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Abstract

Taming the big bad wolves of Complex Analysis by nuking it.

§1 ANALYTIC COVERING MAPS

Recall first the definiton of a covering map in a general topological space.

DEFINITION 1.1 (ABSTRACT COVERING MAP). A map 7t : E — B is said to be a covering
map if there is an open cover {U,} of B such that 7~1(U,) is homeomorphic to U, x D,
where D, is a topological space with the discrete topology.

DEFINITION 1.2 (ANALYTIC COVERING MAP). Let (3, G C C be open sets. An abstract
covering map 7 : (3 — G is said to be analytic if 7t is a holomorphic map.

PROPOSITION 1.3. Let 77 : {3 — G be an analytic covering map and f : H — G a

holomorphic map. If there is a continuous map f H — Q) such that ro f f, then f is
holomorphic.

Proof. Let zg € H. Then, there is a neighborhood U of f(zp) in G and a neighborhood V of
f(zp) such that 77 is a biholomorphism from V to U. Let W be a neighborhood of zj that
maps into V under f. Then, on W, we have f = 7! o f, which is holomorphic. u

§2 MODULAR FUNCTION

DEFINITION 2.1 (MODULAR TRANSFORMATION). A modular transformation is a Mobius

transformation
az+b

cz+d

M(z) =

such that € SL(Z). The set of all modular transformations form a group, known

b
d
as the modular group. We often identify this group with SL,(Z).



DEFINITION 2.2. Let I denote the subgroup of SL,(Z) generated by

(1 2\ (10
“lo 1) ™= 12 1/

This group will be of particular interest during the construction of a modular function. It
is customary to denote this group by I'(2) but we drop the “(2)” for brevity.

DEFINITION 2.3. Let G denote the region
{z=x+iyeH: —1<x<1,|2z—1] >1and [2z+1| > 1}.
THEOREM 2.4. Let G and I be as defined above. Then,

1. ¢1(G) N ¢2(G) = @ whenever ¢ # ¢, inT.
2. H = Uper ¢(G).

’ Fz{(iZ)EﬂdZ)

Proof. u

a,d=1 (mod2)andb,c=0 (mod 2)}

THEOREM 2.5. Let G and I' be as defined above. Then, there is a holomorphic function
A : H — C having the following properties:

1. Aop=Aforallp € T.

2. Aisinjective on G.

3. A(H) =C\{0,1}.

4. A : H — C\{0,1} is a covering map.

Proof. Let
Go={z=x+iye H:0<x<1land|2z—1| > 1}.

Note that Gy is simply connected and thus, there is a conformal equivalence fo : Go — H.
Then, there is an extension of f to a homeomorphism f : Go — H that maps Gy — JoH.
Upon composing with a suitable Mobius transformation, we may suppose that f(0) = 0,
f(1) =1and f(o0) = oo.
Consider the following three pieces of dGy,

L1 = {z € H: R(z) = 0}

Ly={z€eH: [2z—-1| =1}

L3:{Z€H: §RZ:1}.
First, note that f is a bijection L; U L, U L3 — 0H = R. Further, L; and L3 must map to
half lines with 0 and 1 mapping to themselves. Therefore, L1 must map to (—oo, 1], L, to
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[0,1] and L3 to [1, 00). Next, note that f(L;) C R and hence, due to the Schwarz Reflection

Principle, there is an extension of f to all of G, defined by f(—x +iy) = f(x + iy). Note
that this gives f(G) = C\{0,1} and f(intG) = C\[0, c0). Finally, define A : H — C by

AMz) = A9~ Y(z)) when z € ¢(G).

We contend that the A defined above is holomorphic. Consider the set A = GU o~ (G) U
771(G), whose interior contains G. It is not hard to argue, from the definition of A that it is
continuous on A and holomorphic on the interiors of the aforementioned three sets that
form it. Therefore, A is holomorphic on the interior of A, in particular, on G.

Lastly, we show that A is a covering map. To do this, we shall show that every point
in C\{0, 1} has an evenly covered neighborhood. First, suppose { € C\[0, o) and choose
5 > 0 small enough so that By = B({,5) C C\[0,0) and U = f~1(By) C G. Obviously,
A1(By) = Lger ¢(U). Thus By is an evenly covered neighborhood of .

Next, suppose t € (0,1) and choose 6 > 0 small enough so that By = B(t,6) C C\{0,1}.
From the explicit definition of f, note that f~!(¢) contains two points, {z,,z_} and
f~1(By) contains two components U, and U_ containing z4 and z_ respectively, such
that f~1(B N +H) = U.. The transformation ¢ defined previously maps |2z + 1| = 1
to |2z — 1| = 1, z_ to z4 and hence, maps U_ to U;. Consequently, Uy = U Uo(U-)
is a neighborhood of z such that A(Up) = A(U;) UA(c(U-)) = By. Consequently, the
components of A~!(By) that are biholomorphically mapped to By are ¢(Uy) where ¢ € T.

Finally, suppose t € (1,c0). Recall that L3 is mapped to [1,00) under f, which was
initially defined on Gy. Arguing as in the previous paragraph, we see that there are two
points z+ with neighborhoods U~ that are mapped to one another under 7. Thus, it follow
again, that t has an evenly covered neighborhood. This completes the proof. u

COROLLARY. There is a covering map y : D — C\{0,1}

§3 NORMAL FAMILIES

THEOREM 3.1 (MONTEL-CARATHEODORY). Let (2 C C be a region and
F ={f:Q — C| fisholomorphicand f(Q2) C C\{0,1}}.
Then, .% is a normal family in C((, @)

Proof. To prove that .# is normal, it suffices to show that for every disk D in (), the
restriction of .# to D is normal. Hence, we may suppose without loss of generality that
() = D. To show normality, we shall show that every sequence of functions in .# has a
subsequence that is uniformly bounded on compact subsets of ID or has a subsequence
that converges uniformly to co on compact subsets of ID.

Let {f,,} be a sequence of functions in .%. Then, there is a point a € C such that a
subsequence { f,, } of {f,,(0)} converges to «. Replace {f,} by {fu.}.
Case 1: « € C\{0,1}.

Consider the analytic covering map p : ID — C\{0,1} and let U be an evenly covered
neighborhood of a. Pick a component V of u~1(U). Since ID is simply connected, there are
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holomorphic lifts f, : ID — ID such that o f, = f, and f,(0) € V for sufficiently large
n. This is a sequence of functions that is uniformly bounded on compact subsets of ID
and hence, has a subsequence {fnk} that converges to a holomorphic function f : D — C.
Note that |f(z)| < 1forall z € ID and if |f(z)| = 1 for some z € DD, then f must be a
constant function B due to the Maximum Modulus Principle. In particular, this means
that f,, (0) — B. Note that y|y is a biholomorphism and hence, admits a holomorphic (in
particular, continuous) inverse. Then, we have

(ulv) @) = lim (ly) " (i (0)) = B,

which is absurd, since B ¢ ID. Hence, |f(z)| < 1forallz € D.

We shall now show that { f;, } is uniformly bounded on compact subsets of ID, whence
we would be done by Montel’s Theorem. Let K C ID be a compact set. Then, there is an
M < 1 such that [f(z)| < M on K. Choose M < r < 1. Then, for sufficiently large k, we
have |f(z) — fu,(z)| < ¥ — M. Thus, for all such k, we have |f, (z)| < r. Note that y is
bounded on B(0, ) and hence, f,, = j o fy, is uniformly bounded on K.

Case 2: « = 1.

Since ID is simply connected and f, never vanishes on D for all n, there is a “square
root” g, : ID — C. Replacing g, by —g if necessary, we may suppose that g,(0) = —1 as
n — oo. Further, note that the g,,’s have image contained in C\{0, 1}. From our analysis in
Case 1, there is a subsequence {g,, } that converges uniformly on compact subsets of ID.
Since f,, = g%k, we are done by once again invoking Montel’s Theorem.

Case 3: « = 0. Simply replace f, by 1 — f,;. This brings us to Case 2.

Case 4: o = co.

Let ¢» = 1/ fu, which are holomorphic on D since f,,’s never vanish on ID for all #.
Since the images of the g,’s are contained in C\ {0, 1}, invoking the analysis of the previous
cases, there must be a subsequence {g,, } that converges uniformly on compact subsets of
D to a holomorphic function ¢ : ID — C. Note that g(0) = 0 but the g,’s have no zeros
and hence, due to Hurwitz’s Theorem, ¢ must identically be 0. It follows that f;, (z) — oo
uniformly on compact subsets of ID. u

§4 PICARD’S THEOREMS

THEOREM 4.1 (LITTLE PICARD). Let f be an entire function. If there are two distinct
complex numbers that are not in the image of f, then f must be constant.

Proof. Without loss of generality, suppose f misses 0 and 1. Recall the analytic covering

map # : ID — C\{0,1}. There is a holomorphic lift f : C — ID of f. Due to Liouville, f
must be constant and hence, so must f. |

THEOREM 4.2 (GREAT PICARD). Let f : (3 — C have an essential singularity at 0 € Q).
Then, there is an a« € C such that for all { # «, the equation f(z) = { has infinitely many
solutions in any punctured neighborhood of 0 that is contained in Q).



Proof. Suppose there is an R > 0 such that B(0, R) C Q) and f(B(0, R)) misses atleast two
points in C. We may suppose without loss of generality that 0 and 1 are missed. Note that
we may also choose R < 1/2.

Since 0 is not a pole, the limit |f(z)| as z — 0 does not tend to co. Consequently, there is
a positive constant P > 0 such that forall R > ¢ > 0, thereisa z € B(0,) with |f(z)| < P.
Begin with 6 = R and choose such a z;. Next, set § = z; and pick a corresponding z
and continue in this fashion. The sequence {z;} is bounded and hence, has a convergent
subsequence, say {zy, }. Call this sequence {ay}.

Define f, : O — C by f,(z) = f(2ayz/R). Then, due to Theorem 3.1 {f,} is a normal
family and hence, admits a subsequence { f;,, } that either converges uniformly on compact
subsets of () to either a holomorphic function g : (3 — C or to the identically co function
on ().

Suppose the former case and let M = max{|g(z)|: |z] = R/2}. Due to uniform
convergence on compact subsets of (), there is a kg such that for all k > ko, we have
| fu,(z) — g(z)| < M whenever |z| = R/2 and hence, |f(ay,z)| = |fn,(z)| < 2M whenever
|z] = R/2. Due to the Maximum Modulus Principle, f(z) is bounded by 2M on the
annulus |a,, | < |z| < R/2. Since |, | grows arbitrarily small, we see that f(z) Is bounded
by 2M on the annulus 0 < |z| < R/2. This would mean that z = 0 is a removable
singularity, a contradiction.

Consider the latter case, ¢ = co. But this is obviously not possible since for sufficiently
large n, f,(R/2) converges to a finite limit. This completes the proof. u
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