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§1 JACOBSON RADICAL

DEFINITION 1.1 (JACOBSON RADICAL). Let R be a ring. The Jacobson radical of R is
defined to be the intersection of all left maximal ideals in R and is denoted by rad R.

LEMMA 1.2. For y ∈ R, the following are equivalent:

(1) y ∈ rad R.

(2) For every x ∈ R, 1 − xy is left-invertible in R.

(3) For every simple (left) R-module M, yM = 0.

Proof. 1 =⇒ 2 : If 1− xy were not left-invertible, then it would be contained in a maximal
left ideal m. But y ∈ m and hence, 1 ∈ m, a contradiction.

2 =⇒ 3 : If yM ̸= 0, then yM = M. Also, M is a cyclic module, generated by some
m ∈ M. Then, there is some m′ ∈ M such that m = ym′. So M = R(ym′). Hence, there
is some x ∈ R such that m′ = xym′, equivalently, (1 − xy)m′ = 0 whence m′ = 0 and
consequently, m = 0.

3 =⇒ 1 : Every simple (left) R-module is of the form R/m where m is a maximal left
ideal in R. Therefore, y ∈ m for every maximal left ideal in R. Thus, y ∈ rad R. ■

COROLLARY. rad R is a two-sided ideal of R.

Proof.
rad R =

⋂
AnnR(M),

where the intersection ranges over representatives from equivalence classes of simple
R-modules under R-isomorphism. Recall that AnnR(M) is always a two-sided ideal of
R. ■

PROPOSITION 1.3. For y ∈ R, the following are equivalent:

(1) y ∈ rad R.

(2) For all x, z ∈ R, 1 − xyz ∈ R×.
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Proof. 1 =⇒ 2 : Obviously, yz ∈ rad R and hence, 1 − xyz is left-invertible. Let u ∈ R be
such that u(1 − xyz) = 1, that is, u is right-invertible. Therefore, u = 1 + uxyz whence, u
is left-invertible and hence in R×. It follows that (1 − xyz)u = 1 and 1 − xyz ∈ R×.

2 =⇒ 1 : Take z = 1. ■

PROPOSITION 1.4. Let a⊴ R be a two-sided ideal contained in rad R. Then, rad(R/a) =
(rad R)/a.

Proof. A left maximal ideal of R/a is m/a where m is a left maximal ideal of R. Conversely
if m is a left maximal ideal of R, then it contains rad R and hence, a. Consequently, m/a is
a left maximal ideal of R/a. The conclusion follows. ■

COROLLARY. Let R = R/ rad R. Then rad R = 0.

DEFINITION 1.5 (SEMIPRIMITIVE). A ring R is said to be semiprimitive or Jacobson semisim-
ple if rad R = 0.

DEFINITION 1.6. A one-sided (resp. two-sided) ideal I ⊴ R is said to be nil if every element
in I is nilpotent. It is said to be nilpotent if there is a positive integer n > 0 such that In = 0.

REMARK 1.7. It is immediate from the definition that every nilpotent ideal is nil. The
converse is not true. Consider

R = k[x1, x2, . . . ]/(x1, x2
2, x3

3, . . . ).

The maximal ideal m = (x1, x2, . . . ) is nil but not nilpotent.

PROPOSITION 1.8. Let I ⊴ RR be a nil left ideal. Then, I ⊆ rad R.

Proof. Let y ∈ I and x ∈ R. Then xy ∈ I is nilpotent. Consequently, 1 − xy is a unit. ■

LEMMA 1.9 (NAKAYAMA-AZUMAYA-KRULL). For any left ideal J ⊴ RR, the following are
equivalent:

(1) J ⊆ rad R.

(2) For any finitely generated (left) R-module M, JM = M implies M = 0.

(3) For any (left) R-modules N ⊆ M such that M/N is finitely generated, N + JM = 0
implies N = M.

Proof. 1 =⇒ 2 : Suppose M ̸= 0. Pick a minimal set of generators {m1, . . . , mn} ⊆ M.
Then, mn = a1m1 + . . . anmn, consequently,

(1 − an)mn = a1m1 + · · ·+ an−1mn−1.

But 1− an is a unit and hence, mn can be expressed as a linear combination of {m1, . . . , mn−1}
contradicting the minimality of the set of generators.

2 =⇒ 3 : Consider M/N.
3 =⇒ 1 : Suppose there is some y ∈ J\ rad R. Then, there is a left maximal ideal m

that does not contain y. As a result, m+ J · R = R, implying that m = R, which is absurd.
This completes the proof. ■
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PROPOSITION 1.10. Let R be left artinian. Then, rad R is nilpotent, consequently, it is the
largest nilpotent left (resp. right) ideal.

Proof. Let J = rad R. There is a descending chain of left ideals,

J ⊇ J2 ⊇ . . .

which must stabilize. Let I = Jn = Jn+1 = · · · , which is a left ideal. Suppose I ̸= 0. Let
Σ = {a⊴ R | Ia ̸= 0}. This is non-empty for it contains I. Let a0 be a minimum element
in Σ. Then, there is some a ∈ a0 such that Ia ̸= 0. Consequently, a0 = Ra. On the other
hand, note that I(Ia0) = I2a0 = Ia0, whereby Ia0 ∈ Σ and Ia0 = a0. Nakayama’s lemma
(Lemma 1.9) implies a0 = 0, a contradiction. Thus, I = 0 and rad R is nilpotent. ■

THEOREM 1.11. For a ring R, the following are equivalent:

(1) R is semisimple.

(2) R is semiprimitive and left artinian.

Proof. 1 =⇒ 2 : Note that RR is a finite direct sum of minimal left-ideals, which are
artinian modules over R. Therefore, RR is a left artinian.

We shall now show that rad R = 0. Indeed, let a = rad R. Then, there is a left ideal b
such that R = a⊕ b. Then, there are idempotents e, f such that e + f = 1 and a = Re and
b = R f . Note that f = 1 − e and hence, a unit, whence b = (1) and a = 0.

2 =⇒ 1 : We shall show that RR is a semisimple module. Pick a minimal left ideal
a1. Then, there is a maximal left ideal m1 such that a1 ̸⊆ m1 and hence, R = a1 ⊕m1. Set
b1 = m1. Now, if b1 is non-zero, then it contains a minimal left-ideal a2. Then, there is
a maximal ideal m2 such that R = a2 ⊕m2. It then follows that b1 = a2 ⊕ (b1 ∩m2). Set
b2 = b1 ∩m2 and continue this way.

Then, we obtain a strictly descending chain

b1 ⊋ b2 ⊋ · · · .

This must stabilize and when it does, it must stabilize at 0. This gives us a decomposition
of RR in terms of minimal left ideals and the proof is complete. ■

COROLLARY (CONVERSE OF MASCHKE). Let k be a field with char k = p > 0. Let G be a
finite group such that p | |G|. Then, kG is not semisimple.

Proof. Let σ = ∑g∈G g. Then, kσ is a two-sided ideal of kG. Further, σ2 = 0. Consequently,
kσ ⊆ rad kG, whence kG is not semisimple. ■

PROPOSITION 1.12. Let R be a ring. Then rad Mn(R) = Mn(rad R).

Proof. First, we shall show that Mn(rad R) ⊆ rad Mn(R). To do so, it suffices to show
that xEij ∈ rad Mn(R) whenever x ∈ rad R and 1 ⩽ i, j ⩽ n. Let A ∈ Mn(R) be given by
A = (akl)1⩽k,l⩽n. Then,

I − AxEij = I −
n

∑
k=1

akixEkj = I − ajiEjj︸ ︷︷ ︸
B

− ∑
k ̸=j

akiEkj︸ ︷︷ ︸
N

.

3



Note that B is a unit and N is nilpotent. Therefore, B − N is a unit. This shows that
xEij ∈ rad Mn(R), whence Mn(rad R) ⊆ rad Mn(R).

Conversely, note that rad Mn(R) = Mn(a) for some two-sided ideal a⊴ R. This implies
that for every x ∈ R and a ∈ a, I − xaE11 is invertible. Consequently, 1 − xa must be
invertible in R and as a result, a ∈ rad R. Hence, Mn(a) ⊆ Mn(rad R). This completes the
proof. ■

THEOREM 1.13 (HOPKINS-LEVITZKI). Let R be a semiprimary ring and M a left R-module.
Then the following are equivalent:

(1) M is noetherian.

(2) M is artinian.

Proof. Let J = rad R. Then, there is a positive integer n > 0 such that Jn = 0. This gives a
filtration

M ⊇ JM ⊇ · · · ⊇ Jn−1M ⊇ JnM = 0.

The successive quotients Ji M/Ji+1M is a R-module whence it is artinian if and only if it is
noetherian. Induct using the exact sequence

0 −→ Ji+1M −→ Ji M −→ Ji M/Ji+1M −→ 0.

This completes the proof. ■

COROLLARY. A left artinian ring is left noetherian.

Proof. A left artinian ring is semiprimary. ■

§2 VON NEUMANN REGULAR RINGS

LEMMA 2.1. If a left ideal a⊴ RR is a direct summand of R, then it is generated by an
idempotent.

Proof. There is a left ideal b such that R = a⊕ b as left ideals. Hence, 1 = e + f for some
e ∈ a and f ∈ b. Then, e = e · 1 = e(e + f ) = e2 + e f . Note that this means e f ∈ a but
e f ∈ b (because b is a left ideal) and hence, e f ∈ a ∩ b = 0. Consequently, e = e2 is an
idempotent. Now, for any a ∈ a, a = ae + a f = ae because a f ∈ b and a f = a − ae ∈ a
whence a f = 0. ■

THEOREM 2.2. For a ring R, the following are equivalent:

(1) For any a ∈ R, there is an x ∈ R such that a = axa.

(2) Every principal left ideal is generated by an idempotent.

(3) Every principal left ideal is a direct summand of RR.

(4) Every finitely generated left ideal is generated by an idempotent.
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(5) Every finitely generated left ideal is a direct summand of RR.

A ring satisfying any one of the above five equivalent conditions is called a von Neumann
regular ring.

Proof. First, we show equivalences 2 ⇐⇒ 3 and 4 ⇐⇒ 5.
2 ⇐⇒ 3 : Let e ∈ R be an idempotent. Then, R = Re ⊕ R(1 − e). The converse follows

from Lemma 2.1.
4 ⇐⇒ 5 : The forward implication follows in the same way as 2 =⇒ 3 and the

converse follows from Lemma 2.1.
1 =⇒ 2 : Let Ra be a principal left ideal in R for some a ∈ R. Then, there is an x ∈ R

such that a = axa, consequently, xa = xaxa. Set e = xa. Then, e = e2 whence e is an
idempotent. Further, note that Re ⊆ Ra and a = ae ∈ Re whereby Ra = Re.

2 =⇒ 1 : Let Ra be a principal left ideal in R for some a ∈ R. Then, there is an
idempotent e ∈ R such that Ra = Re. There are x, y ∈ R such that e = xa and a = ye. Now,

a = ye = ye2 = axa.

4 =⇒ 2 : Clear.
2 =⇒ 4 : To see this direction, it suffices to show that a left ideal generated by two

idempotents is generated by a single idempotent. Indeed, let a = R(e, f ) where e and f are
idempotents in R. Note that a = Re + R f (1 − e). Since R f (1 − e) is a principal left ideal, it
is generated by an idempotent Re′. Note that e′e = x f (1 − e)e = 0 for some x ∈ R.

Let g = 1− (1− e)(1− e′) = e+ e′− ee′. Note that g is an idempotent and g ∈ Re+ Re′.
Further, eg = e and e′g = e′ whereby Rg = Re + Re′. This completes the proof. ■

COROLLARY. Semisimple =⇒ von Neumann regular =⇒ semiprimitive.

Proof. The first implication is clear. Suppose R is von Neumann regular. Let a ∈ rad R.
Then, there is x ∈ R such that a = axa, that is, a(1 − xa) = 0. But 1 − xa is a unit in R and
hence, a = 0. Thus, R is semiprimitive. ■

THEOREM 2.3. Left noetherian + von Neumann regular =⇒ semisimple.

Proof. Let a⊴ RR be a left ideal. Since R is left noetherian, a is finitely generated and hence,
a direct summand of RR. As a result, RR is semisimple. ■

COROLLARY. Left noetherian + von Neumann regular =⇒ left artinian.
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