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Abstract

In this article, we define and construct the universal enveloping algebra of a Lie
algebra, then, state and prove the Poincaré-Birkhoff-Witt Theorem.

§1 THE UNIVERSAL ENVELOPING ALGEBRA

DEFINITION 1.1. Let g be a Lie algebra over k. A universal enveloping algebra is a pair (41, 1)
where il is an associative algebra (over k, with identity) and i : g — 4l is a homomorphism
of Lie algebras such that for any associative algebra 2l (over k, with identity) and any Lie
algebra homomorphism ¢ : g — 2, there is a unique k-algebra homomorphism ¢ : 4l — 2
making the following diagram commute.
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§§ Construction

Let ¥ denote the tensor algebra over g, that is,

T = EBg®".

n=0
There is a map p : g&" x g®™ — g¥"™*" given by
y(x1®...®xn,y1®...®ym):x1®"'xn®yl®...®ym

and extending linearly. This gives T the structure of a k-algebra.
Let £ denote the ideal in T generated by all elements of the form

vy —x@y+y®x
forx,y € g. Set il = T/K and let 1 : g — 4 be the composition

g—>‘Ii>5J.
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THEOREM 1.2. (4, 1) is a universal enveloping algebra for g.

Proof. Let ¢ : g — 2 be a homomorphism of Lie algebras where 2 is an associative
k-algebra. The universal property of the tensor algebra extends this to a k-algebra homo-
morphism ¢ : T — 2.

Note that

plxey—yex)=9(xy) —9y®x)=9(x)ey) —ely)e(x) = o([x,y]),

whence ¢ vanishes on £, thereby inducing a unique (due to the universal property of the
kernel) map ¢ : i — 2, thereby completing the proof. u

§2 THE POINCARE-BIRKHOFF-WITT THEOREM
Let uq,...,u, be a k-basis of g. A monomial in ¥ is an element of the form
Z/11‘1(8..'(8141.;1

for n > 1. The number 7 is said to be the degree of the monomial. The index of the monomial
is given by
ind(u;, ® ---®@u;,) = Zﬂjk

j<k
where
nk:{o i < ik
! 1 i >

A monomial is said to be standard if its index is 0. Let g,, denote the vector space spanned
by monomials of degree 1 and let g,, ; denote the subspace of g, spanned by monomials of
degree n and index < 1.

LEMMA 2.1. Every element of T is congruent modulo £ to a k-linear combination of 1 and
standard monomials.

Proof. Straightforward induction on the index and degree of standard monomials. |

Let 3 denote the vector space spanned by Uj - U, where i1 < ... < iy. These are to
be interpreted as formal symbols without meaning.

LEMMA 2.2. There is a k-linear map ¢ : ¥ — B such that
c(1)=1 and o(u, @ @uy,) = iy,

if iy < ... <i,. Further,

oy ® - ® [,y (] @ - Buy) = 0(j @ - By, — 1y @ty DU Dy, ).



Proof. We induct on degree and index, in that order. Suppose a linear map ¢ has been
definedonk ®© g1 @ - - - @ g,_1. It is easy to extend thisto k @ - - - @ g, 0 by setting

U(ui1®...uin):ui1...ui .

n

Now, suppose ¢ has already been defined for k@ ... g,, ;1. Suppose jx > jx+1. Then, define
o), @ @uj,) = o) @ @y, Ouj @ @uj ) + 0 (uy @+ @ [ug [ @ @uy ).

The right hand side is well-defined because the first term on the right has index at most
i — 1 and the second term on the right is a linear combination of monomials of smaller
degree.

We must show that this is a well-defined assignment of ¢, that is the right hand choice
is independent of the pair of inversion chosen. To this end, let j; > j;; 1. We must consider
two cases.

Casel: | > k+1. Setuj =u,uj,, =0ou,=wuj =X
We would like to show

(..o u®-- - Quwx...)+o(- - QU - QwRx...)
.. uRu®..xQw...)+0(... u®Rve - Qx,w ...).

We can expand the left hand side of the above equality using the induction hypothesis
as

(..U - RXxQW...)+0(PRUR - R [x, W] ®...)
+o(-- QU] @xQw...)+0o(- R[] - Rw,x|®...).

The right hand side can be written as

0(..o0U®- - @xQw...)+o(-- QU@ - VxQw...)
+0(...oUR - Rx,w®...)+0(-- R[] - [x,w®...).

This completes the proof in this case.

Case 2: | = k+ 1. We write Uj =u,uj , =0=1u and uj,,, = w. We want to show the
equality

o(...ouew...)+o(...[uv|@w...)=0c(...uQw®v...)+0o(...u®v,w|...).
The left hand side can be expanded further as

cl...owu...)+o(...o@uw|...)+o(...[u,v]@w...)
=0(..w@vu...)+o(...[v,wQu...)+o(...o@[uw]...)+o(...[u,v]@w...).



Similarly, the right hand side can be expanded as

cl..ov@u®v...)+o(...[nw]@v...)+o(...u®v,w]...)

o(..w@vu...)+o(...wuw...)+o(...[m,w@v...)+o(u®v,w]...).

It remains to show the equality:

o(...lv,wl@u...)+o(...o@uw]...)+o(...[u,v]@w...)
=0(..ouw|...)+o(...[n,w]|RQv...)+o(uv,w]...),

which reduces to
o(...[[v,wlul...)+o(...[o,uw]...)+o(...[[wv],w]...) =0,
which follows from Jacobi’s Identity. This completes the proof in this case.

Now that ¢ is well-defined for monomials, we can extend it linearly to g, ;, thereby

completing the induction.

THEOREM 2.3 (POINCARE-BIRKHOFF-WITT THEOREM). The cosets of 1 and the standard

monomials form a basis for Y = T/ A.

Proof. We have shown that the standard monomials and 1 span 4. It remains to show
linear independence. This follows from the preceding lemma, since the u;, ...u; s are
linearly independent in ‘3.

§3 PROPERTIES OF THE UNIVERSAL ENVELOPING ALGEBRA

DEFINITION 3.1. A ring R is said to be filtered if it is equipped with an increasing sequence
Z = {R;}i>o of abelian subgroups such that

@@ |JRi=R

i20

(b) For all i,j 2 O, RiR]' g Ri+j~

Each filtration of a ring gives rise to an associated graded ring,

Grz(R) = @ Ri/Ri -,

i=0

with the convention that R;_; = 0.

For any a € R, there is a non-negative integer n such thata € R, buta € R,_;. The

homogeneous element b = b+ R, € Gry(R) is called the leading term of b. If b = 0, we
take its leading term to be 0.

LEMMA 3.2. Let R be a filtered ring with an increasing filtration {R;};>¢ and let G denote
the corresponding associated graded.



(a) If G is a domain, then so is R.
(b) If G is left (resp. right) noetherian, then so is R.

Proof. (a) Supposea,b € R\ {0} such thatab = 0in R. Let a,b denote the leading terms
of a and b respectively. Then, ab = 0, a contradiction.

(b) Let I be a left-ideal in R. We shall show that I is finitely generated. Let I denote the
abelian group generated by the leading terms of elements of I. It is easy to see that I
is a left ideal in G (whence, is a homogeneous left ideal). Since G is left noetherian,
there are by, ..., b, € I'such thatby, ..., b, generate 1 as a left ideal in G where b; is
the leading term of b;.

We contend that the b;’s generate I. Let b € I. Then, b, the leading term of b is a linear
combination of the form B B
b= _ab
i

where 7; € G. Since the left hand side is homogeneous, we may choose the 4;’s to be
homogeneous in G, consequently, the 7;’s are leading terms of some 4; € R.

From the above equality, we deduce that b is the leading term of ) ; a;b; whence,
b — Y ;a;b; has leading term of homogeneous degree smaller than that of b. An
induction argument finishes the proof. n

If g is a finite-dimensional Lie algebra over k (no restriction), then its universal envelop-
ing algebra i is equipped with a canonical filtration:

L[(”):k@g@gz@--~@g”.

Using the Poincaré-Birkhoff-Witt theorem, it is not hard to see that the associated graded
corresponding to the above filtration is isomorphic to k[X7, ..., X,;] where n = dimy g.

THEOREM 3.3. The universal enveloping algebra of a finite-dimensional Lie algebra over
k is a left (and right) Noetherian domain.

Proof. Follows from Lemma 3.2 and the discussion above. [ |

§4 FREE LIE ALGEBRAS
DEFINITION 4.1. Let X be a set. A free algebra over k on X is a pair (£(X),:) where
t: X — £(X) is such that for any map of sets ¢ : X — g where g is a Lie algebra over k,
there is a unique Lie algebra homomorphism ¢ : £(X) — g satisfying

X

i\

g

7/
e
L7 39

£(X)



§§ Construction

Let §(X) denote the free k-algebra generated by X. Then, §(X) has the structure of a Lie
algebra. Let £(X) denote the Lie subalgebra of §(X) generated by X. We contend that
X — £(X) is the free algebra on X.

Let ¢ : X — g be a map of sets where g is a Lie algebra over k. Then, we have the
following commutative diagram.

x—r

o

Where ¢ restricts to ¢ on X C F(X). Note that ¢ is also a Lie algebra homomorphism.
Therefore, ¢ g is a Lie subalgebra of F(X) containing X and hence, £(X) C ¢ lg. It
follows that ¢ restricts to a Lie algebra homomorphism ¢ : £(X) — g. The uniqueness
follows since X generates £(X). This completes the proof of existence.

The above discussion also shows:

|

) 5 Ha)

PROPOSITION 4.2. §(X) is the universal enveloping algebra of £(X).

§5 EPIMORPHISMS OF LIE ALGEBRAS

DEFINITION 5.1. Let g and h be Lie algebras with a Lie algebra homomorphism ¢ : g —
Der(h). Then, there is a Lie algebra structure on t = h @ g given by

[(,8), (,8"] = ([n 1]+ () =y (h), [2,€]) -

This is the semidirect product and is often denoted by h x4 g

LEMMA 5.2. Suppose ) C g is an inclusion of Lie algebras and V a g-module with a
0 # ¢ € V thatis anmhllated by b but not by g. Then the inclusion h — g is not an
epimorphism.

Proof. We can treat V as an abelian Lie algebra and consider the semidirect product
t = V x g. Note that since V is abeilan, every k-linear map V — V is a derivation of V.

Define themap 6 : g — V x gby 0(x) = (x - ¢, x). We contend that this is a Lie algebra
homomorphism. Indeed, for x,y € g, we have

[0(x),0()] = [(x-¢,x), (v $,y)]
= (x- ( ) =y (x-9), [xy])
=[x y]-¢.

Further, for x € b, 6(h) = (0,x). Consequently, the two maps 6 : g — V x g and
1: g — V xgagree onbhbutnoton g. Thus, the inclusion f) — gisnotan epimorphism. W
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THEOREM 5.3. Epimorphisms in the category of Lie algebras (including the infinite-
dimensional ones) are precisely the surjective Lie algebra homomorphisms.

Proof. Obviously, surjecive Lie algebra homomorphisms h — g are epimorphisms. There-
fore, it suffices to show that a proper inclusion h C g of Lie algebras is not epimorphic.
We prove this in the case g is finite-dimensional but an analogous proof works in the
infinite-dimensional case.

Choose a k-basis x1,...,x, of g such that x,1,...,x, is a k-basis of h. Let U denote
the universal enveloping algebra of g. Recall that the Poincaré-Birkhoff-Witt theorem

guarantees a k-basis of 4l in the form le - x where m; > 0 for 1 < i < n. We use the
notation x™ to denote products of the aforementioned kind.
Let V be the subspace of 4 spanned by x* where kpy1=--=ky,=0,andletrt: 4 -V

denote the projection. Define a g-action on V as follows: Forv € V C iland x € g, set
x - v = 1t(xv), where xv is the standard product in the associative algebra {L.

First, we must show that this is gives V the structure of a g-module. To this end, we
must show that for x,x’ € gand v € V,

7 ([x,x']-v) = n(x-n(x'-0)) — n(x" - 7(x-0)).
But by definition, 7t ([x, x] - v) = 7(xx'v) — t(x’xv). Hence, it suffices to show that
7t (x-m(x' - v)) = m(xx'v).

We can write x'v = 71(x'v) + v/, where v’ is a linear combination of basis elements x* with
k; > 0 for some p < i < n. So it suffices to show that 77(xx*) = 0 for some such k and
every x € g. For if this is shown, then

nt(xx'v) = 1t (x7t(x'v) + xv") = n(xm(x'v)) + 7w(xv") = w(x7(x'v)),

as desired.
Therefore, let x € g and k a multivector of nonnegative integers such that k; > 0 for
some p < i < n. We can write x* as x"x! where h; = 0 for p<i<mnandl; = 0 for

I as a linear combination of

kisa

1 <i < p. Note that [ # 0 as a vector. Then, we may write xx

elements x"' x!" with h; =0fori < p<mnand llf = 0for 1 < i < p. In conclusion, xx

. . . !/ I
linear combination of elements of the form x/* x! x'.

Since b is a subalgebra, note that the vector space spanned by x! where [; = 0 for
1 < i < p is precisely the universal enveloping algebra of h. In particular, it is an
associative k-subalgebra of $(. This shows that x'x! can be written as a linear combination
of elements of the form x!" where llf’ = 0for 1 < i < p. Since the terms of degree greater
than 0 form an ideal in 4(f) C 44, I # 0 will imply 1" # 0.

The above paragraph shows that xx* can be written as a linear combination of elements
of the form x*'x!" where W, =0forp<i<nandl/ =0forl <i<pand!” #0asa
vector. But these are all basis elements and are not contained in V, therefore, map to 0
under 71. Hence, 71(xx*) = 0 whenever k is such that k; > 0 for some p < i < n.

We have established that V is indeed a g-module. The element 1 € V is not annihilated
by g, but is annihilated by h since forany y € h, y-1 = n(y) = 0,sincey ¢ V C $l
Invoking Lemma 5.2, we have that h < g is not an epimorphism, thereby completing the
proof. |



REMARK 5.4. In the case that g is infinite-dimensional, choose first a k-basis {x3: B € B}
of h and extend it to a k-basis

{xe:a € Ay U{xg: B € B}

of g. Well order A and B separately and define a well order on A LI B by settinga < b
whenever a € A and b € B. That this is indeed a well-order is easy to check. The proof
then remains unchanged by replacing each instance of “1 < i < p” with “i € A” and
“p <i<nwithi € B”.

The analogue of Theorem 5.3 is not true in the category of finite-dimensional Lie
algebras:

THEOREM 5.5. Let k be algebraically closed and chark = 0, g = sl (k), and h C g be the
subalgebra of upper triangular matrices in g. Then, h < g is an epimorphism.

Proof. Recall that there is the standard basis {h, x,y} of g over k and b is generated by
{h, x}. For the sake of this proof, make the replacements h — 1h, x — fx and y — fy,

so that
[h,x]=x, [hy]l=—-y, and [x,y]=nh.

Suppose now that there are two morphisms g — t that agree on . We shall show that both
the morphisms are equal. Since g is simple, both morphisms must be injective, unless they
are both 0 in which case there’s nothing to prove. Denote the images of i and x in t by &
and x since both morphisms agree here and let y, " denote the images of y in t under the
two morphsims and suppose that y # v/'.

Set ug = y — ', and define u,, = [y, u,,_1] for n > 1 with the convention that u_; = 0.
Note that [x, ug] = [x,y] — [x,y'] = 0and [k, ug] = —u,.
Claim 1. [x, u,] = —%n(n + 1Vu,—q and [h, uy] = —(n+ 1)u, forn > 0.
We induct on n. The base case of n = 0 is clear. For n > 1, we have

[ [y, unal] + [y, -1, x]] + -1, [x,y]] =
—> Do) (= D)y 2] + [t 1]
=[x, u,] = —%n(n —Duy 1 —nu, 1 = —%n(n + Du, 1.

Similarly, we have

[y, una]] + [y, [wn—1, )] + [p—1, [h,y]] =0
e [htt] 0y, 1] — [i-1,9] = O
= [huy] = —(n+1)uy,

This proves Claim 1.
Claim 2. {h,x,y} U{u,: n > 0} is linearly independent.
Suppose not. Then there is a linear combination

AUy + -+ + ago + aph + axx +ayy = 0.
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with a, # 0. If n > 1, then apply [x, -] until you are left with a linear combination of the
form

Bouo + Brh + Bxx + Byy =0
where By # 0. Next, applying [h, -], we have

_,BOMO + ,Bxx - ﬁyy = 0.

Adding the above two equations, we have 2f,x + Byh = 0, whence By = B; = 0. This
gives Boug + Byy = 0. Applying [x,-], we get B, = 0, which leaves us with Boug = 0,
which is absurd, since 1y # 0 and By # 0. This proves Claim 2.

Finally, we have our desired contradiction, since t is a finite-dimensional Lie algebra. It
follows that the inclusion h < g is epimorphic. |
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