replacing gn by −gn if necessary, we may suppose that gn(0) → −1 as
n → ∞. Further, note that the gn’s have image contained in C\{0, 1}. From our analysis in
Case 1, there is a subsequence {gnk} that converges uniformly on compact subsets of D.
Since fnk = g2

nk
, we are done by once again invoking Montel’s Theorem.

Case 3: α = 0. Simply replace fn by 1 − fn. This brings us to Case 2.
Case 4: α = ∞.
Let gn = 1/ fn, which are holomorphic on D since fn’s never vanish on D for all n.

Since the images of the gn’s are contained in C\{0, 1}, invoking the analysis of the previous
cases, there must be a subsequence {gnk} that converges uniformly on compact subsets of
D to a holomorphic function g : D → C. Note that g(0) = 0 but the gn’s have no zeros
and hence, due to Hurwitz’s Theorem, g must identically be 0. It follows that fnk(z) → ∞
uniformly on compact subsets of D. ■

§4 PICARD’S THEOREMS

THEOREM 4.1 (LITTLE PICARD). Let f be an entire function. If there are two distinct
complex numbers that are not in the image of f , then f must be constant.

Proof. Without loss of generality, suppose f misses 0 and 1. Recall the analytic covering
map µ : D → C\{0, 1}. There is a holomorphic lift f̃ : C → D of f . Due to Liouville, f̃
must be constant and hence, so must f . ■

THEOREM 4.2 (GREAT PICARD). Let f : Ω → C have an essential singularity at 0 ∈ Ω.
Then, there is an α ∈ C such that for all ζ ̸= α, the equation f (z) = ζ has infinitely many
solutions in any punctured neighborhood of 0 that is contained in Ω.
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Proof. Suppose there is an R > 0 such that B(0, R) ⊆ Ω and f (B(0, R)) misses atleast two
points in C. We may suppose without loss of generality that 0 and 1 are missed. Note that
we may also choose R < 1/2.

Since 0 is not a pole, the limit | f (z)| as z → 0 does not tend to ∞. Consequently, there is
a positive constant P > 0 such that for all R > δ > 0, there is a z ∈ B(0, δ) with | f (z)| ⩽ P.
Begin with δ = R and choose such a z1. Next, set δ = z1 and pick a corresponding z2
and continue in this fashion. The sequence {zi} is bounded and hence, has a convergent
subsequence, say {znk}. Call this sequence {αk}.

Define fn : Ω → C by fn(z) = f (2αnz/R). Then, due to Theorem 3.1 { fn} is a normal
family and hence, admits a subsequence { fnk} that either converges uniformly on compact
subsets of Ω to either a holomorphic function g : Ω → C or to the identically ∞ function
on Ω.

Suppose the former case and let M = max{|g(z)| : |z| = R/2}. Due to uniform
convergence on compact subsets of Ω, there is a k0 such that for all k ⩾ k0, we have
| fnk(z)− g(z)| ⩽ M whenever |z| = R/2 and hence, | f (αnk z)| = | fnk(z)| ⩽ 2M whenever
|z| = R/2. Due to the Maximum Modulus Principle, f (z) is bounded by 2M on the
annulus |αnk | < |z| < R/2. Since |αnk | grows arbitrarily small, we see that f (z) Is bounded
by 2M on the annulus 0 < |z| < R/2. This would mean that z = 0 is a removable
singularity, a contradiction.

Consider the latter case, g ≡ ∞. But this is obviously not possible since for sufficiently
large n, fn(R/2) converges to a finite limit. This completes the proof. ■
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