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Abstract
In this article, we define and construct the universal enveloping algebra of a Lie

algebra, then, state and prove the Poincaré-Birkhoff-Witt Theorem.

§1 THE UNIVERSAL ENVELOPING ALGEBRA

DEFINITION 1.1. Let g be a Lie algebra over k. A universal enveloping algebra is a pair (U, i)
where U is an associative algebra (over k, with identity) and i : g → U is a homomorphism
of Lie algebras such that for any associative algebra A (over k, with identity) and any Lie
algebra homomorphism φ : g → A, there is a unique k-algebra homomorphism φ̃ : U → A
making the following diagram commute.

g //

i
��

φ
// A

U
∃! φ̃

@@

�� Construction

Let T denote the tensor algebra over g, that is,

T =
⊕
n⩾0

g⊗n.

There is a map µ : g⊗n × g⊗m → g⊗m+n given by

µ(x1 ⊗ · · · ⊗ xn, y1 ⊗ · · · ⊗ ym) = x1 ⊗ . . . xn ⊗ y1 ⊗ · · · ⊗ ym

and extending linearly. This gives T the structure of a k-algebra.
Let K denote the ideal in T generated by all elements of the form

[x, y]− x ⊗ y + y ⊗ x

for x, y ∈ g. Set U = T/K and let ι : g → U be the composition

g −→ T
π−→ U.
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THEOREM 1.2. (U, ι) is a universal enveloping algebra for g.

Proof. Let φ : g → A be a homomorphism of Lie algebras where A is an associative
k-algebra. The universal property of the tensor algebra extends this to a k-algebra homo-
morphism φ̃ : T → A.

Note that

φ̃(x ⊗ y − y ⊗ x) = φ̃(x ⊗ y)− φ̃(y ⊗ x) = φ(x)φ(y)− φ(y)φ(x) = φ([x, y]),

whence φ̃ vanishes on K, thereby inducing a unique (due to the universal property of the
kernel) map ˜̃φ : U → A, thereby completing the proof. ■

§2 THE POINCARÉ-BIRKHOFF-WITT THEOREM

Let u1, . . . , un be a k-basis of g. A monomial in T is an element of the form

ui1 ⊗ · · · ⊗ uin

for n ⩾ 1. The number n is said to be the degree of the monomial. The index of the monomial
is given by

ind(ui1 ⊗ · · · ⊗ uin) = ∑
j<k

ηjk

where

ηjk =

{
0 ij ⩽ ik

1 ij > ik

A monomial is said to be standard if its index is 0. Let gn denote the vector space spanned
by monomials of degree n and let gn,i denote the subspace of gn spanned by monomials of
degree n and index ⩽ i.

LEMMA 2.1. Every element of T is congruent modulo K to a k-linear combination of 1 and
standard monomials.

Proof. Straightforward induction on the index and degree of standard monomials. ■

Let P denote the vector space spanned by ui1 . . . uin where i1 ⩽ . . . ⩽ in. These are to
be interpreted as formal symbols without meaning.

LEMMA 2.2. There is a k-linear map σ : T → P such that

σ(1) = 1 and σ(ui1 ⊗ · · · ⊗ uin) = ui1 . . . uin .

if i1 ⩽ . . . ⩽ in. Further,

σ(uj1 ⊗ · · · ⊗ [ujk , ujk+1 ]⊗ · · · ⊗ ujn) = σ(uj1 ⊗ · · · ⊗ ujn − uj1 ⊗ . . . ujk+1 ⊗ ujk ⊗ . . . ujn).
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Proof. We induct on degree and index, in that order. Suppose a linear map σ has been
defined on k ⊕ g1 ⊕ · · · ⊕ gn−1. It is easy to extend this to k ⊕ · · · ⊕ gn,0 by setting

σ(ui1 ⊗ . . . uin) = ui1 . . . uin .

Now, suppose σ has already been defined for k ⊕ . . . gn,i−1. Suppose jk > jk+1. Then, define

σ(uj1 ⊗· · ·⊗ujn) = σ(uj1 ⊗· · ·⊗ujk+1 ⊗ujk ⊗· · ·⊗ujn)+σ(uj1 ⊗· · ·⊗ [ujk , ujk+1 ]⊗· · ·⊗ujn).

The right hand side is well-defined because the first term on the right has index at most
i − 1 and the second term on the right is a linear combination of monomials of smaller
degree.

We must show that this is a well-defined assignment of σ, that is the right hand choice
is independent of the pair of inversion chosen. To this end, let jl > jl+1. We must consider
two cases.

Case 1: l > k + 1. Set ujk = u, ujk+1 = v, ujl = w, ujl+1 = x.

We would like to show

σ(. . . v ⊗ u ⊗ · · · ⊗ w ⊗ x . . . ) + σ(· · · ⊗ [u, v]⊗ · · · ⊗ w ⊗ x . . . )
=

σ(. . . u ⊗ v ⊗ . . . x ⊗ w . . . ) + σ(. . . u ⊗ v ⊗ · · · ⊗ [x, w]⊗ . . . ).

We can expand the left hand side of the above equality using the induction hypothesis
as

σ(. . . v ⊗ u ⊗ · · · ⊗ x ⊗ w . . . ) + σ(v ⊗ u ⊗ · · · ⊗ [x, w]⊗ . . . )
+ σ(· · · ⊗ [u, v]⊗ · · · ⊗ x ⊗ w . . . ) + σ(· · · ⊗ [u, v]⊗ · · · ⊗ [w, x]⊗ . . . ).

The right hand side can be written as

σ(. . . v ⊗ u ⊗ · · · ⊗ x ⊗ w . . . ) + σ(· · · ⊗ [u, v]⊗ · · · ⊗ x ⊗ w . . . )
+ σ(. . . v ⊗ u ⊗ · · · ⊗ [x, w]⊗ . . . ) + σ(· · · ⊗ [u, v]⊗ · · · ⊗ [x, w]⊗ . . . ).

This completes the proof in this case.

Case 2: l = k + 1. We write ujk = u, ujk+1 = v = ujl and ujl+1 = w. We want to show the
equality

σ(. . . v⊗u⊗w . . . )+σ(. . . [u, v]⊗w . . . ) = σ(. . . u⊗w⊗ v . . . )+σ(. . . u⊗ [v, w] . . . ).

The left hand side can be expanded further as

σ(. . . v ⊗ w ⊗ u . . . ) + σ(. . . v ⊗ [u, w] . . . ) + σ(. . . [u, v]⊗ w . . . )
= σ(. . . w ⊗ v ⊗ u . . . ) + σ(. . . [v, w]⊗ u . . . ) + σ(. . . v ⊗ [u, w] . . . ) + σ(. . . [u, v]⊗ w . . . ).
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Similarly, the right hand side can be expanded as

σ(. . . w ⊗ u ⊗ v . . . ) + σ(. . . [u, w]⊗ v . . . ) + σ(. . . u ⊗ [v, w] . . . )
= σ(. . . w ⊗ v ⊗ u . . . ) + σ(. . . w ⊗ [u, w] . . . ) + σ(. . . [u, w]⊗ v . . . ) + σ(u ⊗ [v, w] . . . ).

It remains to show the equality:

σ(. . . [v, w]⊗ u . . . ) + σ(. . . v ⊗ [u, w] . . . ) + σ(. . . [u, v]⊗ w . . . )
= σ(. . . w ⊗ [u, w] . . . ) + σ(. . . [u, w]⊗ v . . . ) + σ(u ⊗ [v, w] . . . ),

which reduces to

σ(. . . [[v, w], u] . . . ) + σ(. . . [v, [u, w]] . . . ) + σ(. . . [[u, v], w] . . . ) = 0,

which follows from Jacobi’s Identity. This completes the proof in this case.

Now that σ is well-defined for monomials, we can extend it linearly to gn,i, thereby
completing the induction. ■

THEOREM 2.3 (POINCARÉ-BIRKHOFF-WITT THEOREM). The cosets of 1 and the standard
monomials form a basis for U = T/K.

Proof. We have shown that the standard monomials and 1 span U. It remains to show
linear independence. This follows from the preceding lemma, since the ui1 . . . uin ’s are
linearly independent in P. ■

§3 PROPERTIES OF THE UNIVERSAL ENVELOPING ALGEBRA

DEFINITION 3.1. A ring R is said to be filtered if it is equipped with an increasing sequence
R = {Ri}i⩾0 of abelian subgroups such that

(a)
⋃
i⩾0

Ri = R.

(b) For all i, j ⩾ 0, RiRj ⊆ Ri+j.

Each filtration of a ring gives rise to an associated graded ring,

GrR(R) =
⊕
i⩾0

Ri/Ri−1,

with the convention that Ri−1 = 0.
For any a ∈ R, there is a non-negative integer n such that a ∈ Rn but a /∈ Rn−1. The

homogeneous element b = b + Rn−1 ∈ GrR(R) is called the leading term of b. If b = 0, we
take its leading term to be 0.

LEMMA 3.2. Let R be a filtered ring with an increasing filtration {Ri}i⩾0 and let G denote
the corresponding associated graded.
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(a) If G is a domain, then so is R.

(b) If G is left (resp. right) noetherian, then so is R.

Proof. (a) Suppose a, b ∈ R \ {0} such that ab = 0 in R. Let a, b denote the leading terms
of a and b respectively. Then, ab = 0, a contradiction.

(b) Let I be a left-ideal in R. We shall show that I is finitely generated. Let I denote the
abelian group generated by the leading terms of elements of I. It is easy to see that I
is a left ideal in G (whence, is a homogeneous left ideal). Since G is left noetherian,
there are b1, . . . , bn ∈ I such that b1, . . . , bn generate I as a left ideal in G where bi is
the leading term of bi.

We contend that the bi’s generate I. Let b ∈ I. Then, b, the leading term of b is a linear
combination of the form

b = ∑
i

aibi

where ai ∈ G. Since the left hand side is homogeneous, we may choose the ai’s to be
homogeneous in G, consequently, the ai’s are leading terms of some ai ∈ R.

From the above equality, we deduce that b is the leading term of ∑i aibi whence,
b − ∑i aibi has leading term of homogeneous degree smaller than that of b. An
induction argument finishes the proof. ■

If g is a finite-dimensional Lie algebra over k (no restriction), then its universal envelop-
ing algebra U is equipped with a canonical filtration:

U(n) = k ⊕ g⊕ g2 ⊕ · · · ⊕ gn.

Using the Poincaré-Birkhoff-Witt theorem, it is not hard to see that the associated graded
corresponding to the above filtration is isomorphic to k[X1, . . . , Xn] where n = dimk g.

THEOREM 3.3. The universal enveloping algebra of a finite-dimensional Lie algebra over
k is a left (and right) Noetherian domain.

Proof. Follows from Lemma 3.2 and the discussion above. ■

§4 FREE LIE ALGEBRAS

DEFINITION 4.1. Let X be a set. A free algebra over k on X is a pair (L(X), ι) where
ι : X → L(X) is such that for any map of sets φ : X → g where g is a Lie algebra over k,
there is a unique Lie algebra homomorphism φ̃ : L(X) → g satisfying

X
φ
//

��

g

L(X)
∃!φ̃

==
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�� Construction

Let F(X) denote the free k-algebra generated by X. Then, F(X) has the structure of a Lie
algebra. Let L(X) denote the Lie subalgebra of F(X) generated by X. We contend that
X ↪→ L(X) is the free algebra on X.

Let φ : X → g be a map of sets where g is a Lie algebra over k. Then, we have the
following commutative diagram.

X
φ

//

��

g

��

F(X)
∃!φ̃
// U(g)

Where φ̃ restricts to φ on X ⊆ F(X). Note that φ is also a Lie algebra homomorphism.
Therefore, φ̃−1g is a Lie subalgebra of F(X) containing X and hence, L(X) ⊆ φ̃−1g. It
follows that φ̃ restricts to a Lie algebra homomorphism φ̃ : L(X) → g. The uniqueness
follows since X generates L(X). This completes the proof of existence.

The above discussion also shows:

PROPOSITION 4.2. F(X) is the universal enveloping algebra of L(X).

§5 EPIMORPHISMS OF LIE ALGEBRAS

DEFINITION 5.1. Let g and h be Lie algebras with a Lie algebra homomorphism ψ : g →
Der(h). Then, there is a Lie algebra structure on t = h⊕ g given by

[(h, g), (h′, g′)] =
(
[h, h′] + ψg(h′)− ψg′(h), [g, g′]

)
.

This is the semidirect product and is often denoted by h⋊ψ g

LEMMA 5.2. Suppose h ⊊ g is an inclusion of Lie algebras and V a g-module with a
0 ̸= ψ ∈ V that is annihilated by h but not by g. Then the inclusion h ↪→ g is not an
epimorphism.

Proof. We can treat V as an abelian Lie algebra and consider the semidirect product
t = V ⋊ g. Note that since V is abeilan, every k-linear map V → V is a derivation of V.

Define the map θ : g → V ⋊ g by θ(x) = (x · ψ, x). We contend that this is a Lie algebra
homomorphism. Indeed, for x, y ∈ g, we have

[θ(x), θ(y)] = [(x · ψ, x), (y · ψ, y)]
= (x · (y · ψ)− y · (x · ψ), [x, y])
= [x, y] · ψ.

Further, for x ∈ h, θ(h) = (0, x). Consequently, the two maps θ : g → V ⋊ g and
ι : g ↪→ V ⋊g agree on h but not on g. Thus, the inclusion h ↪→ g is not an epimorphism. ■
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THEOREM 5.3. Epimorphisms in the category of Lie algebras (including the infinite-
dimensional ones) are precisely the surjective Lie algebra homomorphisms.

Proof. Obviously, surjecive Lie algebra homomorphisms h → g are epimorphisms. There-
fore, it suffices to show that a proper inclusion h ⊊ g of Lie algebras is not epimorphic.
We prove this in the case g is finite-dimensional but an analogous proof works in the
infinite-dimensional case.

Choose a k-basis x1, . . . , xn of g such that xp+1, . . . , xn is a k-basis of h. Let U denote
the universal enveloping algebra of g. Recall that the Poincaré-Birkhoff-Witt theorem
guarantees a k-basis of U in the form xm1

1 · · · xmn
n where mi ⩾ 0 for 1 ⩽ i ⩽ n. We use the

notation xm to denote products of the aforementioned kind.
Let V be the subspace of U spanned by xk where kp+1 = · · · = kn = 0, and let π : U ↠ V

denote the projection. Define a g-action on V as follows: For v ∈ V ⊆ U and x ∈ g, set
x · v = π(xv), where xv is the standard product in the associative algebra U.

First, we must show that this is gives V the structure of a g-module. To this end, we
must show that for x, x′ ∈ g and v ∈ V,

π
(
[x, x′] · v

)
= π(x · π(x′ · v))− π(x′ · π(x · v)).

But by definition, π ([x, x′] · v) = π(xx′v)− π(x′xv). Hence, it suffices to show that

π
(
x · π(x′ · v)

)
= π(xx′v).

We can write x′v = π(x′v) + v′, where v′ is a linear combination of basis elements xk with
ki > 0 for some p < i ⩽ n. So it suffices to show that π(xxk) = 0 for some such k and
every x ∈ g. For if this is shown, then

π(xx′v) = π
(
xπ(x′v) + xv′

)
= π(xπ(x′v)) + π(xv′) = π(xπ(x′v)),

as desired.
Therefore, let x ∈ g and k a multivector of nonnegative integers such that ki > 0 for

some p < i ⩽ n. We can write xk as xhxl where hi = 0 for p < i ⩽ n and li = 0 for
1 ⩽ i ⩽ p. Note that l ̸= 0 as a vector. Then, we may write xxh as a linear combination of
elements xh′xl′ with h′i = 0 for i < p ⩽ n and l′i = 0 for 1 ⩽ i ⩽ p. In conclusion, xxk is a
linear combination of elements of the form xh′xl′xl.

Since h is a subalgebra, note that the vector space spanned by xl where li = 0 for
1 ⩽ i ⩽ p is precisely the universal enveloping algebra of h. In particular, it is an
associative k-subalgebra of U. This shows that xl′xl can be written as a linear combination
of elements of the form xl′′ where l′′i = 0 for 1 ⩽ i ⩽ p. Since the terms of degree greater
than 0 form an ideal in U(h) ⊆ U, l ̸= 0 will imply l′′ ̸= 0.

The above paragraph shows that xxk can be written as a linear combination of elements
of the form xh′xl′′ where h′i = 0 for p < i ⩽ n and l′′i = 0 for 1 ⩽ i ⩽ p and l′′ ̸= 0 as a
vector. But these are all basis elements and are not contained in V, therefore, map to 0
under π. Hence, π(xxk) = 0 whenever k is such that ki > 0 for some p < i ⩽ n.

We have established that V is indeed a g-module. The element 1 ∈ V is not annihilated
by g, but is annihilated by h since for any y ∈ h, y · 1 = π(y) = 0, since y /∈ V ⊆ U.
Invoking Lemma 5.2, we have that h ↪→ g is not an epimorphism, thereby completing the
proof. ■
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REMARK 5.4. In the case that g is infinite-dimensional, choose first a k-basis {xβ : β ∈ B}
of h and extend it to a k-basis

{xα : α ∈ A} ⊔ {xβ : β ∈ B}

of g. Well order A and B separately and define a well order on A ⊔ B by setting a < b
whenever a ∈ A and b ∈ B. That this is indeed a well-order is easy to check. The proof
then remains unchanged by replacing each instance of “1 ⩽ i ⩽ p” with “i ∈ A” and
“p < i ⩽ n with i ∈ B”.

The analogue of Theorem 5.3 is not true in the category of finite-dimensional Lie
algebras:

THEOREM 5.5. Let k be algebraically closed and char k = 0, g = sl2(k), and h ⊊ g be the
subalgebra of upper triangular matrices in g. Then, h ↪→ g is an epimorphism.

Proof. Recall that there is the standard basis {h, x, y} of g over k and h is generated by
{h, x}. For the sake of this proof, make the replacements h 7→ 1

2 h, x 7→ 1√
2

x, and y 7→ 1√
2
y,

so that
[h, x] = x, [h, y] = −y, and [x, y] = h.

Suppose now that there are two morphisms g → t that agree on h. We shall show that both
the morphisms are equal. Since g is simple, both morphisms must be injective, unless they
are both 0 in which case there’s nothing to prove. Denote the images of h and x in t by h
and x since both morphisms agree here and let y, y′ denote the images of y in t under the
two morphsims and suppose that y ̸= y′.

Set u0 = y − y′, and define un = [y, un−1] for n ⩾ 1 with the convention that u−1 = 0.
Note that [x, u0] = [x, y]− [x, y′] = 0 and [h, u0] = −u0.
Claim 1. [x, un] = −1

2 n(n + 1)un−1 and [h, un] = −(n + 1)un for n ⩾ 0.
We induct on n. The base case of n = 0 is clear. For n ⩾ 1, we have

[x, [y, un−1]] + [y, [un−1, x]] + [un−1, [x, y]] = 0

=⇒ [x, un] +
1
2

n(n − 1)[y, un−2] + [un−1, h]

=⇒ [x, un] = −1
2

n(n − 1)un−1 − nun−1 = −1
2

n(n + 1)un−1.

Similarly, we have

[h, [y, un−1]] + [y, [un−1, h]] + [un−1, [h, y]] = 0
=⇒ [h, un] + n[y, un−1]− [un−1, y] = 0
=⇒ [h, un] = −(n + 1)un.

This proves Claim 1.
Claim 2. {h, x, y} ∪ {un : n ⩾ 0} is linearly independent.
Suppose not. Then there is a linear combination

αnun + · · ·+ α0u0 + αhh + αxx + αyy = 0.
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with αn ̸= 0. If n ⩾ 1, then apply [x, ·] until you are left with a linear combination of the
form

β0u0 + βhh + βxx + βyy = 0

where β0 ̸= 0. Next, applying [h, ·], we have

−β0u0 + βxx − βyy = 0.

Adding the above two equations, we have 2βxx + βhh = 0, whence βx = βh = 0. This
gives β0u0 + βyy = 0. Applying [x, ·], we get βy = 0, which leaves us with β0u0 = 0,
which is absurd, since u0 ̸= 0 and β0 ̸= 0. This proves Claim 2.

Finally, we have our desired contradiction, since t is a finite-dimensional Lie algebra. It
follows that the inclusion h ↪→ g is epimorphic. ■
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