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Abstract
In this article, we (attempt to) present a self-contained proof of the Ado-Iwasawa
theorem. The exposition closely follows [ ], a copy of which was kindly lent to me
by Prof. Jugal Verma.
Throughout this article, k denotes a field and all Lie algebras are taken over k unless
specified otherwise.

§1 PRELIMINARIES

Most of this section is taken from [ ].

LEMMA 1.1. Let chark = 0 and p : g — gl(V) be a finite-dimensional representation. Then,
every element of p([g, g] N s) is nilpotent.

Proof. Induct on the dimension of V. We reduce to the case that V is irreducible, for if W
were a subrepresentation, then so is V/W. If an operator is nilpotent on W and V /W, it
must be nilpotent on V.

Replacing g with its image, we may suppose that p is injective. Therefore, we must
show that [g, g] N s = 0. This is equivalent to showing that [g, g] N a = 0 for every abelian
ideal a of g.

Note that [g,a] =0, forif x € g,y € aand z = [x,y| € a, then y and z commute, and
hence, y commutes with z" for every positive integer n. Now,

n—l)

tr([x,y]z" 1) = tr(xyz""! — yxz = tr(xz" ly —yxz"" 1) = 0.

Therefore, tr(z") = 0 for every positive integer n. This shows that z = 0, that is, [g, a] = 0.

Finally, we show that [g, g] Na = 0. Indeed, if x,y € gand [x,y] € a, then [y, [x,y]] =0
due to the preceding paragraph. Hence, y commutes with all powers of [x,y], and the
same argument shows that [x, y] = 0. This completes the proof. |

LEMMA 1.2. If chark = 0, then [g, 5] is nilpotent.

Proof. Let g and 5 denote the images of g and s under the adjoint representation. By the
preceding lemma, [g,5] C [g, ] N5, and hence, consists of nilpotent elements, whence is
nilpotent due to Engel’s Theorem.

Since the kernel of the adjoint representation is 3 = Z(g), we see that [g,s]/Z([g, s]) is
nilpotent whence, the conclusion follows. u



LEMMA 1.3. Let chark = 0. If § is a derivation of g, then (s) C n.

Proof. Construct the Lie algebra g’ = g & k with the bracket

[(x,a), (y,0)] = ([x,y] + ad(y) — b5(x),0).

It follows that g O is an ideal in g'. Let { = (0,1) € ¢'. It is easy to verify that 6 = [, -] on
g<g.
Let s’ denote the radical of g'. Obviously, s C s'. Then,

8(s) = [¢,s] S [o'5'I N g.

We have seen that [¢/, 5] is a nilpotent ideal in g’ and hence, its intersection with g is also
nilpotent. This completes the proof. u

LEMMA 1.4. Let chark = 0 and g; an ideal of g. If nq, 51 denote the nilradical and solvable
radical of g1, thenny =nNg;and s1 =sMNg;.

Proof. Obviously, g1 N's C s1. Then, s1/g; N s is a solvable ideal in g1 /g1 N 5. On the other
hand, g1 /g1 Ns = (g1 + 5) /s, which is an ideal in g/s. The latter is semisimple whence so
is the former. As a result, s;1 = g1 N s.

Now, if a € g, then ad a is a derivation of g;. Thus, ada(n;) C ny due to Lemma 1.3,
whence 1, is an ideal in g, consequently, ny C n N g;. This completes the proof. [ |

§2 LEVI'S THEOREM

Throughout this section, chark = 0.

LEMMA 2.1 (WHITEHEAD’S FIRST LEMMA). Let g be a semisimple Lie algebra over k and
M a g-module. Let f : g — M be a k-linear map satisfying

fley]) = xf(y) = yf (x).

Proof. Letp : g — gl(M) be the representation and let £ = ker ¢. We have a decomposition
into ideals, g = R @ b as Lie algebras. The restriction of the representation h — gl(M) is
injective and hence, the trace form (-,-) : h x h — k given by

(x,y) =tr (p(x)p(y))

is a nondegenerate symmetric bilinear form. Let uy, ..., u, be a basis of h and ul, ..., u" be
the dual basis with respect to (-, -).
The Casimir operator is given by

)= Lu (i),

and it is easy to check that this defines a g-linear map I' : M — M. Further, we note that
trI' = dim b.



We now prove the statement of the lemma by induction on dim M. Using the Fitting
Decomposition with respect to I, we can write M = My ® M; where I is nilpotent on M
and an isomorphism on M;. It is also easy to check that both My and M; are g-submodules
of M.

Let 71; : M — M; denote the canonical projection and f; = ;o f. If both My and M;
are proper submodules, then we are done by induction. Else, we need to examine two
cases.

First, suppose M = M), that is, I is nilpotent on M, whence dim b = trI" = 0, thatis, ¢
is a trivial representation, and hence, f = 0. In this case, the choice of m = 0 works.

Now, suppose M = My, that is, I is invertible. Set

m
y =Y uif(u;) € M.
i=1
A small computation gives us
ay=Tf(a) Vacy.
Thus, f(a) = a - (I'"ly), thereby completing the proof. |

LEMMA 2.2 (WHITEHEAD’S SECOND LEMMA). Let g be a semisimple Lie algebra over k,
M a finite-dimensional g-module and ¢ : g X g — M a bilinear map such that

(@) g(x,x) =0forall x € g.

(b) For x1,x3,x3 € g,

3
g(x;, [xi11, Xiy2]) + xig(xiy1, Xis2) = 0.
i—1

1
Then, there is a k-linear map p : g — M satisfying

g(x1,32) = x2p(x1) — x1p(x2) — plx1, x2].

Proof. First, note that condition (a), is equivalent to stating that g is skew-symmetric. Let
R,b,u;,u',T be as in the proof of Lemma 2.1. Set x3 = u; in (b), multiply by u' and sum
over all i to obtain

0 =) u'g(u [x1,x2]) + Tg(xr, x2) + Y u'g(xn, [z, ) + Y ' (18 (2, u7))
+ Y u'g(xe, ug, xa]) + Y u (xag(ui, x1))

= Tg(x1, %) + Zuig(ui, [x1,x2]) + Zuig(xl, [xo, 1)) + Y [, x1]g (20, u;)

1

+Y (”ig(xzf Mz')) + Z”ig(xzr (i, x1]) + Z[”i/ xo|g(ui, x1) + ), x2 (”ig(ui/ x1)> :



Recall that if [u;, x] = Y ajju; and [u, x] = ¥ Bji/, then a;; + Bji = 0. Using this, we get

Y [, x1)g(xa, 1) = Z,Z,Bij”jg(XZI”i) = - Zzo‘jiujg(xb u;) = Zujg(xzf [x1, u5])
i i j

1

Y [, xa]g (ui, x1) = Y u'g([xa, ], 1)

i

Substituting this back, we have canceled four terms to obtain,
0=Tg(x,x0) + Zuig(ui, [x1, x2]) + le (uig(xz, ui)> + sz (uig(ui, x1)> :
i i i
If T is invertible, then define
p(x) =T~ ) u'g(u; ).
i

Now, suppose I' is nilpotent. As we saw in Lemma 2.1, the representation must be the
zero representation and hence, condition (b) reduces to

g(x1, [x2, x3]) + g(x2, [x3, x1]) + g(x3, [x1, x2]) = 0.

Let X denote the k-vector space of linear maps g — M. This can be given a g-module
structure by defining, for A € X, x,y € g,

(xA)(y) = —A([x,y])

Note that this is just the standard g-module structure on Homy (g, M) where g is a g-module
through the adjoint representation.

For eachy € g, let A, € X be the mapping x — —g(x,y). Then, ® : g — X given by
y — Ay is k-linear. We contend that ® satisfies the hypothesis of Lemma 2.1.

Indeed,

Al )W) = =8y, [x1, x2])
(02Ax)(y) = —Ax, ([x2,¥]) = g([x2,y], x1)
(x14x%,)(y) = —Ax,([x1,y]) = g([x1,¥], x2).

Then,
(x1Ax, — x2Ax) (v) = g([x1,¥], x2) — g([x2,¥], x1)
= —g(x2, [x1,y]) — g(x1, [y, x2])

= gy, [x2, x1]) = —g(y, [x1, x2])
= _A[xl,xz] (y)

As aresult, there is a p € X such that A, = yp. In other words, we have a linear map
p : g — M such that

—g(x,y) = Ay(x) = (yo)(x) = —p(ly, x]) = p([x, y]).
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And since M is a zero representation, we have our desired conclusion in the case that I' is
nilpotent.

Finally, if I' is neither invertible nor nilpotent, we use the Fitting decomposition to
write M = My @ M; just as in the proof of Lemma 2.1 and use an induction argument to
complete the proof. n

PROPOSITION 2.3. Let g be a Lie algebra over k, s an abelian ideal in g. Set g = g/s. Then,
g acts on s through the “adjoint”, that is, ¥ - s = [x,s]. Let ¢ be a linear section of the
projection g — g. Define the skew-symmetric bilinear map g : g X g — s by

g(fl,fz) = [0’71,0’72] — 0'[?1,?2].

Then, s has a complementary subspace which is also a subalgebra if and only if there is
a linear map p : g — s such that

g(x1,%2) = Xop(¥1) — X10(X2) — p[X1, X2].

Proof. Suppose T : g — g is a linear section such that g is a subalgebra of g. Let p = 7 — 0.
Then,
n(px) = m(ox) — t(tx) =X —x = 0.

Hence, the image of p is in 5. We have

g(X1, %) = [TX1 — pX1, TX2 — pX2] + p[X1, Xo] — T[X1, X2]
= — [T, p%2] — [o%1, TR2] + [0%1, 0%2] — p[¥1, T2
= — [t 0%2] — [o%1, TH2] — p[X1, %]
= [1%, pX1] — [TX1, 0%2] — p[x1, X2
= X20(x1) — x10(%2) — p[x1, %2].

This proves one direction of the proposition. The other direction follows by simply
retracing the steps we did above. |

THEOREM 2.4 (LEVI). Let g be a Lie algebra over k and s its solvable radical. Then, s has a
complementary subalgebra in g.

Proof. We first reduce to the case [s,5] = 0. Suppose t = [s,5] # 0. Let g = g/t. Since
dimg < dim g, we can use an inductive argument to find a complementary subalgebra b
to 5 in g. Note that h = b/t for some subalgebra h of g containing t. Hence, h Ns = tand
dimbh < dim g.

The inuction hypothesis applies to h and we can isolate a subalgebra £ of h that is
complementary to t. It is easy to see that £ is the required complement of s using a
dimension argument.

Finally, we come to the case when [s,s] = 0, that is, s is abelian. Set g = g/s. Then, g
actsonsasXx-s = [x,s]. Let o : § — g be a linear section of the projection g — g.

Consider themap g: g x g — s by

g(fl,fz) = [0’71,0’?2] — 0'[71,72].

It is easy to check that this satisfies the hypothesis of Lemma 2.2. The conclusion of
Lemma 2.2 along with Proposition 2.3 completes the proof of the theorem. u
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§3 THE char (0 CASE

Throughout this section, k denotes a field of characteristic 0 (it may not be algebraically
closed).

LEMMA 3.1. Let g be a finite-dimensional solvable Lie algebra, n its nilradical, { the
universal enveloping algebra of g. Suppose X is an ideal of ! of finite co-dimension such
that every element of n is nilpotent modulo X. Then, there exists an ideal J in il such that:

(@ JCX,

(b) 7 is of finite co-dimension,

(c) every element of n is nilpotent modulo J.

(d) 03 C T for every derivation J of g (extended to Ll),

Proof. Let 9 denote the ideal in il generated by X and n. We first show that there is a
positive integer k such that M C X. Consider the map f : n — gl(l/X) given by x — £,
where ¢, denotes left multiplication by x. Since n is nilpotent, its image in gl({/X) is a
nilpotent Lie algebra. As a consequence of Engel’s Theorem, there is a positive integer k
such that the product of any k elements in the image is 0. Thus, £, = 0 whenever x is a
product of k elements in n.

Thus, n* C X. Now (work in i), for any x € nand y € g, xy = [x,y] +yx and [x,y] € n.
Now consider any element in il of the form a; - - - 4, where n > k and at least k of the 4;’s
are from n. Using the commutator relations one can move all k elements of n to the left of
the product, and it would follow that a; - - -4, € X. Thus, omk C x.

Let 3 = k. Ttis easy to verify conditions (a), (b) and (c). Let é be a derivation of g.
Since g is solvable, dg C n. Therefore, o4l C 9. In particular, §9t C M. Which means

53 = omk C ok = 3.
This completes the proof. |

LEMMA 3.2 (EXTENSION LEMMA). Let g = s @ § as vector spaces, where s is a solvable
ideal and b is a subalgebra of g. Suppose ¢ : s — gl(V) is a finite dimensional repre-
sentation such that ¢(z) is nilpotent for every z € n, the nilradical of s. Then, there is a
finite-dimensional representation ¢ of g such that:

(a) if p(x) = 0 for some x € S, then ¢(x) = 0.

(b) ¥(y) is nilpotent for every y of the form z + u where z € nand u € b is such that
ad; u is nilpotent.

Proof. The representation induces a map ¢ : 4l = U(s) — gl(V'), whose kernel ¥ is of finite
co-dimension. This puts us in the situation of Lemma 3.1. Let J < i denote the ideal in the
conclusion of Lemma 3.1.

Fors € s, let (s) : 4 — U be right multiplication by s € 4. For i € b, let (h) denote
the derivation on 4 extending the derivation s — [s, k] on s. Using the fact thatg = s @& b,
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extend ¢ to all of g. We shall show that ¢ is a representation (may not be finite-dimensional)
of g.

To show this, it suffices to show that (s, h]) = [¢(s), p(h)]. Note that [s, h] € s and
hence, i([s, h]) is right multiplication by [s, h] € 4l. But since (k) is a derivation of &, and
(s) is right multiplication, it is easy to check that [¢(s), (h)] is right multiplication by
P(h)(s) = [s, h]. This verifies that ¢ is a representation.

Since J is an ideal, it is invariant under ¢ (s) for all s € s and since ¢(h) is a derivation,
J must be invariant under it due to Lemma 3.1. As a result, J is invariant under ¢(g)
for every ¢ € g, consequently, i induces a finite dimensional representation of g on £/7J,
which, by abuse of notation, we shall denote by .

Let x € s be such that ¢(s) = 0, thatis, {s C J, in particular, s € 3 C X = ker ¢,
whence ¢(s) = 0.

Let z € nand u € b be such that ad; u is nilpotent. Due to Lemma 3.1, z is nilpotent
modulo J. Next, since ad u is nilpotent, s generates 4l and $1/7 is finite-dimensional, ¢(u)
is nilpotent on /7.

Now, ¢(s) is a nilpotent subalgebra of gl(W). Thus, there is a basis of W with respect to
which, every element of §(s) is strictly upper triangular. As a result, there exists an n > 0,
such that the product of any n elements of ¢(s) is 0. Recall that ¢(y) = ¢(z) + ¥ (u). We
have (1) (z) = 9(z)p(u) + (1, 2]). Note that p([1,2]) € $(s).

If m is the nilpotency class of (1), consider

p)"™ = (W(z) + ()™
It is easy to see that this must be equal to 0. |

THEOREM 3.3 (ADO’S THEOREM IN CHAR 0). Every finite-dimensional Lie algebra g over
k has a faithful finite-dimensional representation.

Proof. The adjoint representation has kernel 3 = 3(g), the center of g. Thus, it suffices to
tind a representation that is faithful on 3.

We first begin with a faithful representation of 3, which is obvious to construct since 3 is
abelian. Indeed, if dim 3 = ¢, then in a c + 1-dimensional vector space, there is a nilpotent
linear transformation z such that z¢ # 0. Then, 3 is isomorphic to the Lie algebra with basis
(z,2%,...,2°).

We have the inclusion 3 C n C s. We can also find a filtration

5:n1g...gnk:n

where dimn;;;/n; = 1 for all i and each n; is an ideal in n;; 1. As vector spaces, we can
write n; 1 = n; @ ku; 1 where ku; 1 is a subalgebra. Since each n;; is a solvable ideal,
Lemma 3.2 applies at each stage. This furnishes a representation of n by nilpotent linear
transformations that is faithful on j3.

Now, consider another filtration

n=s C-.--Cs =s5.

where each s; is an ideal in 5,1 and dim ;1 /s; = 1. Since n is the nilradical of each s;, we
can again use Lemma 3.2 to obtain a representation of s, faithful on 3 and consisting of
nilpotent linear transformations on n.



Finally, Theorem 2.4 decomposes g = s @ h for some subalgebra b. Invoking Lemma 3.2,
we have completed the proof. |

§4 THE charp > 0 CASE

LEMMA 4.1. Let chark = p > 0 and 0 # f(X) € k[X]. Then, there is a polynomial of the
form . o
XP +a, 1 XP 44 a9X € k[X]

that is divisible by f(X). Such a polynomial is called a p-polynomial.

Proof. 1If f is a constant polynomial, then there is nothing to prove. Suppose now that f is
not constant. For each i > 0, we can write

XV = qi(X) f(X) + ri(X),
where degr; < deg f. Therefore, the r;’s span a vector subspace of dimension at most

deg f. Let m = deg f. Then, ry, ..., r,; must be linearly dependent. The conclusion follows
by just adding up the above equations with suitable weights. |

LEMMA 4.2. Let g be a finite-dimensional Lie algebra over k with chark = p > 0 and let
= 4(g). Then, for every a € g, there is a polynomial m,(X) € k[X] such that m,(a) is in
the center of 4.

Proof. Note that ada : g — g is a linear transformation on a finite-dimensional k-vector
space and hence, has a minimal polynomial f(X) € k[X]. Using Lemma 4.1, there is a
p-polynomial p(X) € k[X] such that p(ada) = 0. But since (ad a)? = ad a”, we have that
ad p(a) = 0 on g. This completes the proof. [

LEMMA 4.3. Let g be a finite-dimensional Lie algebra over k with basis {u;} and let
= 4(g). Let
ub =kegeg e - ad

Suppose for each u;, there is a positive integer n; and an element z; in the center of { such
that v; = u]’ — z; is in U4 =1,
Then, the elements of the form

h By, A1, Ao Ar
A S L T T

such thati; < --- < i, h]- 20,0<A; < ni; form a basis for 4l.

Proof. We first show that the elements of the above form span I, for which it suffices to
show that every element of the form uk uk’ is a linear combination of elements of the
above form. If all the ks are less than nZ , then there is nothing to prove. Hence, suppose

that k; > > nj, for some mdex ]



n;.
Replacing u ij] by vj; 4 z;, we obtain

ki—n;
i M
ke Zi].ul.cl j ky

kl kjinij kr
i e Wi i ij s Uy i ij .

0. ... U
L Iy

Using an induction argument, it is clear that the above sum can be written as a linear
combination of elements in the desired form.
It remains to show that those elements are linearly independent. Indeed,
h by M Ar iy oV, M Wiy 0 Nhe, Ar
izt = (g =)t (T — o)
I/l}'llnil +A o u}"f”ir"'/\’
11 1y

Z

mod (=1,

r
where k = Z (h jti; + A;j)- Recall that elements of $4(k=1) are linear combinations of standard
j=1
monomials of degree at most k — 1.

Supppose there were a linear relation between elements of the aforementioned form,
with maximum “degree” k. Then, using the above congruence, we would obtain a linear
combination of standard monomials elements of “degree” k. Note that every element of
the aforementioned form contributes at most one standard monomial of “degree” k. Using
the linear independence of standard monomials, and the fact that there is only one element
of the aforementioned form contributing a certain residue class modulo 4*=1) we have
completed the proof. |

THEOREM 4.4 (IWASAWA). Every finite-dimensional Lie algebra over a field k of charac-
teristic p > 0 admits a faithful finite-dimensional representation.

Proof. Letuy,...,u, be a k-basis for g. Using Lemma 4.2, there is a p-polynomial m;(X) €
k[X] such that m;(u;) is in the center of 4l. Let degm; = p™i. Then, z; = ufml + v; where
v; € UP""~1. Then, due to Lemma 4.3, we have an explicit generating set for 4.

Let J denote the two-sided ideal in i generated by the z;’s. Consider {/3J. This
is spanned by u?l ...uj" with 0 < A; < p™. Further, it is easy to see that these are
linearly independent and hence, constitute a basis of £[/J. The canonical surjection { —
41/ 7J restricts to an isomorphism on g, consequently, we have obtained a faithful finite-
dimensional representation of g. This completes the proof. u
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