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Throughout this article, we work in a fixed Euclidean space Rk equipped with the
standard Lebesgue measure m = mk.

§1 THE LEBESGUE DIFFERENTIATION THEOREM

DEFINITION 1.1. Let µ be a complex Borel measure on Rk. For x ∈ Rk and r > 0, let

(Qrµ)(x) =
µ(B(x, r))
m(B(x, r))

.

Define the symmetric derivative of µ at x as

(Dµ)(x) = lim
r→0+

(Qrµ)(x)

whenever this limit exists. Further, if µ ⩾ 0, define the maximal function Mµ : Rk → [0, ∞]
as

(Mµ)(x) = sup
r>0

(Qrµ)(x).

For an arbitrary complex Borel measure µ on Rk, define Mµ := M|µ|.
PROPOSITION 1.2. The maximal function Mµ is lower semicontinuous, in particular, is
measurable.

Proof. We may assume that µ ⩾ 0. Let λ > 0 and set U = {x ∈ Rk : (Mµ)(x) > λ}. Let
x ∈ U. Then, there is an r > 0 such that

t =
µ(B(x, r))
m(B(x, r))

> r.

Choose δ > 0 such that

rk < (r + δ)k <
rkt
λ

.

If |y − x| < δ, then B(y, r + δ) ⊇ B(x, r) whence

µ(B(y, r + δ))

m(B(y, r + δ))
⩾

µ(B(x, r))
m(B(x, r))

m(B(x, r))
m(B(y, r + δ))

= t
rk

(r + δ)k > λ,

according to our choice of δ. Thus, B(x, δ) ⊆ U and the latter is open. ■
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LEMMA 1.3 (VITALI). Let W =
N⋃

i=1

B(xi, ri) where xi ∈ Rk and ri > 0 for 1 ⩽ i ⩽ N. Then,

there is a subset S ⊆ {1, . . . , N} such that

(a) The balls B(xi, ri) are pairwise disjoint for i ∈ S,

(b) W ⊆
⋃
i∈S

B(xi, 3ri), and hence

(c) m(W) ⩽ 3k ∑
i∈S

m(B(xi, ri)).

Proof. Without loss of generality, suppose r1 ⩾ · · · ⩾ rN. Begin by setting i1 = 1. Remove
all balls B(xi, ri) that intersect B(xi1 , ri1). Note that if B(xi, ri) ∩ B(xi1 , ri1) ̸= ∅, then
choosing some y in the intersection, we have that for any z ∈ B(xi, ri),

|z − xi1 | ⩽ |z − y|+ |y − xi1 | < 2ri + ri1 ⩽ 3ri1

since i > i1. That is, B(xi, ri) ⊆ B(xi1 , 3ri1). Next, choose i2 to be the smallest index larger
than i1 that hasn’t been deleted and repeat this procedure. It is easy to see that the balls
that remain satisfy the required conditions. ■

Henceforth, we use the shorthand { f > λ} to denote the set {x ∈ Rk : f (x) > λ}.

THEOREM 1.4. Let µ be a complex Borel measure on Rk. For λ > 0,

m{Mµ > λ} ⩽ 3kλ−1∥µ∥.

Proof. Let U = {Mµ > λ} and let K ⊆ U be a compact set. For each x ∈ K, there is an
rx > 0 such that (Qrx µ)(x) > λ. Since K is compact, we can choose a finite subcover

K ⊆
N⋃

i=1

B(xi, ri),

where ri is shorthand for rxi . Using Lemma 1.3, there is a subcollection S ⊆ {1, . . . , N}
such that K ⊆

⋃
i∈S

B(xi, 3ri) and the balls B(xi, ri) are pairwise disjoint. Thus,

m(K) ⩽ 3k ∑
i∈S

m(B(xi, ri)) < 3kλ−1 ∑
i∈S

µ(B(xi, ri)) = 3kλ−1µ

(⋃
i∈S

B(xi, ri)

)
⩽ 3kλ−1∥µ∥,

thereby completing the proof. ■

DEFINITION 1.5. Let f ∈ L1(Rk) and let µ be the complex Borel measure on Rk given by
dµ = f dm. Define the maximal function of f as (M f )(x) = (Mµ)(x). Then,

(M f )(x) = sup
r>0

1
m(B(x, r))

∫
B(x,r)

| f (y)| dm(y).
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DEFINITION 1.6. Let f ∈ L1(Rk). A point x ∈ Rk is said to be a Lebesgue point of f if

lim
r→0+

1
m(B(x, r))

∫
B(x,r)

| f (y)− f (x)| dm(y) = 0.

Henceforth, we also use the shorthand m(Br) to denote m(B(x, r)) for any x ∈ Rk, since
the Lebesgue measure is translation invariant.

THEOREM 1.7 (LEBESGUE). If f ∈ L1(Rk), then almost every x ∈ Rk is a Lebesgue point
of f .

Proof. Define

(Tr f )(x) =
1

m(Br)

∫
B(x,r)

| f (y)− f (x)| dm(y),

and
(T f )(x) = lim sup

r→0+
(Tr f )(x).

It suffices to show that T f = 0 a.e. on Rk.
Fix a positive integer n and choose g ∈ Cc(Rk) with ∥ f − g∥1 < 1

n . Set h = f − g. We
have

(Trh)(x) =
1

m(Br)

∫
B(x,r)

|h(y)− h(x)| dm(y)

⩽
1

m(Br)

∫
B(x,r)

|h(y)| dm(y) + h(x).

Taking lim sup with r → 0+, we have

(Th)(x) ⩽ (Mh)(x) + |h(x)|.

Since f = g + h, we have

Tr f ⩽ Trg + Trh =⇒ T f ⩽ Tg + Th.

Recall that g is continuous, and hence, Tg = 0. This gives us

T f ⩽ Mh + |h|.

Let y > 0 be arbitrary. We have the obvious inclusion

{T f > 2y} ⊆ {Mh > y} ∪ {|h| > y} =: E(y, n).

Using Theorem 1.4, we have

m {T f > 2y} ⩽
3n

y
|h|+ 1

y
|h| ⩽ 3n + 1

yn
.

Since the inequality on the right holds for all positive integers n, we have that m{T f >
2y} = 0 for all y > 0. It follows that m{T f > 0} = 0, thereby completing the proof. ■
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REMARK 1.8. If x ∈ Rk is a Lebesgue point of f , then it is easy to see that

f (x) = lim
r→0+

1
m(Br)

∫
B(x,r)

f (y) dm(y)

THEOREM 1.9. Suppose µ is a complex Borel measure on Rk, and µ ≪ m. Let f be the
Radon-Nikodym derivative of µ with respect to m. Then, Dµ = f a.e. on Rk, and hence,

µ(E) =
∫

E
(Dµ) dm,

for all Borel sets E ⊆ Rk.

Proof. At any Lebesgue point x ∈ Rk of f ,

f (x) = lim
r→0+

1
m(Br)

∫
B(x,r)

f (y) dm(y) = lim
r→0+

µ(B(x, r))
m(B(x, r))

= (Dµ)(x).

This completes the proof. ■

DEFINITION 1.10. Let x ∈ Rk. A sequence (Ei)i⩾1 of Borel sets in Rk is said to shrink to x
nicely if there is a number α > 0 and a sequence of balls B(x, ri) with lim

i→∞
ri = 0 such that

Ei ⊆ B(x, ri) and m(Ei) ⩾ αm(B(x, ri)).

THEOREM 1.11. Associate to each x ∈ Rk a sequence (Ei(x))i⩾1 that shrinks to x nicely,
and let f ∈ L1(Rk). Then

f (x) = lim
i→∞

1
m(Ei(x))

∫
Ei(x)

f (y) dm(y)

at every Lebesgue point x of f , and hence, a.e. on Rk.

Proof. If x ∈ Rk is a Lebesgue point of f , and α(x) > 0 be such that m(Ei(x)) ⩾
α(x)m(B(x, ri)). Then

0 ⩽
1

m(Ei(x))

∫
Ei(x)

| f (y)− f (x)| dm(x) ⩽
1

α(x)B(x, ri)

∫
B(x,ri)

| f (y)− f (x)| dm(y).

As i → ∞, the right hand side goes to 0 and hence, so does the left. This completes the
proof. ■

THEOREM 1.12. Let f ∈ L1(R) and define F : R → R by

F(x) =
∫ x

−∞
f (y) dm(y).

Then F′(x) = f (x) at every Lebesgue point of f , and hence, a.e. on R.

Proof. Let x ∈ R be a Lebesgue point. If (δi)i⩾1 is a sequence of positive reals converging
to 0, then set Ei = (x, x + δi). Due to the preceding result, we have

f (x) = lim
i→∞

1
m(Ei)

∫
Ei

f (y) dm(y) = lim
i→∞

F(x + δi)− F(x)
δi

.

This completes the proof. ■
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§2 THE FUNDAMENTAL THEOREM OF CALCULUS

DEFINITION 2.1. A function f : I = [a, b] → C is said to be absolutely continuous on I, if for
every ε > 0, there is a δ > 0 such that

n

∑
i=1

| f (βi)− f (αi)| < ε

for any disjoint collection of segments (α1, β1), . . . , (αn, βn) in I provided

n

∑
i=1

βi − αi < δ.

THEOREM 2.2. Let f : I = [a, b] → R be a continuous, increasing function. The following
are equivalent:

(a) f is AC on I.

(b) f maps sets of measure 0 to sets of measure 0.

(c) f is differentiable a.e. on I, f ′ ∈ L1, and

f (x)− f (a) =
∫ x

a
f ′(x) dm(x).

for all a ⩽ x ⩽ b.

Proof. Let M denote the σ-algebra of Lebesgue measurable sets in R.
(a) =⇒ (b) Let E ⊆ I be such that m(E) = 0. We must show that f (E) ∈ M and
m( f (E)) = 0. We may suppose, without loss of generality, that a, b /∈ E.

Let ε > 0. Since f is AC on I, there is a δ corresponding to this ε as in the definition of
absolute continuity. There is an open set V such that E ⊆ V ⊆ I and m(V) < δ. We can
write V =

⋃
i(αi, βi) with ∑i(βi − αi) < δ. For any finite collection J of the indexing set

over which i runs,

∑
j∈J

| f (β j)− f (αj)| < ε =⇒ ∑
i
| f (βi)− f (αi)| ⩽ ε.

Hence, m(E) ⩽ m( f (V)) ⩽ ε. Since this inequality holds for all ε > 0, m(E) = 0.
(b) =⇒ (c) Let g : I → R be given by g(x) = f (x) + x. This is a strictly increasing
function of x. We claim that g maps measure 0 sets to measure 0 sets. Suppose E ⊆ I has
measure 0. We would like to show that g(E) has measure 0. We may assume further that
a, b /∈ E. Let ε > 0. There is an open set V containing f (E) such that m(V) < ε. Note
that f−1(V) is an open subset of I containing E. There is an open set U containing E and
contained in V such that m(U) < ε.

Being an open set, U is a disjoint union of (countably many) disjoint intervals. Since
f is an increasing function, the image of disjoint intervals is either disjoint or they have
at most one point in common. If f maps an interval of length η to an interval of length
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η′, then g maps the aforementioned interval to one of length η + η′. Now, the sum of the
lengths of the images of the intervals that constitute U under f is at most ε, and hence,
the measure of g(U) is at most ε + m(U) < 2ε. Consequently, m(g(E)) ⩽ 2ε. Since this
inequality holds for all ε > 0, we see that m(g(E)) = 0.

We come back to our original line of proof. Let E ⊆ I be measurable. Then, we can
write E = E1 ∪ E0, where m(E0) = 0 and E1 is an Fσ-set. Thus, E1 is a countable union
of compact sets and because g is continuous, so is g(E1). Since g maps measure 0 sets
to measure 0, m(g(E0)) = 0 and finally, since g(E) = g(E0) ∪ g(E1), we conclude that
g(E) ∈ M.

Define a measure µ(E) = m(g(E)) on I. It is also easy to see that µ is a nonnegative
complex Borel measure on R that is absolutely continuous with respect to m. Let h : I → R

denote the Radon-Nikodym derivative, where h ∈ L1(I). We shall show that our required
derivative of f is h − 1.

If E = [a, x], then g(E) = [g(a), g(x)], since the image must be a compact interval.
Thus,

g(x)− g(a) = m(g(E)) = µ(E) =
∫ x

a
h(y) dm(y),

whence
h(x)− h(a) =

∫ x

a
h(y)− 1 dm(y).

Due to Theorem 1.12, f ′(x) = h(x)− 1 a.e. on I.
(c) =⇒ (a) Since f ′ ∈ L1, for every ε > 0, there is a δ > 0 such that

∣∣∫
E f dm

∣∣ < ε

whenever m(E) < δ. The conclusion is immediate now. ■

DEFINITION 2.3. A function f : I = [a, b] → R is said to be of bounded variation if the total
variation, defined as

sup
N

∑
i=1

| f (ti)− f (ti−1)|

where the supremum is taken over all partitions

a = t0 < t1 < · · · < tN = x,

is finite.

THEOREM 2.4. Let f : I = [a, b] → R be AC. For a ⩽ x ⩽ b, let F(x) denote the total
variation of f on [a, x]. Then the functions F, F + f , F − f are AC and increasing on I.

Proof. The increasing assertion is immediate from the inequality

F(y) ⩾ F(x) + | f (y)− f (x)|

for all a ⩽ x ⩽ y ⩽ b.
As for the assertion about absolute continuity, it suffices to show that F is AC. Let

ε > 0, then there is a corresponding δ according to the definition of absolute continuity.
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Let (α1, β1), . . . , (αn, βn) be disjoint intervals with
n

∑
i=1

(βi − αi) < δ. Then,

n

∑
i=1

F(βi)− F(αi) = sup ∑
i,j

| f (ti
j)− f (ti

j−1)|,

where the supremum is taken over partitions of the intervals

αi = ti
0 < · · · < ti

ni
= βi

for 1 ⩽ i ⩽ n. But since
∑
i,j

ti
j − ti

j−1 < δ,

we have that ∑n
i=1 F(βi)− F(αi) ⩽ ε. Thus, F is absolutely continuous on I. ■

THEOREM 2.5 (FUNDAMENTAL THEOREM OF CALCULUS). If f is a complex-valued
function that is AC on I = [a, b], then f is differentiable almost everywhere on I, f ′ ∈ L1,
and

f (x)− f (a) =
∫ x

a
f ′(t) dm(t)

for all a ⩽ x ⩽ b.

Proof. It suffices to prove this for real-valued f . Let F denote its “total variation function”.
Define

g =
F + f

2
and h =

F − f
2

.

Due to the preceding result, both g and h are AC and increasing on I. Applying Theo-
rem 2.2, and noting that f = g − h, we have the desired conclusion. ■
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