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§1 JACOBSON RADICAL

DEFINITION 1.1 (JACOBSON RADICAL). Let R be a ring. The Jacobson radical of R is
defined to be the intersection of all left maximal ideals in R and is denoted by rad R.

LEMMA 1.2. For y € R, the following are equivalent:
(1) y € radR.
(2) Forevery x € R, 1 — xy is left-invertible in R.
(3) For every simple (left) R-module M, yM = 0.

Proof. 1 = 2 :1f 1 — xy were not left-invertible, then it would be contained in a maximal
left ideal m. But y € m and hence, 1 € m, a contradiction.

2 = 3:lfyM # 0, then yM = M. Also, M is a cyclic module, generated by some
m € M. Then, there is some m’ € M such that m = ym’. So M = R(ym'). Hence, there
is some x € R such that m’ = xym’, equivalently, (1 — xy)m’ = 0 whence m’ = 0 and
consequently, m = 0.

3 = 1:Every simple (left) R-module is of the form R/m where m is a maximal left
ideal in R. Therefore, y € m for every maximal left ideal in R. Thus, y € rad R. [

COROLLARY. rad R is a two-sided ideal of R.

Proof.
rad R = ) Anng (M),

where the intersection ranges over representatives from equivalence classes of simple
R-modules under R-isomorphism. Recall that Anng (M) is always a two-sided ideal of
R. [

PROPOSITION 1.3. For y € R, the following are equivalent:
(1) y € radR.
(2) Forallx,z € R,1 —xyz € R*.



Proof. 1 = 2 : Obviously, yz € rad R and hence, 1 — xyz is left-invertible. Let u € R be
such that u(1 — xyz) = 1, that is, u is right-invertible. Therefore, u = 1 4+ uxyz whence, u
is left-invertible and hence in R*. It follows that (1 — xyz)u = 1and 1 — xyz € R*.

2 = 1:Takez = 1. [

PROPOSITION 1.4. Let a < R be a two-sided ideal contained in rad R. Then, rad(R/a) =
(rad R)/a.

Proof. A left maximal ideal of R/a is m/a where m is a left maximal ideal of R. Conversely
if m is a left maximal ideal of R, then it contains rad R and hence, a. Consequently, m/a is
a left maximal ideal of R/a. The conclusion follows. |

COROLLARY. Let R = R/ rad R. Then rad R = 0.

DEFINITION 1.5 (SEMIPRIMITIVE). A ring R is said to be semiprimitive or Jacobson semisim-
pleif rad R = 0.

DEFINITION 1.6. A one-sided (resp. two-sided) ideal I < R is said to be nil if every element
in I is nilpotent. It is said to be nilpotent if there is a positive integer n > 0 such that I" = 0.

REMARK 1.7. It is immediate from the definition that every nilpotent ideal is nil. The
converse is not true. Consider

R = k[xl,xz,...]/(xl,x%,xg’,...).
The maximal ideal m = (X1, Xy, ... ) is nil but not nilpotent.
PROPOSITION 1.8. Let I < gR be a nil left ideal. Then, I C rad R.
Proof. Lety € I and x € R. Then xy € I is nilpotent. Consequently, 1 — xy isa unit. =~ W

LEMMA 1.9 (NAKAYAMA-AZUMAYA-KRULL). For any left ideal | < gR, the following are
equivalent:

(1) ] CradR.

(2) For any finitely generated (left) R-module M, JM = M implies M = 0.

(38) For any (left) R-modules N C M such that M/ N is finitely generated, N + JM = 0
implies N = M.

Proof. 1 = 2 :Suppose M # 0. Pick a minimal set of generators {my,...,m,} C M.
Then, m, = aymy + .. .a,m,, consequently,

(1 —ap)my = aymy + -+ -+ ay_11m,_1.

But 1 — a, is a unit and hence, m, can be expressed as a linear combination of {my,...,m,_1}
contradicting the minimality of the set of generators.

2 = 3:Consider M/N.

3 = 1 :Suppose there is some y € ]\ rad R. Then, there is a left maximal ideal m
that does not contain y. As a result, m + | - R = R, implying that m = R, which is absurd.
This completes the proof. |



PROPOSITION 1.10. Let R be left artinian. Then, rad R is nilpotent, consequently, it is the
largest nilpotent left (resp. right) ideal.

Proof. Let | = rad R. There is a descending chain of left ideals,
Jo2TF2...

which must stabilize. Let [ = J* = J"*1 = ... which is a left ideal. Suppose I # 0. Let
Y = {a R | Ia # 0}. This is non-empty for it contains I. Let ag be a minimum element
in . Then, there is some a € aj such that In # 0. Consequently, ag = Ra. On the other
hand, note that I(Iay) = Pay = Iay, whereby Iag € ¥ and Iap = ag. Nakayama’s lemma
(Lemma 1.9) implies ap = 0, a contradiction. Thus, I = 0 and rad R is nilpotent. |

THEOREM 1.11. For a ring R, the following are equivalent:
(1) Rissemisimple.
(2) Ris semiprimitive and left artinian.

Proof. 1 = 2 : Note that R is a finite direct sum of minimal left-ideals, which are
artinian modules over R. Therefore, gR is a left artinian.

We shall now show that rad R = 0. Indeed, let a = rad R. Then, there is a left ideal b
such that R = a @ b. Then, there are idempotents ¢, f such thate + f =1 and a = Re and
b = Rf. Note that f = 1 — e and hence, a unit, whence b = (1) and a = 0.

2 = 1 : We shall show that gR is a semisimple module. Pick a minimal left ideal
a1. Then, there is a maximal left ideal m; such that a; € m; and hence, R = a; ® m;. Set
b; = my. Now, if b; is non-zero, then it contains a minimal left-ideal a;. Then, there is
a maximal ideal m; such that R = ap @ my. It then follows that by = ap & (b; Nmy). Set
by, = b; N'my and continue this way.

Then, we obtain a strictly descending chain

by Dby D - .

This must stabilize and when it does, it must stabilize at 0. This gives us a decomposition
of gR in terms of minimal left ideals and the proof is complete. u

COROLLARY (CONVERSE OF MASCHKE). Let k be a field with chark = p > 0. Let G be a
finite group such that p | |G|. Then, kG is not semisimple.

Proof. Let o = }ocG 8- Then, ko is a two-sided ideal of kG. Further, 0?2 = 0. Consequently,
ko C rad kG, whence kG is not semisimple. [ |

PROPOSITION 1.12. Let R be a ring. Then rad M,,(R) = M, (rad R).

Proof. First, we shall show that M, (rad R) C rad M,(R). To do so, it suffices to show
that xE;; € rad M,,(R) whenever x € rad Rand 1 < i,j < n. Let A € My(R) be given by
A = (a1 )1<k1<n- Then,
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Note that B is a unit and N is nilpotent. Therefore, B — N is a unit. This shows that
xE;j € rad M, (R), whence My (rad R) C rad My (R).

Conversely, note that rad M, (R) = M;(a) for some two-sided ideal a < R. This implies
that for every x € Rand a € a, I — xaEq; is invertible. Consequently, 1 — xa must be
invertible in R and as a result, a € rad R. Hence, M,,(a) C M, (rad R). This completes the
proof. [

THEOREM 1.13 (HOPKINS-LEVITZKI). Let R be a semiprimary ring and M a left R-module.
Then the following are equivalent:

(1) M is noetherian.
(2) M is artinian.

Proof. Let | = rad R. Then, there is a positive integer n > 0 such that J* = 0. This gives a
filtration
M2JM2--- 2" M2 "M =0.

The successive quotients | iM/J+1M is a R-module whence it is artinian if and only if it is
noetherian. Induct using the exact sequence

0— J""'"M — J'M — J'M/]""'M — 0.
This completes the proof. |

COROLLARY. A left artinian ring is left noetherian.

Proof. A left artinian ring is semiprimary. n

§2 VON NEUMANN REGULAR RINGS

LEMMA 2.1. If a left ideal a < gR is a direct summand of R, then it is generated by an
idempotent.

Proof. There is a left ideal b such that R = a @ b as left ideals. Hence, 1 = ¢ + f for some
e€aand f € b. Then,e =e-1 =e(e+ f) = ¢® + ef. Note that this means ef € a but
ef € b (because b is a left ideal) and hence, ef € aNb = 0. Consequently, ¢ = ¢? is an
idempotent. Now, for any a € a,a = ae +af = aebecauseaf € bandaf =a—ae € a
whence af = 0. |

THEOREM 2.2. For a ring R, the following are equivalent:
(1) Forany a € R, there is an x € R such that a = axa.
(2) Every principal left ideal is generated by an idempotent.
(38) Every principal left ideal is a direct summand of gR.

(4) Every finitely generated left ideal is generated by an idempotent.
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(5) Every finitely generated left ideal is a direct summand of gR.

A ring satisfying any one of the above five equivalent conditions is called a von Neumann
reqular ring.

Proof. First, we show equivalences 2 <= 3and 4 <= 5.

2 <= 3:Lete € Rbeanidempotent. Then, R = Re & R(1 — e). The converse follows
from Lemma 2.1.

4 <= 5 :The forward implication follows in the same way as 2 = 3 and the
converse follows from Lemma 2.1.

1 = 2:Let Rabe a principal left ideal in R for some a € R. Then, there is an x € R
such that a = axa, consequently, xa = xaxa. Set e = xa. Then, e = e2 whence e is an
idempotent. Further, note that Re C Ra and a = ae € Re whereby Ra = Re.

2 = 1 : Let Ra be a principal left ideal in R for some a € R. Then, there is an
idempotent e € R such that Ra = Re. There are x,y € R such that e = xa and a = ye. Now,

a = ye = ye* = axa.

4 = 2:Clear.

2 = 4 :To see this direction, it suffices to show that a left ideal generated by two
idempotents is generated by a single idempotent. Indeed, let a = R(e, f) where e and f are
idempotents in R. Note that a = Re + Rf (1 — e). Since Rf(1 — e) is a principal left ideal, it
is generated by an idempotent Re’. Note that ¢’e = xf(1 — e)e = 0 for some x € R.

Letg=1—(1—e)(1—¢') =e+e —ee. Note that ¢ is an idempotent and ¢ € Re + Re'.
Further, e¢g = e and ¢’¢ = ¢’ whereby Rg = Re + Re’. This completes the proof. ]

COROLLARY. Semisimple = von Neumann regular = semiprimitive.

Proof. The first implication is clear. Suppose R is von Neumann regular. Let a € rad R.
Then, there is x € R such that a = axa, thatis, a(1 — xa) = 0. But 1 — xa is a unitin R and
hence, 2 = 0. Thus, R is semiprimitive. [ |

THEOREM 2.3. Left noetherian + von Neumann regular = semisimple.

Proof. Let a <R be aleft ideal. Since R is left noetherian, a is finitely generated and hence,
a direct summand of gR. As a result, gR is semisimple. |

COROLLARY. Left noetherian + von Neumann regular = left artinian.
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