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Throughout this article, we work in a fixed Euclidean space R equipped with the
standard Lebesgue measure m = m.

§1 THE LEBESGUE DIFFERENTIATION THEOREM

DEFINITION 1.1. Let ¢ be a complex Borel measure on R¥. For x € R¥ and r > 0, let

o 1(B(x7))
(Qﬁu)( ) - m(B(x,r))'

Define the symmetric derivative of y at x as
(l: ]/l)(X) liIIl (Qrﬂ)(x)
r—0t

whenever this limit exists. Further, if > 0, define the maximal function My : R — [0, oo]

(Mp)(x) = sup(Qrp)(x).

r>0

For an arbitrary complex Borel measure # on R¥, define My := M|u|.

PROPOSITION 1.2. The maximal function My is lower semicontinuous, in particular, is
measurable.

Proof. We may assume that u > 0. Let A > 0 and set U = {x € RF: (Mp)(x) > A}. Let
x € U. Then, there is an r > 0 such that

B(x,r
= :1((3((3@ r)))) -
Choose 6 > 0 such that )
< (4 8)k < %t
If |y — x| < 6, then B(y,r+6) 2 B(x,r) whence
wBy,r+9)) _ p(B(x,r)) mB(xr) _, *
m(B(y,r+06)) = m(B(x,r))m(B(y,r+6)) (r+6k """
according to our choice of 6. Thus, B(x, ) C U and the latter is open. |
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N
LEMMA 1.3 (VITALI). Let W = U B(x;,r;) where x; € RFand r; > 0 for 1 <i < N. Then,

i=1
there is a subset S C {1,..., N} such that
(a) The balls B(x;, ;) are pairwise disjoint fori € S,

(b) W C U B(x;,3r;), and hence
i€eS
() m(W) <3y m(B(x;,1))

ieS

Proof. Without loss of generality, suppose 71 > - - - > ry. Begin by setting i1 = 1. Remove
all balls B(x;,r;) that intersect B(x;,r;). Note that if B(x;,r;) N\ B(x;,ri,) # @, then
choosing some y in the intersection, we have that for any z € B(x;, ;),

z— x| <|z—y|+ |y — x| <2ri+71; <3ry

since i > iy. Thatis, B(x;,r;) € B(x;,,3r;,). Next, choose i to be the smallest index larger
than i; that hasn’t been deleted and repeat this procedure. It is easy to see that the balls
that remain satisfy the required conditions. u

Henceforth, we use the shorthand {f > A} to denote the set {x € R¥: f(x) > A}.

THEOREM 1.4. Let 4 be a complex Borel measure on R¥. For A > 0,
m{Mp > A} <3A7ul.

Proof. Let U = {Mu > A} and let K C U be a compact set. For each x € K, there is an
rx > 0 such that (Q, u#)(x) > A. Since K is compact, we can choose a finite subcover

N
K C | B(xi, 1),
i=1

where 1; is shorthand for r,,. Using Lemma 1.3, there is a subcollection S C {1,...,N}
such that K C | J B(x;,3r;) and the balls B(x;, r;) are pairwise disjoint. Thus,
i€eS

) < 3 Zm (x;,17)) < 3A~1 Z,u(B(xi, ri)) =3 A"y (U B(x;, r,-)) <A,
i€$ i€S i€S

thereby completing the proof. n

DEFINITION 1.5. Let f € L'(RF) and let 4 be the complex Borel measure on R given by

dy = f dm. Define the maximal function of f as (Mf)(x) = (Mu)(x). Then,

1
(M) =208 e

2
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DEFINITION 1.6. Let f € L'(RF). A point x € R¥ is said to be a Lebesgue point of f if

. 1
lim B o )~ f@)] dm(y) =0

r—0+ m(B(x,7))

Henceforth, we also use the shorthand (B, ) to denote m(B(x, 7)) for any x € R¥, since
the Lebesgue measure is translation invariant.

THEOREM 1.7 (LEBESGUE). If f € L!(R¥), then almost every x € R is a Lebesgue point
of f.
Proof. Define

(1)) = 5y fyepy @)~ £ ),

and

(Tf)(x) = limsup(T, f)(x).

r—0+t
It suffices to show that Tf = 0 a.e. on R
Fix a positive integer n and choose g € Cc(IRF) with ||f —g[l1 < 1. Seth = f — g. We
have

(TE) = gy i 1) ) dn(y)

1
< ) / oy M) () ().

Taking lim sup with r — 07, we have
(Th)(x) < (Mh)(x) + [A(x)].
Since f = g + h, we have
T.f<T,g+T,h = Tf<Tg+Th
Recall that g is continuous, and hence, Tg = 0. This gives us
Tf < Mh+ |h|.
Let y > 0 be arbitrary. We have the obvious inclusion

{Tf>2y} C{Mh>y}U{|h| >y} =:E(y,n).

Using Theorem 1.4, we have

371

1 3" +1
m{Tf > 2y} < I+ < =

yn

Since the inequality on the right holds for all positive integers 1, we have that m{Tf >
2y} = 0forally > 0. It follows that m{Tf > 0} = 0, thereby completing the proof. =~ W
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REMARK 1.8. If x € RF is a Lebesgue point of f, then it is easy to see that

. 1
f(x) = rli%h W B(x’r)f(y) dm(y)

THEOREM 1.9. Suppose i is a complex Borel measure on R, and y < m. Let f be the
Radon-Nikodym derivative of i with respect to m. Then, Du = f a.e. on IR, and hence,

p(E) = [ (Dy) dm

for all Borel sets E C Rk,
Proof. Atany Lebesgue point x € RF of f,

— lim _ i HBT))
f) = tim s [ Flw)dm(y) = lim S = (Dp) (1)
This completes the proof. |

DEFINITION 1.10. Let x € R¥. A sequence (E;);>1 of Borel sets in RF is said to shrink to x
nicely if there is a number « > 0 and a sequence of balls B(x, r;) with lim r; = 0 such that
1—00

E; C B(x,r;) and m(E;) > am(B(x,1;)).

THEOREM 1.11. Associate to each x € RF a sequence (E;(x));>; that shrinks to x nicely,
and let f € L'(IR). Then

f(x) =lim ————~—~ / fly) dm(y

i—o0 m

at every Lebesgue point x of f, and hence, a.e. on le .

Proof. If x € R is a Lebesgue point of f, and a(x) > 0 be such that m(E;(x)) >
a(x)m(B(x,r;)). Then

1 1
Oé—/ —xdmxé—/ — f(x)| dm(y).
BT o [F0) — F@Lam() < s [ 1f) = )] dm(y)
As i — oo, the right hand side goes to 0 and hence, so does the left. This completes the
proof. |
THEOREM 1.12. Let f € L!(R) and define F : R — R by
X
= [t am(y)

Then F/(x) = f(x) at every Lebesgue point of f, and hence, a.e. on R.

Proof. Let x € R be a Lebesgue point. If (J;);>1 is a sequence of positive reals converging
to 0, then set E; = (x, x + ;). Due to the preceding result, we have

F(x+6i) — F(x)
) = i oty S0 ) = fim ZES =
This completes the proof. |



§2 THE FUNDAMENTAL THEOREM OF CALCULUS

DEFINITION 2.1. A function f : [ = [a,b] — C is said to be absolutely continuous on I, if for
every ¢ > 0, thereis a > 0 such that

n

Y If(B) — flai)| <e

i=1

for any disjoint collection of segments (a1, 81), ..., (&, Bn) in I provided

n
Z ﬁi —u; < 0.
i=1
THEOREM 2.2. Let f : I = [a,b] — R be a continuous, increasing function. The following
are equivalent:

(@) fisAConI.
(b) f maps sets of measure 0 to sets of measure 0.

) f is differentiable a.e. on I, f' € L1, and
© f

Fx) = fla) = [ /() dm(x).
foralla <x <b.

Proof. Let M denote the c-algebra of Lebesgue measurable sets in R.
(a) = (b) Let E C I be such that m(E) = 0. We must show that f(E) € 9 and
m(f(E)) = 0. We may suppose, without loss of generality, thata,b ¢ E.

Let e > 0. Since f is AC on I, there is a  corresponding to this ¢ as in the definition of
absolute continuity. There is an open set V such that E C V C [ and m(V) < . We can
write V = U;(a;, B;) with };(B; — «;) < 6. For any finite collection ] of the indexing set
over which i runs,

Y IfB) = fla)] <e = Y} If(Bi) — flw)| <e.

j€]

Hence, m(E) < m(f(V)) < ¢. Since this inequality holds for all ¢ > 0, m(E) = 0.
(b) = (c) Let g : I — R be given by g(x) = f(x) + x. This is a strictly increasing
function of x. We claim that ¢ maps measure 0 sets to measure 0 sets. Suppose E C [ has
measure 0. We would like to show that g(E) has measure 0. We may assume further that
a,b ¢ E. Let ¢ > 0. There is an open set V containing f(E) such that m(V) < e. Note
that f~1(V) is an open subset of I containing E. There is an open set U containing E and
contained in V such that m(U) < e.

Being an open set, U is a disjoint union of (countably many) disjoint intervals. Since
f is an increasing function, the image of disjoint intervals is either disjoint or they have
at most one point in common. If f maps an interval of length # to an interval of length
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1, then ¢ maps the aforementioned interval to one of length 77 + #’. Now, the sum of the
lengths of the images of the intervals that constitute U under f is at most ¢, and hence,
the measure of ¢g(U) is at most ¢ + m(U) < 2¢. Consequently, m(g(E)) < 2e. Since this
inequality holds for all ¢ > 0, we see that m(g(E)) = 0.

We come back to our original line of proof. Let E C I be measurable. Then, we can
write E = E; U Egy, where m(Ey) = 0 and E; is an Fy-set. Thus, E; is a countable union
of compact sets and because g is continuous, so is g(Ej). Since ¢ maps measure 0 sets
to measure 0, m(g(Ep)) = 0 and finally, since g(E) = g(Eo) U g(E1), we conclude that
¢(E) € M.

Define a measure y(E) = m(g(E)) on I. It is also easy to see that y is a nonnegative
complex Borel measure on IR that is absolutely continuous with respecttom. Leth : I — R
denote the Radon-Nikodym derivative, where i € L!(I). We shall show that our required
derivative of fish — 1.

If E = [a,x], then ¢(E) = [g(a), g(x)], since the image must be a compact interval.
Thus,

§(x) — g(a) = m(g(E)) = u(E) = [ "h(y) dm(y)
whence

()~ h(a) = [ h(y) ~ 1dm(y).

Due to Theorem 1.12, f'(x) = h(x) — 1 a.e. on I.
(c) = (a) Since f' € L}, for every ¢ > 0, there is a § > 0 such that | [, fdm| < ¢
whenever m(E) < 4. The conclusion is immediate now. [

DEFINITION 2.3. A function f : I = [a,b] — R is said to be of bounded variation if the total
variation, defined as

N
sup ZI [f(t:) = f (i)
im
where the supremum is taken over all partitions
a=ly<tHi < ---<In=2x,
is finite.

THEOREM 2.4.Let f : [ = [4,b] - Rbe AC. For a < x < b, let F(x) denote the total
variation of f on [a, x]. Then the functions F, F + f, F — f are AC and increasing on I.

Proof. The increasing assertion is immediate from the inequality

F(y) = F(x) +|f(y) = f(x)]

foralla <x <y <b
As for the assertion about absolute continuity, it suffices to show that F is AC. Let
e > 0, then there is a corresponding J according to the definition of absolute continuity.



n
Let (a1,B1), ..., (an, Bn) be disjoint intervals with ) _(B; — a;) < é. Then,
i=1

n
F(Bi) = F(a;) = sup ) _|f(t)) — f(t 1),
i=1 ]
where the supremum is taken over partitions of the intervals
ap=ty <o <th =P
for 1 < i < n. But since . ,
Zt; —t 1 <9,
1,]
we have that 1" ; F(B;) — F(a;) < e. Thus, F is absolutely continuous on I. [

THEOREM 2.5 (FUNDAMENTAL THEOREM OF CALCULUS). If f is a complex-valued
function that is AC on I = [4, b], then f is differentiable almost everywhere on I, ' € L

and
f) = @) = [ /(&) dm()
foralla < x <b.

Proof. It suffices to prove this for real-valued f. Let F denote its “total variation function”.

Define F r
+f and h = ;f

2 2

Due to the preceding result, both ¢ and & are AC and increasing on I. Applying Theo-
rem 2.2, and noting that f = ¢ — I, we have the desired conclusion. |
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