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Abstract

This is an attempt to present a self-contained proof of the Inverse Galois Prob-
lem over C(t). The only result used without proof is Riemann’s Existence Theorem
(Theorem 3.1).

§1 RIEMANN SURFACES AND HOLOMORPHIC MAPS

DEFINITION 1.1. Let X be a two-dimensional manifold. A complex chart on X is a homeo-
morphism ¢ : U — V of an open subset U C X onto an open subset V C C.

Two complex charts ¢; : U; — V;, i = 1,2 are said to be holomorphically compatible if the

map
@20 qo;l (U NUp) — ¢o(Up NUp)
is biholomorphic.

A complex atlas on X is a system A = {¢; : U; — V; | i € I} of charts which are
holomorhpically compatible and which cover X. Two complex atlases 2 and 2!’ on X are
said to be analytically equivalent if every chart of 2 is holomorphically compatible with
every chart of 2('.

A complex structure on a two-dimensional manifold X is an equivalence class of analyti-
cally equivalent atlases on X.

A Riemann surface is a pair (X, X) where X is a connected two-dimensional manifold
and X is a complex structure on X.

EXAMPLE 1.2. Consider P! := C U {0}, the one-point compactification of C. Let U; =
C C P! and U, = C* U {oo}. Consider the charts ¢; : U; — C, the identity map, and

@2 : Up — C given by
o(z) = {% zeC*

0 z=o0.
These are compatible charts since the transition function is z — % on C*.

EXAMPLE 1.3. If X is a Riemann surface and Y C X is a connected open set, then every
chart of X restricts to a chart on Y (by restriction of the domain) and these are still holo-
morphically comptible. Thus, Y inherits a natural Riemann surface structure from X. In
particular, every open subset of C is a Riemann surface.
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DEFINITION 1.4. Amap f : X — Y of Riemann surfaces is said to be holomorphic if for
every pair of charts 1 : Uy — V4 on X and ¢, : U, — V, on Y with f(U;) C Uy, the
mapping ¢ o f o P, 1. V4 — V; is holomorphic.

A holomorphic function on X means a holomorphic function f : X — C. These form a
ring denoted by 0'(X).

THEOREM 1.5 (RIEMANN’S REMOVABLE SINGULARITIES THEOREM). Let X be a Rie-

mann surface and f € 0(X \ {a}). If f is bounded in a neighborhood of 4, then f can be
extended to a holomorphic function f € (X).

Proof. Follows from the analogous statement in elementary complex analysis. |

THEOREM 1.6 (IDENTITY THEOREM). Let X and Y be Riemann surfacesand f, fo : X = Y
be two holomorphic mappings which coincide on a set A C X having a limit point a € X.

Then f; = f».
Proof. Let

B = {x € X: there is a neighborhood W of x such that f1|w = f2|w}-

By definition, B is open. By continuity, note that a € A. Considering charts centered at
aand fi(a) = f2(a), and using the identity theorem from elementary complex analysis,
it is not hard to see that a € B, thatis, B # . Finally, suppose b, — b € X. Then, by
continuity, y = f1(b) = f2(b). Consider charts centered at b and y. Note that b, lies in the
chart centred at b for sufficiently large n and hence, it would follow that b € B. Thus, B is
a clopen nonempty subset of X. Owing to the connectedness of X, B = X. This completes
the proof. u

DEFINITION 1.7. A meromorphic function on a Riemann surface X is a holomorphic function
f: X" — C, where X’ C X is an open subset, such that the following hold:

(@) X\ X’ is discrete.
(b) Forevery p € X\ X/,
lim |f(x)] = oo.

X—=p

The points of X \ X’ are called the poles of f. The set of all meromorphic functions on X is
denoted by .# (X).

PROPOSITION 1.8. There is a canonical correspondence between . (X) and the set of
holomorphic functions X — P1.

Proof. Straightforward. [ |

COROLLARY. .7 (X) is a field.



8§ Local Normal Form

THEOREM 1.9. Let X and Y be Riemann surfaces and f : X — Y a non-constant holomor-
phic map. Supposea € X and b = f(a) € Y. Then, there exists an integer k > 1 and charts
¢:U—VonXandy:U — V' onY with the following properties:

(i) aelU, ¢(a)=0,be U and ¢'(b) = 0.
(i) f(u) cu'.
(iii) The diagram

u—u’

o o

V—V
zr2K

commutes. The number k is called the multiplicity of f at a.
Proof. Begin with two charts ¢1 : U — V; and ¢ : U — V] satisfying (i) and (ii). The
induced map V; — V] takes 0 to 0 and hence, is of the form z¥g(z) for some k > 1 and
holomorphic g : V; — V] with g(0) # 0. Shrinking all the open sets if necessary, we may
suppose that ¢(z) = h(z)* for some holomorphic function & : V; — C. Note that zh(z)

must be injective and non-constant on V; whence maps V; biholomorphically onto some
V C C. We obtain the following commutative diagram

f

u—-u'

G"ll lllil
(zh(2))

Vl B Vll
h
: (Z)l Azk
Vv
thereby completing the proof. |

THEOREM 1.10 (OPEN MAPPING THEOREM). A non-constant holomorphic map between
Riemann surfaces is open.

Proof. Since being open is a local property, this follows immediately from Theorem 1.9. W

COROLLARY. Let f : X — Y be an injective holomorphic map of Riemann surfaces. Then
f is a biholomorphic mapping of X onto Z = f(X).

Proof. Due to Theorem 1.10, Z C Y is open. Since f is injective, it follows from Theorem 1.9
that k = 1 at each point of X. In particular, f is a local homeomorphism onto Z. The
conclusion follows. |

THEOREM 1.11. If X is a compact Riemann surface and f : X — Y a non-constant
holomorphic map of Riemann surfaces, then f is surjective.

Proof. The image of f is both open and closed in Y. u

COROLLARY. If X is a compact Riemann surface, then ¢(X) consists of only constant
functions.



8§ Branched and Unbranched Coverings

DEFINITION 1.12. Let p : Y — X be a non-constant holomorphic map of Riemann surfaces.
A pointy € Yis said to be a branch point or ramification point of p, if there is no neighborhood
V of y such that p|y is injective. The map p is called an unbranched holomorphic map if it has
no branch points.

THEOREM 1.13. A non-constant holomorphic map p : Y — X is unbranched if and only if
p is a local homeomorphism, i.e., every point y € Y has an open neighborhood V which is
mapped homeomorphically by p onto an open set U in X.

Proof. Immediate from the definition since an injective map of Riemann surfaces is a
biholomorphism onto its image. u

THEOREM 1.14. Let X be a Riemann surface, Y a connected Hausdorff topological space,
and p : Y — X a local homeomorphism. Then there is a unique complex structure on Y
such that p is holomorphic.

Proof. Suppose ¢ : U — V; C Cis a chart of the complex structure of X such that there is
an open subset U C Y with p|; : U — U; a homeomorphism. Then, ¢ := pop: U =V
is a complex chart on Y. Let 2 be the set of all complex charts on Y obtained in this way. It
is easy to see that the charts of 2 cover Y and are holomorphically compatible. Thus, we
have defined a complex structure on Y and it follows that p is a holomorphic map when Y
is equipped with this structure.

Suppose (Y, %) and (Y, X') are two complex charts such that p is holomorphic, then
id : (Y,X) — (Y,X') is a bijective holomorphic map, whence a biholomorphism. This
shows uniqueness. [

THEOREM 1.15. Let X, Y, Z be Riemann surfaces, p : Y — X an unbranched holomorphic
map and f : Z — X any holomorphic map. Then, every continuous lift g : Z — Y of f is
holomorphic.

Proof. Letz € Z, x = f(z), and y = g(z). There is a neighborhood V of y in Y such that
plv is injective. Let U = p(V) C X, which is open and biholomorphic to V through p. If
W = ¢~ 1(V), then g|w = p|;,* o f|w whence g is holomorphic. [

DEFINITION 1.16. A continuous map f : X — Y of topological spaces is said to be proper
if f71(K) is compact in X for every compact subset K of Y. The map f is said to be discrete
if every fiber is discrete in X.

LEMMA 1.17. A proper map between locally compact Hausdorff spaces is closed.

Proof. Follows from the fact that a subset of an LCH space is closed if and only if its
intersection with every compact subset is closed. |

COROLLARY. A proper holomorphic map between Riemann surfaces is surjective.

Proof. The image is both closed and open. u



LEMMA 1.18. Let X and Y be locally compact Hausdorff. If p : Y — X is a proper, discrete
map then:

(a) for every x € X, the set p~1(x) is finite.

(b) if x € X and V is a neighborhood of p~!(x), then there is a neighborhood U of x
with p~1(U) C V.

Proof. (a) Compact discrete sets must be finite.

(b) Since Y\ V is closed, due to the preceding lemma, A = p(Y '\ V) is closed in X and
x ¢ A. Hence, U = X \ A is an open neighborhood of x such that p~}(U) C V. B

THEOREM 1.19. Let X and Y be locally compact Hausdorff spaces and p : Y — X a proper
local homeomorphism. Then p is a covering map.

Proof. Choose any x € X and let p~1(x) = {y1,...,yn}. Since p is a local homeomorphism,
we can inductively choose disjoint neighborhoods W; of y; and a neighborhood V of x
such that the restriction p|y, : W; — V is a homeomorphism. It follows that p is a covering
map. |

PROPOSITION 1.20. The set of branch points of a non-constant holomorphic map between
Riemann surfaces is a discrete closed set.

Proof. Let f : X — Y be a non-constant holomorphic map. Let a € X be a branch point
and b = f(a). Then due to Theorem 1.9, there are charts ¢ : U — Vand ¢’ : U — V’
centered at a and b respectively such that the induced map V — V' is z + z* for some
positive integer k > 2 (since a is a branch point). But for any 0 # z € V/, the map V — V'
is a local homeomorphism and hence, the set of branch points forms a discrete set.

To see that it is closed, let 2 € X not be a branch point. Then, there is a neighborhood
V of a on which f is injective and hence, none of the points in V are branch points. This
shows that the set of branch points is also closed. |

DEFINITION 1.21. Let f : X — Y be a proper holomorphic map. As we have seen earlier,
f is surjective. Let A C X be the set of branch points of f. Since f is proper, the set
B = f(A) C Yis closed and discrete (use the Local Normal Form). One calls B the set of
critical values of f.

With notation as above, let Y/ = Y\ B and X' = f~1(Y’) € X\ A. The restric-
tion f : X’ — Y’ is a proper unbranched holomorphic covering map since it is a local
homeomorphism (owing to the fact that all branch points have been removed). It has a
well-defined finite number of sheets, say 1. Thus, every value ¢ € Y’ is taken precisely n
times. We would like to extend this notion to critical values.

For x € X, denote by V(f, x), the multiplicity of f at x in the sense of Theorem 1.9. We
say that f takes the value ¢ € Y, counting multiplicities, m times on X, if

m= Y o(f,x).
xef~1(c)



THEOREM 1.22.Let f : X — Y be a proper non-constant holomorphic map between
Riemann surfaces. Then there exists a natural number n such that f atkes every value
c € Y, counting multiplicities, n times.

Proof. Using the notation as in the preceding paragraph, let n be the number of sheets
of the unbranched covering f : X’ — Y’. Suppose b € B is a critical value, p~1(b) =
{x1,..., %} and k; = v(f, x;). Due to Theorem 1.9, there are disjoint neighborhoods U;
of x; and V; of b such that for every ¢ € V;\ {b} the set p~l(c)N U; consists of exactly k;
points. Due to Lemma 1.18, we can find a neighborhood V C V; N --- NV, of b such that
p~1(V) C Uy U---UU,. Then for every point c € V NY’, we have that p~!(c) consists of
ki + - - - + k, points. On the other hand, the cardinality of p~!(c) must be the number of
sheets, n and hence, n = k; + - - - 4 k;, thereby completing the proof. [

REMARK 1.23. A proper non-constant holomorphic map between Riemann surfaces will
be called an n-sheeted holomorphic covering map, where n is the integer found in the above
result. Note that holomorphic covering maps are allowed to have branch points.

Let D denote the unit disk in C and D* = D \ {0}.

THEOREM 1.24. Let f : X — D* be an unbranched holomorphic covering map. Then one
of the following holds:

(a) If the covering has an infinite number of sheets, then there exists a biholomorphic
mapping ¢ : X — H of X onto the left half plane such that

X— % . H
D*
commutes.

(b) If the covering is k-sheeted with k < co, then there exists a biholomorphic mapping
¢ : X — D* such that

X—>D*

N A

commutes.

Proof. Follows from the Galois theory of covers and the fact that H is the universal cover
of D* and
Deck(H/D*) = {t,: n € Z},

where T,,(z) = z 4 2nrri. [ |



THEOREM 1.25. Let f : X — D be a proper non-constant holomorphic map which is
unbranched over D* = D\ {0}. Then there is a natural number k > 1 and a biholomorphic

map ¢ : X — D such that
x—?% D
N A
D

Proof. The preceding theorem furnishes a k > 1 making

X—2 D

N A

D*

commute. Let p; : D — D denote the map z + z¥. If we show that f~1(0) is a singleton,
then we would be done since we could extend ¢ : X — D making the required diagram
commute.

Suppose f~1(0) consists of n points by, ..., by, where n > 1. Then due to Lemma 1.18
there are disjoint open neighborhoods V; of b; and a disk D(r) = {z € C: |z]| < r},
0 < r < 1such that

YD) CViU---UV,.

Let D*(r) = D(r) \ {0}. Since f~}(D*(r)) is homeomorphic to p;l(D*(r)) = D*(¥/r),itis
connected. Since every point b; is in the closure of f~1(D*(r)), f~1(D(r)) is also connected.
Hence, n = 1. This completes the proof. u

§2 ALGEBRAIC FUNCTIONS

DEFINITION 2.1. Let 77 : Y — X be an n-sheeted unbranched holomorphic covering of
Riemann surfaces and f € .Z(Y). Every point x € X has an open neighborhood U such
that 7=1(U) is the disjoint union of open sets Vi, ..., V, and 7 : V;, — U is biholomorphic
forv=1,...,n. Let t, : U — V, denote the inverse of the restricted map 7 : V;, — U and
let fo=71,f:=fotw e€.Z(U).

Define the elementary symmetric functions cy,...,c, € A (U) as

co = (—1)%% (f1,---, fn),

where 05 is the v-th elementary symmetric polynomial in # indeterminates.

This same construction can be carried out about every point in X and it is hard to not
see that the the elementary symmetric functions glue to global meromorphic functions in
A (X). These are known as the elementary symmetric functions corresponding to f.

THEOREM 2.2. Let 71 : Y — X be an n-sheeted branched holomorphic covering map.
Suppose A C X is a closed discrete subset containing all the critical values of 7T and let
B = !(A). Suppose f is a holomorphic (resp. meromorphic) function on Y \ B and
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C1,...,Cn € O(X\ A) (resp. € # (X \ A)) are the elementary symmetric functions of f.
Then f may be continued holomorphically (resp. meromorphically) to Y precisely if all the
¢, may be continued holomorphically (resp. meromorphically) to X.

Proof. Suppose a € A and by, ..., b, are the preimages of a. Suppose (U, z) is a relatively
compact coordinate neighborhood centered at 2 and UN A = {a}. Note that V C V C
7~1(U), which is compact since 7 is proper. It follows that V is relatively compact and
contains all the b),’s.

Case 1. Suppose f € (Y \ B)

(a) Suppose f can be continued holomorphically to all the points b,. Then f is
bounded on V and hence, on V' \ {b, ..., by }. This implies that all the ¢;,’s are
bounded on U \ {a}. Thus by Riemann’s theorem on removable singularities,
they may all be continued holomorphically to a.

(b) Suppose all the ¢, can be continued holomorphically to a; then they are all
bounded on U \ {a}. Note that forany y € V\ {by,...,bu}, if x = 7(y), then
f(y) is a root of the polynomial

T"+ o1 (x)T" 1+ +cu(x),

whose coefficients are uniformly bounded, whence f is bounded in a neighbor-
hood of every b, and hence, can be continued there.

Case 2. Now suppose f € .Z(Y \ B).

(a) Assume first that f can be continued meromorphically to all points b,. The
function ¢ = ¥z = zo 1 € (V) vanishes at all the points by,. Thus, ¢*f may
be continued holomorphically to all the points b, if k is sufficiently large. The
elementary symmetric functions of ¢*f are z5c, and by the first part of the
proof, they may be continued holomorphically to a. Thus, all the ¢, may be
continued meromorphically to a.

(b) Suppose now that all the ¢, can be continued meromorphically to a. There is a
sufficiently large k such that all the z¥c, can be continued holomorphically to
a. Thus due to the first case, ¢* f admits a holomorphic continuation to all the
points b,. This completes the proof. |

THEOREM 2.3. Let 71 : Y — X be a branched holomorphic n-sheeted covering map. If
fe#(Y)andcy,..., cn € #(X) are the elementary symmetric functions of f, then

14 (o)) f o (fepq) f 4+ e = 0.
e The morphism 7t* : .#(X) — .#(Y) is an algebraic field extension of degree < n.

* Moreover, if there exists an f € .#(X) and an x € X with preimages y1,...,yn € Y
such that the values f(y,) for v = 1,...,n are all distinct, then the field extension
M (X) — A (Y) has degree n.



Proof. The fact that f solves the equation follows immediately from the definition of
the elementary symmetric functions. Let L = .Z(Y) and K = .#(X). Choose fy € L
maximizing ng = [K(fp) : K] < n. Let f € Lbe arbitrary. Then, K( fo, f) is a finite extension
of K and hence, is of the form K(gg) due to the Primitive Element Theorem. But then

no > [K(g0) : K] = [K(fo, f) : K] > [K(fo) : K] = no,

whence f € K(fp), thatis, K(fy) = L and hence, [L : K] = ny < n.
Now, consider f as in the second part of the theorem and suppose its minimal polyno-
mial over K looks like

4 () " 4 () =0,

wheredy, ..., dy € K. Under 7, y4, . ..,y, map to x and hence,

Fya)™ +di(x) f(y)" "+ -+ du(x) =0,

but since the f(y;)’s are distinct, we must have m > n, and hence, m = n. This completes
the proof. u

THEOREM 2.4. Suppose X is a Riemann surface, A C X is a closed discrete subset and let
X" = X'\ A. Suppose Y’ is another Riemann surface and 77’ : Y/ — X' a proper unbranched
holomorphic covering. Then 7’ extends to a branched covering of X, i.e., there exists
a Riemann surface Y, a proper holomorphic mapping 77 : ¥ — X and a biholomorphic
mapping ¢ : Y\ 7 1(A) — Y’ making the diagram

Y\ 7 (A)

? Y
x %

X\ A

Proof. For every a € A, choose a coordinate neighborhood (U,, z,) on X such that z,(a) =
0, zo(U,) is the unit disk in C and U, NU, = @ ifa # a'. Let U; = U, \ {a}. Since
7' 1Y — X' is proper, '~} (U) consists of a finite number of connected components V%,
v=1,...,n(a).

For every v, the restricted mapping 7’ : V,;, — U, is an unbranched covering. Let its
covering number be k;,. Due to Theorem 1.24 there are biholomorphic maps {4, : V,;, —

D* such that
gav

V), — D*

N

u» ——D*
a Za

commutes.
Next, let pgp fora € Aand v = 1,...,n(a) be fresh points disjoint from Y’ and set

Y=Y U{pw:a€A v=1,...,n(a)}.
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We now topologize Y. If W;, i € I is a neighborhood basis of 4, then { s, } U (7'~ (W;) N V),
i € Iis set as a neighborhood basis of p,, along with the fact that Y’ retains its topology as
a subspace of Y. Define 7t : Y — X by n(y) = 7/(y) ify € Y and 7t(pa) = a.

Next, we make Y a Riemann surface. Add to the charts of the complex structure of Y’
the following charts. Let Vi, = V5, U {pao} and let {4y : Vo — D be the continuation of
the aforementioned (,, obtained by setting (v (pav) = 0. These charts are holomorphically
compatible and everything works out nicely. |

THEOREM 2.5. Let 7 : Y — X and 7 : Z — X be proper holomorphic covering maps. Let
A C X be a closed discrete set and X' = X\ A, Y = 771(X’) and Z’ = v~ }(X'). Then
every biholomorphic mapping ¢’ : Y/ — Z’ making

A
commute can be extended to a biholomorphlc mapping ¢ : Y — Z making

Y\7>Z

commute. In particular, Deck(Y/X) = Deck(Y’ / X') via this extension.

Proof. Suppose a € A and (U, z) is a coordinate neighborhood of a such that z(a) = 0 and
z(U) is the unit disk. Let U* = U \ {a}. We may also assume that U is so small that 77 and T
are unbranched over U*. Let Vj, ..., V, (resp. Wy, ..., Wy;) be the connected components of
7= 1(U) (resp. T-1(U)). Then V} =V, \ r~1(a) (resp. W) are the connected components
of =1 (U*) (resp. T~1(U*)).

Since ¢’ : 7~1(U*) — 7~1(U*) is biholomorphic, # = m and one may renumber so
that o’ (V;f) = W;. The restriction 7t : V;; — U* is a finite sheeted unbranched covering
of something biholomorphic to the punctured unit disk. It follows from Theorem 1.25
that V, N 7t~ !(a) (resp. W, N7 !(a)) consists of only one point b, (resp. c,). Hence,
o . 7~1(U*) — v=1(U*) can be continued to a bijection 7—!(U) — 7! (U). This contin-
uation is a homeomorphism. Also recall that the V;, and W,’s are biholomorphic to the
unit disk and hence, by Riemann’s Removable Singularities Theorem, this extension is
biholomorphic. If one applies this construction to every exceptional point a € A, then one
gets the desired continuationc : Y — Z.

Note that there is a canonical restriction map Deck(Y/X) — Deck(Y’/X’) which is
surjective because of what we have proved above. The injectivity is a trivial consequence
of the identity theorem. |

§3 THE INVERSE GALOIS PROBLEM OVER C(t)

THEOREM 3.1 (RIEMANN EXISTENCE THEOREM). Meromorphic functions on a compact
Riemann surface separate points.
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THEOREM 3.2. Every finite group can be realised as the Galois group of a field extension
of C(t).

Proof. Let G be a finite group having n elements. There is a surjection §, — G, where

» is the free group on 1 elements. Recall that 777 (P! \ {xo, ..., xy41) = §» whence due

to the Galois theory of covering spaces for manifolds, there is a topological n-sheeted
covering 7t : Y/ — IP1\ {xo, ..., x,41}. Note that this covering endows Y’ with a unique
Riemann surface structure. Since the covering has finitely many sheets, Y is compact. Due

to Theorem 2.4, 7t can be extended to a branched covering 77 : Y — PL.

For any o € Deck(Y/IP1), theinduced map o* on .7 (Y) is an element of Aut(.# (Y) /.4 (P1)).

This gives a natural group homomorphism:

Deck(Y/PY) — Aut(#(Y)/.#(PY)), o c*.

We contend that this map is injective. Indeed, suppose ¢* is the identity map for some
o # 1. This is equivalent to stating that f = f o o for every f € .#(Y), which is impossible
due to Theorem 3.1.

Due to Theorem 2.5, the cardinality of Deck(Y/IP!) is precisely the cardinality of
Deck (Y’ /P \ {xo, ..., x,41}), which is equal to n. Further, using Theorem 3.1 and Theo-
rem 2.3, note that [.# (Y) : .# (PP!)] = n. Injectivity of the aforementioned map forces the
cardinality of Aut(.# (Y)/.# (IP')) to be n whence the extension is Galois and the map is
an isomorphism. This gives Aut(.# (Y)/.# (P')) = G, thereby completing the proof. W

11



	Riemann Surfaces and Holomorphic Maps
	Local Normal Form
	Branched and Unbranched Coverings

	Algebraic Functions
	The Inverse Galois Problem over C(t)

