Picard's Theorems

Swayam Chube

December 1, 2024

Abstract

Taming the big bad wolves of Complex Analysis by nuking it.

§1 ANALYTIC COVERING MAPS

Recall first the definiton of a covering map in a general topological space.

DEFINITION 1.1 (ABSTRACT COVERING MAP). A map $\pi : E \to B$ is said to be a *covering map* if there is an open cover $\{U_{\alpha}\}$ of B such that $\pi^{-1}(U_{\alpha})$ is homeomorphic to $U_{\alpha} \times D_{\alpha}$ where D_{α} is a topological space with the discrete topology.

DEFINITION 1.2 (ANALYTIC COVERING MAP). Let Ω , $G \subseteq \mathbb{C}$ be open sets. An abstract covering map $\pi : \Omega \to G$ is said to be *analytic* if π is a holomorphic map.

PROPOSITION 1.3. Let $\pi:\Omega\to G$ be an analytic covering map and $f:H\to G$ a holomorphic map. If there is a continuous map $\widetilde{f}:H\to\Omega$ such that $\pi\circ\widetilde{f}=f$, then \widetilde{f} is holomorphic.

Proof. Let $z_0 \in H$. Then, there is a neighborhood U of $f(z_0)$ in G and a neighborhood V of $\widetilde{f}(z_0)$ such that π is a biholomorphism from V to U. Let W be a neighborhood of z_0 that maps into V under \widetilde{f} . Then, on W, we have $\widetilde{f} = \pi^{-1} \circ f$, which is holomorphic.

§2 MODULAR FUNCTION

DEFINITION 2.1 (MODULAR TRANSFORMATION). A modular transformation is a Möbius transformation

$$M(z) = \frac{az+b}{cz+d}$$

such that $\begin{pmatrix} a & b \\ c & d \end{pmatrix} \in SL_2(\mathbb{Z})$. The set of all modular transformations form a group, known as the *modular group*. We often identify this group with $SL_2(\mathbb{Z})$.

DEFINITION 2.2. Let Γ denote the subgroup of $SL_2(\mathbb{Z})$ generated by

$$\tau = \begin{pmatrix} 1 & 2 \\ 0 & 1 \end{pmatrix} \text{ and } \sigma = \begin{pmatrix} 1 & 0 \\ 2 & 1 \end{pmatrix}.$$

This group will be of particular interest during the construction of a modular function. It is customary to denote this group by $\Gamma(2)$ but we drop the "(2)" for brevity.

DEFINITION 2.3. Let *G* denote the region

$${z = x + iy \in \mathbb{H}: -1 \le x < 1, |2z - 1| > 1 \text{ and } |2z + 1| \ge 1}.$$

THEOREM 2.4. Let G and Γ be as defined above. Then,

- 1. $\varphi_1(G) \cap \varphi_2(G) = \emptyset$ whenever $\varphi_1 \neq \varphi_2$ in Γ .
- 2. $\mathbb{H} = \bigsqcup_{\varphi \in \Gamma} \varphi(G)$.

3.

$$\Gamma = \left\{ \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in \operatorname{SL}_2(\mathbb{Z}) \middle| a, d \equiv 1 \pmod{2} \text{ and } b, c \equiv 0 \pmod{2} \right\}.$$

Proof.

THEOREM 2.5. Let *G* and Γ be as defined above. Then, there is a holomorphic function $\lambda : \mathbb{H} \to \mathbb{C}$ having the following properties:

- 1. $\lambda \circ \varphi = \lambda$ for all $\varphi \in \Gamma$.
- 2. λ is injective on G.
- 3. $\lambda(\mathbb{H}) = \mathbb{C} \setminus \{0,1\}.$
- 4. $\lambda : \mathbb{H} \to \mathbb{C} \setminus \{0,1\}$ is a covering map.

Proof. Let

$$G_0 = \{z = x + iy \in \mathbb{H} : 0 < x < 1 \text{ and } |2z - 1| > 1\}.$$

Note that G_0 is simply connected and thus, there is a conformal equivalence $f_0: G_0 \to \mathbb{H}$. Then, there is an extension of f to a homeomorphism $f: \overline{G}_0 \to \overline{\mathbb{H}}$ that maps $\partial G_0 \to \partial \mathbb{H}$. Upon composing with a suitable Möbius transformation, we may suppose that f(0) = 0, f(1) = 1 and $f(\infty) = \infty$.

Consider the following three pieces of ∂G_0 ,

$$L_1 = \{z \in \overline{\mathbb{H}} \colon \Re(z) = 0\}$$

$$L_2 = \{z \in \overline{\mathbb{H}} \colon |2z - 1| = 1\}$$

$$L_3 = \{z \in \overline{\mathbb{H}} \colon \Re z = 1\}.$$

First, note that f is a bijection $L_1 \cup L_2 \cup L_3 \to \partial \mathbb{H} = \mathbb{R}$. Further, L_1 and L_3 must map to half lines with 0 and 1 mapping to themselves. Therefore, L_1 must map to $(-\infty, 1]$, L_2 to

[0,1] and L_3 to [1, ∞). Next, note that $f(L_1) \subseteq \mathbb{R}$ and hence, due to the Schwarz Reflection Principle, there is an extension of f to all of G, defined by $f(-x+iy) = \overline{f(x+iy)}$. Note that this gives $f(G) = \mathbb{C} \setminus \{0,1\}$ and $f(\text{int } G) = \mathbb{C} \setminus [0,\infty)$. Finally, define $\lambda : \mathbb{H} \to \mathbb{C}$ by

$$\lambda(z) = \lambda(\varphi^{-1}(z))$$
 when $z \in \varphi(G)$.

We contend that the λ defined above is holomorphic. Consider the set $\Delta = G \cup \sigma^{-1}(G) \cup \tau^{-1}(G)$, whose interior contains G. It is not hard to argue, from the definition of λ that it is continuous on Δ and holomorphic on the interiors of the aforementioned three sets that form it. Therefore, λ is holomorphic on the interior of Δ , in particular, on G.

Lastly, we show that λ is a covering map. To do this, we shall show that every point in $\mathbb{C}\setminus\{0,1\}$ has an evenly covered neighborhood. First, suppose $\zeta\in\mathbb{C}\setminus[0,\infty)$ and choose $\delta>0$ small enough so that $B_0=B(\zeta,\delta)\subseteq\mathbb{C}\setminus[0,\infty)$ and $U=f^{-1}(B_0)\subseteq G$. Obviously, $\lambda^{-1}(B_0)=\bigsqcup_{\varphi\in\Gamma}\varphi(U)$. Thus B_0 is an evenly covered neighborhood of ζ .

Next, suppose $t \in (0,1)$ and choose $\delta > 0$ small enough so that $B_0 = B(t,\delta) \subseteq \mathbb{C} \setminus \{0,1\}$. From the explicit definition of f, note that $f^{-1}(t)$ contains two points, $\{z_+, z_-\}$ and $f^{-1}(B_0)$ contains two components U_+ and U_- containing z_+ and z_- respectively, such that $f^{-1}(B \cap \pm \overline{\mathbb{H}}) = U_\pm$. The transformation σ defined previously maps |2z + 1| = 1 to |2z - 1| = 1, z_- to z_+ and hence, maps U_- to U_+ . Consequently, $U_0 = U_+ \cup \sigma(U_-)$ is a neighborhood of z_+ such that $\lambda(U_0) = \lambda(U_+) \cup \lambda(\sigma(U_-)) = B_0$. Consequently, the components of $\lambda^{-1}(B_0)$ that are biholomorphically mapped to B_0 are $\varphi(U_0)$ where $\varphi \in \Gamma$.

Finally, suppose $t \in (1, \infty)$. Recall that L_3 is mapped to $[1, \infty)$ under f, which was initially defined on \overline{G}_0 . Arguing as in the previous paragraph, we see that there are two points z_{\pm} with neighborhoods U_{\pm} that are mapped to one another under τ . Thus, it follow again, that t has an evenly covered neighborhood. This completes the proof.

COROLLARY. There is a covering map $\mu : \mathbb{D} \to \mathbb{C} \setminus \{0,1\}$

§3 NORMAL FAMILIES

Theorem 3.1 (Montel-Carathéodory). Let $\Omega \subseteq \mathbb{C}$ be a region and

$$\mathscr{F} = \{ f : \Omega \to \mathbb{C} \mid f \text{ is holomorphic and } f(\Omega) \subseteq \mathbb{C} \setminus \{0,1\} \}.$$

Then, \mathscr{F} is a normal family in $C(\Omega, \widehat{\mathbb{C}})$.

Proof. To prove that \mathscr{F} is normal, it suffices to show that for every disk D in Ω , the restriction of \mathscr{F} to D is normal. Hence, we may suppose without loss of generality that $\Omega = \mathbb{D}$. To show normality, we shall show that every sequence of functions in \mathscr{F} has a subsequence that is uniformly bounded on compact subsets of \mathbb{D} or has a subsequence that converges uniformly to ∞ on compact subsets of \mathbb{D} .

Let $\{f_n\}$ be a sequence of functions in \mathscr{F} . Then, there is a point $\alpha \in \widehat{C}$ such that a subsequence $\{f_{n_k}\}$ of $\{f_n(0)\}$ converges to α . Replace $\{f_n\}$ by $\{f_{n_k}\}$. Case 1: $\alpha \in \mathbb{C} \setminus \{0,1\}$.

Consider the analytic covering map $\mu : \mathbb{D} \to \mathbb{C} \setminus \{0,1\}$ and let U be an evenly covered neighborhood of α . Pick a component V of $\mu^{-1}(U)$. Since \mathbb{D} is simply connected, there are

holomorphic lifts $\widetilde{f}_n:\mathbb{D}\to\mathbb{D}$ such that $\mu\circ\widetilde{f}_n=f_n$ and $\widetilde{f}_n(0)\in V$ for sufficiently large n. This is a sequence of functions that is uniformly bounded on compact subsets of \mathbb{D} and hence, has a subsequence $\{\widetilde{f}_{n_k}\}$ that converges to a holomorphic function $f:\mathbb{D}\to\mathbb{C}$. Note that $|f(z)|\leqslant 1$ for all $z\in\mathbb{D}$ and if |f(z)|=1 for some $z\in\mathbb{D}$, then f must be a constant function β due to the Maximum Modulus Principle. In particular, this means that $\widetilde{f}_{n_k}(0)\to\beta$. Note that $\mu|_V$ is a biholomorphism and hence, admits a holomorphic (in particular, continuous) inverse. Then, we have

$$(\mu|_V)^{-1}(\alpha) = \lim_{k \to \infty} (\mu|_V)^{-1}(f_{n_k}(0)) = \beta,$$

which is absurd, since $\beta \notin \mathbb{D}$. Hence, |f(z)| < 1 for all $z \in \mathbb{D}$.

We shall now show that $\{f_{n_k}\}$ is uniformly bounded on compact subsets of \mathbb{D} , whence we would be done by Montel's Theorem. Let $K \subseteq \mathbb{D}$ be a compact set. Then, there is an M < 1 such that $|f(z)| \leq M$ on K. Choose M < r < 1. Then, for sufficiently large k, we have $|f(z) - \widetilde{f}_{n_k}(z)| < r - M$. Thus, for all such k, we have $|\widetilde{f}_{n_k}(z)| < r$. Note that μ is bounded on $\overline{B}(0,r)$ and hence, $f_{n_k} = \mu \circ \widetilde{f}_{n_k}$ is uniformly bounded on K.

Case 2: $\alpha = 1$.

Since \mathbb{D} is simply connected and f_n never vanishes on \mathbb{D} for all n, there is a "square root" $g_n : \mathbb{D} \to \mathbb{C}$. Replacing g_n by $-g_n$ if necessary, we may suppose that $g_n(0) \to -1$ as $n \to \infty$. Further, note that the g_n 's have image contained in $\mathbb{C} \setminus \{0,1\}$. From our analysis in **Case 1**, there is a subsequence $\{g_{n_k}\}$ that converges uniformly on compact subsets of \mathbb{D} . Since $f_{n_k} = g_{n_k}^2$, we are done by once again invoking Montel's Theorem.

Case 3: $\alpha = 0$. Simply replace f_n by $1 - f_n$. This brings us to **Case 2**.

Case 4: $\alpha = \infty$.

Let $g_n = 1/f_n$, which are holomorphic on $\mathbb D$ since f_n 's never vanish on $\mathbb D$ for all n. Since the images of the g_n 's are contained in $\mathbb C\setminus\{0,1\}$, invoking the analysis of the previous cases, there must be a subsequence $\{g_{n_k}\}$ that converges uniformly on compact subsets of $\mathbb D$ to a holomorphic function $g:\mathbb D\to\mathbb C$. Note that g(0)=0 but the g_n 's have no zeros and hence, due to Hurwitz's Theorem, g must identically be 0. It follows that $f_{n_k}(z)\to\infty$ uniformly on compact subsets of $\mathbb D$.

§4 PICARD'S THEOREMS

THEOREM 4.1 (LITTLE PICARD). Let f be an entire function. If there are two distinct complex numbers that are not in the image of f, then f must be constant.

Proof. Without loss of generality, suppose f misses 0 and 1. Recall the analytic covering map $\mu : \mathbb{D} \to \mathbb{C} \setminus \{0,1\}$. There is a holomorphic lift $\widetilde{f} : \mathbb{C} \to \mathbb{D}$ of f. Due to Liouville, \widetilde{f} must be constant and hence, so must f.

THEOREM 4.2 (GREAT PICARD). Let $f:\Omega\to\mathbb{C}$ have an essential singularity at $0\in\Omega$. Then, there is an $\alpha\in\mathbb{C}$ such that for all $\zeta\neq\alpha$, the equation $f(z)=\zeta$ has infinitely many solutions in any punctured neighborhood of 0 that is contained in Ω .

Proof. Suppose there is an R > 0 such that $B(0,R) \subseteq \Omega$ and f(B(0,R)) misses atleast two points in \mathbb{C} . We may suppose without loss of generality that 0 and 1 are missed. Note that we may also choose R < 1/2.

Since 0 is not a pole, the limit |f(z)| as $z \to 0$ does not tend to ∞ . Consequently, there is a positive constant P > 0 such that for all $R > \delta > 0$, there is a $z \in B(0, \delta)$ with $|f(z)| \leq P$. Begin with $\delta = R$ and choose such a z_1 . Next, set $\delta = z_1$ and pick a corresponding z_2 and continue in this fashion. The sequence $\{z_i\}$ is bounded and hence, has a convergent subsequence, say $\{z_{n_k}\}$. Call this sequence $\{\alpha_k\}$.

Define $f_n: \Omega \to \mathbb{C}$ by $f_n(z) = f(2\alpha_n z/R)$. Then, due to Theorem 3.1 $\{f_n\}$ is a normal family and hence, admits a subsequence $\{f_{n_k}\}$ that either converges uniformly on compact subsets of Ω to either a holomorphic function $g: \Omega \to \mathbb{C}$ or to the identically ∞ function on Ω .

Suppose the former case and let $M = \max\{|g(z)|: |z| = R/2\}$. Due to uniform convergence on compact subsets of Ω , there is a k_0 such that for all $k \ge k_0$, we have $|f_{n_k}(z) - g(z)| \le M$ whenever |z| = R/2 and hence, $|f(\alpha_{n_k}z)| = |f_{n_k}(z)| \le 2M$ whenever |z| = R/2. Due to the Maximum Modulus Principle, f(z) is bounded by 2M on the annulus $|\alpha_{n_k}| < |z| < R/2$. Since $|\alpha_{n_k}|$ grows arbitrarily small, we see that f(z) Is bounded by 2M on the annulus 0 < |z| < R/2. This would mean that z = 0 is a removable singularity, a contradiction.

Consider the latter case, $g \equiv \infty$. But this is obviously not possible since for sufficiently large n, $f_n(R/2)$ converges to a finite limit. This completes the proof.