The Jacobson Radical

Swayam Chube

December 1, 2024

§1 JACOBSON RADICAL

DEFINITION 1.1 (JACOBSON RADICAL). Let R be a ring. The *Jacobson radical* of R is defined to be the intersection of all left maximal ideals in R and is denoted by rad R.

LEMMA 1.2. For $y \in R$, the following are equivalent:

- (1) $y \in \operatorname{rad} R$.
- (2) For every $x \in R$, 1 xy is left-invertible in R.
- (3) For every simple (left) R-module M, yM = 0.

Proof. $1 \implies 2$: If 1 - xy were not left-invertible, then it would be contained in a maximal left ideal \mathfrak{m} . But $y \in \mathfrak{m}$ and hence, $1 \in \mathfrak{m}$, a contradiction.

- $2 \implies 3$: If $yM \ne 0$, then yM = M. Also, M is a cyclic module, generated by some $m \in M$. Then, there is some $m' \in M$ such that m = ym'. So M = R(ym'). Hence, there is some $x \in R$ such that m' = xym', equivalently, (1 xy)m' = 0 whence m' = 0 and consequently, m = 0.
- $3 \implies 1$: Every simple (left) R-module is of the form R/\mathfrak{m} where \mathfrak{m} is a maximal left ideal in R. Therefore, $y \in \mathfrak{m}$ for every maximal left ideal in R. Thus, $y \in \operatorname{rad} R$.

COROLLARY. rad *R* is a two-sided ideal of *R*.

Proof.

$$\operatorname{rad} R = \bigcap \operatorname{Ann}_R(M),$$

where the intersection ranges over representatives from equivalence classes of simple R-modules under R-isomorphism. Recall that $Ann_R(M)$ is always a two-sided ideal of R.

PROPOSITION 1.3. For $y \in R$, the following are equivalent:

- (1) $y \in \operatorname{rad} R$.
- (2) For all $x, z \in R$, $1 xyz \in R^{\times}$.

Proof. 1 ⇒ 2 : Obviously, $yz \in \text{rad } R$ and hence, 1 - xyz is left-invertible. Let $u \in R$ be such that u(1 - xyz) = 1, that is, u is right-invertible. Therefore, u = 1 + uxyz whence, u is left-invertible and hence in R^{\times} . It follows that (1 - xyz)u = 1 and $1 - xyz \in R^{\times}$.

$$2 \implies 1 : \text{Take } z = 1.$$

PROPOSITION 1.4. Let $\mathfrak{a} \subseteq R$ be a two-sided ideal contained in rad R. Then, rad(R/\mathfrak{a}) = (rad R)/ \mathfrak{a} .

Proof. A left maximal ideal of R/\mathfrak{a} is $\mathfrak{m}/\mathfrak{a}$ where \mathfrak{m} is a left maximal ideal of R. Conversely if \mathfrak{m} is a left maximal ideal of R, then it contains rad R and hence, \mathfrak{a} . Consequently, $\mathfrak{m}/\mathfrak{a}$ is a left maximal ideal of R/\mathfrak{a} . The conclusion follows.

COROLLARY. Let $\overline{R} = R / \operatorname{rad} R$. Then $\operatorname{rad} \overline{R} = 0$.

DEFINITION 1.5 (SEMIPRIMITIVE). A ring R is said to be *semiprimitive* or *Jacobson semisimple* if rad R = 0.

DEFINITION 1.6. A one-sided (resp. two-sided) ideal $I \subseteq R$ is said to be *nil* if every element in I is nilpotent. It is said to be *nilpotent* if there is a positive integer n > 0 such that $I^n = 0$.

REMARK 1.7. It is immediate from the definition that every nilpotent ideal is nil. The converse is not true. Consider

$$R = k[x_1, x_2, \dots]/(x_1, x_2^2, x_3^3, \dots).$$

The maximal ideal $\overline{\mathfrak{m}} = (\overline{x}_1, \overline{x}_2, \dots)$ is nil but not nilpotent.

PROPOSITION 1.8. Let $I \subseteq RR$ be a nil left ideal. Then, $I \subseteq rad R$.

Proof. Let $y \in I$ and $x \in R$. Then $xy \in I$ is nilpotent. Consequently, 1 - xy is a unit.

LEMMA 1.9 (NAKAYAMA-AZUMAYA-KRULL). For any left ideal $J \subseteq {}_RR$, the following are equivalent:

- (1) $J \subseteq \operatorname{rad} R$.
- (2) For any finitely generated (left) R-module M, JM = M implies M = 0.
- (3) For any (left) *R*-modules $N \subseteq M$ such that M/N is finitely generated, N + JM = 0 implies N = M.

Proof. $1 \implies 2$: Suppose $M \ne 0$. Pick a minimal set of generators $\{m_1, \ldots, m_n\} \subseteq M$. Then, $m_n = a_1 m_1 + \ldots a_n m_n$, consequently,

$$(1-a_n)m_n = a_1m_1 + \cdots + a_{n-1}m_{n-1}.$$

But $1 - a_n$ is a unit and hence, m_n can be expressed as a linear combination of $\{m_1, \ldots, m_{n-1}\}$ contradicting the minimality of the set of generators.

- $2 \implies 3 : Consider M/N.$
- $3 \implies 1$: Suppose there is some $y \in J \setminus \operatorname{rad} R$. Then, there is a left maximal ideal \mathfrak{m} that does not contain y. As a result, $\mathfrak{m} + J \cdot R = R$, implying that $\mathfrak{m} = R$, which is absurd. This completes the proof.

PROPOSITION 1.10. Let *R* be left artinian. Then, rad *R* is nilpotent, consequently, it is the largest nilpotent left (resp. right) ideal.

Proof. Let J = rad R. There is a descending chain of left ideals,

$$J \supseteq J^2 \supseteq \dots$$

which must stabilize. Let $I = J^n = J^{n+1} = \cdots$, which is a left ideal. Suppose $I \neq 0$. Let $\Sigma = \{\mathfrak{a} \leq R \mid I\mathfrak{a} \neq 0\}$. This is non-empty for it contains I. Let \mathfrak{a}_0 be a minimum element in Σ . Then, there is some $a \in \mathfrak{a}_0$ such that $Ia \neq 0$. Consequently, $\mathfrak{a}_0 = Ra$. On the other hand, note that $I(I\mathfrak{a}_0) = I^2\mathfrak{a}_0 = I\mathfrak{a}_0$, whereby $I\mathfrak{a}_0 \in \Sigma$ and $I\mathfrak{a}_0 = \mathfrak{a}_0$. Nakayama's lemma (Lemma 1.9) implies $\mathfrak{a}_0 = 0$, a contradiction. Thus, I = 0 and rad R is nilpotent.

THEOREM 1.11. For a ring *R*, the following are equivalent:

- (1) *R* is semisimple.
- (2) *R* is semiprimitive and left artinian.

Proof. $1 \implies 2$: Note that $_RR$ is a finite direct sum of minimal left-ideals, which are artinian modules over R. Therefore, $_RR$ is a left artinian.

We shall now show that rad R=0. Indeed, let $\mathfrak{a}=\operatorname{rad} R$. Then, there is a left ideal \mathfrak{b} such that $R=\mathfrak{a}\oplus\mathfrak{b}$. Then, there are idempotents e,f such that e+f=1 and $\mathfrak{a}=Re$ and $\mathfrak{b}=Rf$. Note that f=1-e and hence, a unit, whence $\mathfrak{b}=(1)$ and $\mathfrak{a}=0$.

 $2 \implies 1$: We shall show that $_RR$ is a semisimple module. Pick a minimal left ideal \mathfrak{a}_1 . Then, there is a maximal left ideal \mathfrak{m}_1 such that $\mathfrak{a}_1 \not\subseteq \mathfrak{m}_1$ and hence, $R = \mathfrak{a}_1 \oplus \mathfrak{m}_1$. Set $\mathfrak{b}_1 = \mathfrak{m}_1$. Now, if \mathfrak{b}_1 is non-zero, then it contains a minimal left-ideal \mathfrak{a}_2 . Then, there is a maximal ideal \mathfrak{m}_2 such that $R = \mathfrak{a}_2 \oplus \mathfrak{m}_2$. It then follows that $\mathfrak{b}_1 = \mathfrak{a}_2 \oplus (\mathfrak{b}_1 \cap \mathfrak{m}_2)$. Set $\mathfrak{b}_2 = \mathfrak{b}_1 \cap \mathfrak{m}_2$ and continue this way.

Then, we obtain a strictly descending chain

$$\mathfrak{b}_1\supsetneq\mathfrak{b}_2\supsetneq\cdots.$$

This must stabilize and when it does, it must stabilize at 0. This gives us a decomposition of $_RR$ in terms of minimal left ideals and the proof is complete.

COROLLARY (CONVERSE OF MASCHKE). Let k be a field with char k = p > 0. Let G be a finite group such that $p \mid |G|$. Then, kG is not semisimple.

Proof. Let $\sigma = \sum_{g \in G} g$. Then, $k\sigma$ is a two-sided ideal of kG. Further, $\sigma^2 = 0$. Consequently, $k\sigma \subseteq \operatorname{rad} kG$, whence kG is not semisimple.

PROPOSITION 1.12. Let R be a ring. Then rad $M_n(R) = M_n(\operatorname{rad} R)$.

Proof. First, we shall show that $M_n(\operatorname{rad} R) \subseteq \operatorname{rad} M_n(R)$. To do so, it suffices to show that $xE_{ij} \in \operatorname{rad} M_n(R)$ whenever $x \in \operatorname{rad} R$ and $1 \leqslant i, j \leqslant n$. Let $A \in M_n(R)$ be given by $A = (a_{kl})_{1 \leqslant k, l \leqslant n}$. Then,

$$I - AxE_{ij} = I - \sum_{k=1}^{n} a_{ki}xE_{kj} = \underbrace{I - a_{ji}E_{jj}}_{B} - \underbrace{\sum_{k \neq j} a_{ki}E_{kj}}_{N}.$$

Note that B is a unit and N is nilpotent. Therefore, B - N is a unit. This shows that $xE_{ij} \in \operatorname{rad} M_n(R)$, whence $M_n(\operatorname{rad} R) \subseteq \operatorname{rad} M_n(R)$.

Conversely, note that rad $M_n(R) = M_n(\mathfrak{a})$ for some two-sided ideal $\mathfrak{a} \leq R$. This implies that for every $x \in R$ and $a \in \mathfrak{a}$, $I - xaE_{11}$ is invertible. Consequently, 1 - xa must be invertible in R and as a result, $a \in \operatorname{rad} R$. Hence, $M_n(\mathfrak{a}) \subseteq M_n(\operatorname{rad} R)$. This completes the proof.

THEOREM 1.13 (HOPKINS-LEVITZKI). Let R be a semiprimary ring and M a left R-module. Then the following are equivalent:

- (1) *M* is noetherian.
- (2) *M* is artinian.

Proof. Let J = rad R. Then, there is a positive integer n > 0 such that $J^n = 0$. This gives a filtration

$$M \supseteq JM \supseteq \cdots \supseteq J^{n-1}M \supseteq J^nM = 0.$$

The successive quotients $J^iM/J^{i+1}M$ is a \overline{R} -module whence it is artinian if and only if it is noetherian. Induct using the exact sequence

$$0\longrightarrow J^{i+1}M\longrightarrow J^iM\longrightarrow J^iM/J^{i+1}M\longrightarrow 0.$$

This completes the proof.

COROLLARY. A left artinian ring is left noetherian.

Proof. A left artinian ring is semiprimary.

§2 VON NEUMANN REGULAR RINGS

LEMMA 2.1. If a left ideal $\mathfrak{a} \subseteq {}_RR$ is a direct summand of R, then it is generated by an idempotent.

Proof. There is a left ideal $\mathfrak b$ such that $R=\mathfrak a\oplus\mathfrak b$ as left ideals. Hence, 1=e+f for some $e\in\mathfrak a$ and $f\in\mathfrak b$. Then, $e=e\cdot 1=e(e+f)=e^2+ef$. Note that this means $ef\in\mathfrak a$ but $ef\in\mathfrak b$ (because $\mathfrak b$ is a left ideal) and hence, $ef\in\mathfrak a\cap\mathfrak b=0$. Consequently, $e=e^2$ is an idempotent. Now, for any $a\in\mathfrak a$, a=ae+af=ae because $af\in\mathfrak b$ and $af=a-ae\in\mathfrak a$ whence af=0.

THEOREM 2.2. For a ring *R*, the following are equivalent:

- (1) For any $a \in R$, there is an $x \in R$ such that a = axa.
- (2) Every principal left ideal is generated by an idempotent.
- (3) Every principal left ideal is a direct summand of $_RR$.
- (4) Every finitely generated left ideal is generated by an idempotent.

(5) Every finitely generated left ideal is a direct summand of $_RR$.

A ring satisfying any one of the above five equivalent conditions is called a *von Neumann* regular ring.

Proof. First, we show equivalences $2 \iff 3$ and $4 \iff 5$.

- $2 \iff 3$: Let $e \in R$ be an idempotent. Then, $R = Re \oplus R(1 e)$. The converse follows from Lemma 2.1.
- $4 \iff 5$: The forward implication follows in the same way as $2 \implies 3$ and the converse follows from Lemma 2.1.
- $1 \implies 2$: Let Ra be a principal left ideal in R for some $a \in R$. Then, there is an $x \in R$ such that a = axa, consequently, xa = xaxa. Set e = xa. Then, $e = e^2$ whence e is an idempotent. Further, note that $Re \subseteq Ra$ and $a = ae \in Re$ whereby Ra = Re.
- 2 \implies 1 : Let Ra be a principal left ideal in R for some $a \in R$. Then, there is an idempotent $e \in R$ such that Ra = Re. There are $x, y \in R$ such that e = xa and a = ye. Now,

$$a = ye = ye^2 = axa$$
.

 $4 \implies 2$: Clear.

 $2 \implies 4$: To see this direction, it suffices to show that a left ideal generated by two idempotents is generated by a single idempotent. Indeed, let $\mathfrak{a} = R(e,f)$ where e and f are idempotents in R. Note that $\mathfrak{a} = Re + Rf(1-e)$. Since Rf(1-e) is a principal left ideal, it is generated by an idempotent Re'. Note that e'e = xf(1-e)e = 0 for some $x \in R$.

Let g = 1 - (1 - e)(1 - e') = e + e' - ee'. Note that g is an idempotent and $g \in Re + Re'$. Further, eg = e and e'g = e' whereby Rg = Re + Re'. This completes the proof.

COROLLARY. Semisimple \implies von Neumann regular \implies semiprimitive.

Proof. The first implication is clear. Suppose R is von Neumann regular. Let $a \in \text{rad } R$. Then, there is $x \in R$ such that a = axa, that is, a(1 - xa) = 0. But 1 - xa is a unit in R and hence, a = 0. Thus, R is semiprimitive.

THEOREM 2.3. Left noetherian + von Neumann regular \implies semisimple.

Proof. Let $\mathfrak{a} \subseteq RR$ be a left ideal. Since R is left noetherian, \mathfrak{a} is finitely generated and hence, a direct summand of RR. As a result, RR is semisimple.

COROLLARY. Left noetherian + von Neumann regular \implies left artinian.