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§1 PRELIMINARIES ON TOPOLOGICAL VECTOR SPACES

LEMMA 1.1 (RIESZ LEMMA). Let X be a normed linear space and Y ⊊ X a proper closed
subspace. Then, for every 0 < α < 1, there is an x ∈ X \ Y such that ∥x∥ = 1 and
dist(x, Y) > α.

§2 COMPLETENESS ARGUMENTS

THEOREM 2.1 (RUDIN, EXERCISE 4.26). Let X and Y be Banach spaces. The set of all
surjective bounded linear operators in B(X, Y) forms an open subset.

Proof. Let T : X → Y be a surjective linear operator. By the open mapping theorem,
there is an r > 0 such that BY(0, 2r) ⊆ T (BX(0, 1)). If 0 ̸= y ∈ Y, then ry

∥y∥ ∈ BY(0, 2r),

consequently, there is an x′ ∈ X with ∥x′∥ < 1 and Tx′ = ry
∥y∥ , thus, x = ∥y∥

r x′ maps to y

under T. Note that ∥x∥ < ∥y∥
r . For the sake of brevity, let t = 1/r.

Let δ = 1
2t‘ > 0 and S ∈ B(X, Y) such that ∥T − S∥ < δ. We shall show that S is

surjective, for which, it would suffice to show that the image of S contains the unit ball of
Y. Indeed, let y0 ∈ Y with ∥y0∥ ⩽ 1. Choose an x0 ∈ X such that ∥x0∥ < t and Tx0 = y0.
Setting y1 = y0 − Sx0, we have

∥y1∥ = ∥(T − S)x0∥ ⩽ δt.

Again, choose x1 ∈ X such that Tx1 = y1 and ∥x1∥ < t∥y1∥ = δt2. Setting y2 = y1 − Sx1,
we have

∥y2∥ = ∥(T − S)x1∥ ⩽ δ2t2

and so on. We have thus constructed two sequences (xn)n⩾0 and (yn)n⩾0 such that

• Txn = yn,

• yn+1 = yn − Sxn for n ⩾ 0, and

• ∥xn∥ < δntn+1 and ∥yn∥ ⩽ δntn.

Let x =
∞

∑
n=0

xn, which converges since
∞

∑
n=0

∥xn∥ does. Hence,

Sx = lim
n→∞

n

∑
i=0

Sxi =
∞

∑
i=0

yi − yi+1 = y0,

thereby completing the proof. ■
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§3 THE HAHN-BANACH THEOREMS

LEMMA 3.1 (DOMINATED EXTENSION THEOREM). Let X be a real vector space with a
subspace M. Suppose p : X → R satisfies

p(x + y) ⩽ p(x) + p(y) and p(tx) = tp(x) ∀x, y ∈ M, ∀t ⩾ 0.

Let f : X → R be a linear functional such that f (x) ⩽ p(x) for all x ∈ M. Then, there is a
linear functional Λ : X → R such that Λx = f (x) for all x ∈ M and

−p(−x) ⩽ Λx ⩽ p(x) ∀x ∈ X.

Proof. If M = X, then there is nothing to prove. Suppose now that M is a proper subspace
of X and choose x1 ∈ X \ M. For x, y ∈ M, we have

f (x) + f (y) = f (x + y) ⩽ p(x + y) ⩽ p(x − x1) + p(y + x1),

and hence,
f (x)− p(x − x1) ⩽ − f (y) + p(y + x1) ∀x, y ∈ M.

Let α denote the supremum of the left hand side in the above inequality as x ranges over
M. Note that α is finite as the left hand side is always bounded above by p(x1). Let
M1 = M + Rx1 and define f1 : M1 → R by

f1(m + λx1) = f (m) + λα;

in particular, f1(x1) = α. Note that for λ ̸= 0,

f1(m + λx1) = |λ| f1(|λ|−1m + sgn(λ)x1)

= |λ| f (|λ|−1m) + λα

⩽ |λ|
(

p(|λ|−1m + sgn(λ)x1)− sgn(λ)α
)

= p(m + λx1).

This furnishes an extension f1 : M1 → R such that f1(y) ⩽ p(y) for all y ∈ M1. One can
then extend this, using Zorn’s Lemma, to Λ : X → R such that Λx ⩽ p(x) for all x ∈ X.
We then have

−p(−x) ⩽ −Λ(−x) = Λx ⩽ p(x),

thereby commpleting the proof. ■

THEOREM 3.2 (HAHN-BANACH EXTENSION THEOREM). Let M be a subspace of a vector
space (real or complex) X, p a semi-norm on X, and f a linear functional on M such that
| f (x)| ⩽ p(x) for all x ∈ M. Then f extends to a linear functional Λ on X satisfying
|Λx| ⩽ p(x) for all x ∈ X.
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Proof. Suppose first that the field of scalars is R. Due to the preceding lemma, f can be
extended to Λ : X → R satisfying

−p(x) = −p(−x) ⩽ Λx ⩽ p(x) ∀x ∈ X,

that is, |Λx| ⩽ p(x).
Next, suppose the field of scalars is C. Let u = ℜ f . Due to the first part of the proof,

u can be extended to a linear functional U : X → R satisfying |Ux| ⩽ p(x) for all x ∈ X.
Define Λ : X → C by

Λx = u(x)− iu(ix) ∀x ∈ X.

We contend that Λ is the desired functional. Let x ∈ X and choose an α ∈ C with |α| = 1
such that αΛx = |Λx|. Hence,

|Λx| = αΛx = Λ(αx) = U(αx)︸ ︷︷ ︸
because LHS ∈R⩾0

⩽ p(αx) = p(x).

This completes the proof. ■

COROLLARY. Let X be a normed linear space and M a subspace of X. Suppose f : M → K

is a bounded linear functional, then there exists a bounded linear functional Λ : X → K

extending f . Further, ∥ f ∥ = ∥Λ∥

Proof. Invoke the preceding result with p(x) = ∥ f ∥∥x∥. I ■

THEOREM 3.3 (HAHN-BANACH SEPARATION THEOREM). Suppose A and B are disjoint
convex subsets of a topological vector space X.

(a) If A is open, there exist Λ ∈ X∗ and γ ∈ R such that

ℜΛx < γ ⩽ ℜΛy ∀x ∈ A, y ∈ B.

(b) If A is compact, B is closed, and X is locally convex, there exist Λ ∈ X∗ and γ1, γ2 ∈ R

such that
ℜΛx < γ1 < γ2 < ℜΛy ∀x ∈ A, y ∈ B.

Proof. We first prove this theorem when the scalar field is assumed to be R.

(a) Fix points a0 ∈ A, b0 ∈ B. Set x0 = b0 − a0 and C = A − B + x0. Then, C is a convex
neighborhood of 0 in X, and thus, admits a Minkowski functional, p : X → R which
is subadditive and p(tx) = tp(x) for all t ⩾ 0. Further, since A ∩ B = ∅, x0 /∈ C,
whence p(x0) ⩾ 1.

Define a linear functional f : Rx0 → R by f (λx0) = λ and using the Dominated
Extension Theorem, extend this to a functional Λ : X → R such that

−p(−x) ⩽ Λx ⩽ p(x) ∀x ∈ X.
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Let D = C ∩ (−C), which is a symmetric convex neighborhood of the origin. For any
x ∈ D, it is easy to see that p(x) ⩽ 1, whence

−1 ⩽ −p(−x) ⩽ Λx ⩽ p(x) ⩽ 1,

and hence, Λ is a continuous linear functional.

Now, for a ∈ A and b ∈ B,

Λa − Λb = Λ(a − b) = Λ(a − b + x0)− 1 ⩽ p(a − b + x0)− 1 < 0,

since a − b + x0 ∈ C. Hence, Λa < Λb for every a ∈ A and b ∈ B. Finally, since Λ(A)
and Λ(B) are disjoint convex subsets of R, both must be intervals with the former to
the left of the latter. Further, since the former is an open subset of R, we immediately
obtain the desired conclusion.

(b) There is a convex, balanced neighborhood V of the origin in X such that (A + V) ∩
(B + V) = ∅. Set C = A + V, which is a convex open subset of X, disjoint from B.
Due to part (a), there is a linear functional Λ such that Λ(C) is to the left of Λ(B) and
Λ(A) sits as a compact interval inside Λ(C). The conclusion now is immediate.

We now suppose that the field of scalars is C; whence X is also a topological R-vector
space. In both parts (a) and (b), we were able to obtain an R-linear functional, continuous
on X when viewed as a R-TVS and separating the two sets as desired. Define the C-linear
functional Λx = u(x)− iu(ix) and note that this has the desired separation properties
too. ■

COROLLARY. If X is an LCTVS, then X∗ separates points on X.

Proof. Let p, q ∈ X. Use Theorem 3.3 (b) with A = {p} and B = {q}. ■

THEOREM 3.4. Let M be a proper closed subspace of a locally convex topological vector
space, and x0 ∈ X \ M. There exists a linear functional Λ ∈ X∗ such that Λx0 = 1 and
Λx = 0 for all x ∈ M.

Proof. Using Theorem 3.3(b) with A = {x0} and B = M, there is a Λ ∈ X∗ and γ1, γ2 ∈ R

such that
ℜΛx0 < γ1 < γ2 < ℜΛy ∀y ∈ M.

Since Λ(0) = 0 and 0 ∈ M, we must have that Λx0 ̸= 0. Further, since λy ∈ M for every
λ ∈ K, the only way ℜ(λΛy) > γ2 for every λ ∈ K is if Λ vanishes on M. Dividing Λ by
Λx0, we have our desired conclusion. ■

COROLLARY. Let X be an LCTVS and M ⊆ X a subspace. Suppose f : M → K is a
continuous linear functional, then there is a Λ ∈ X∗ such that Λ|M = f .

Proof. ■
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§4 WEAK AND WEAK* TOPOLOGIES

LEMMA 4.1. Let X be a K-vector space and Λ1, . . . , Λn, Λ be linear functionals on X and
set

N = {x ∈ X : Λix = 0, ∀1 ⩽ i ⩽ n}.

The following are equivalent:

(a) There are scalars α1, . . . , αn ∈ K such that

Λ = α1Λ1 + · · ·+ αnΛn.

(b) There exists 0 < γ < ∞ such that

|Λx| ⩽ γ max
1⩽i⩽n

|Λix| ∀x ∈ X.

(c) Λx = 0 for every x ∈ N.

Proof. (a) =⇒ (b) =⇒ (c) is trivial. It remains to show that (c) =⇒ (a). Consider the
map Φ : X → Kn given by

Φ(x) = (Λ1x, . . . , Λnx)

and let Y ⊆ Kn be its image. Define Ψ : Y → K by

Ψ(Φ(x)) = Λx.

That this is well-defined follows from the fact that N ⊆ ker Λ. Since we are in a finite-
dimensional space, the map Ψ can be extended to a linear map Ψ : Kn → K, which must
be of the form

(y1, . . . , yn) 7→ α1y1 + · · ·+ αnyn.

It then follows that Λ = α1Λ1 + · · ·+ αnΛn. ■

DEFINITION 4.2. Let X be a set and

F = { f : X → Yf }

a collection of functions. The F -topology on X is defined to be the coarsest topology such
that every f ∈ F is continuous.

The set F is said to separate points if for each pair p ̸= q in X, there is an f ∈ F such
that f (p) ̸= f (q).

REMARK 4.3. The F -topology is more explicitly the topology generated by

{ f−1(U) : U ⊆ Yf is open, f ∈ F}.

PROPOSITION 4.4. If F is a separating family of functions on a space X, and each Yf is
Hausdorff, then the F -topology on X is Hausdorff.
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Proof. Let p ̸= q be points in X and choose f ∈ F such that f (p) ̸= f (q). Then, there
are disjoint neighborhoods U and V of f (p) and f (q) respectively in Yf . Since each
f is continuous, f−1(U) and f−1(V) are disjoint neighborhoods of p and q in the F -
topology. ■

PROPOSITION 4.5. If X is a compact topological space and F is a countable family of
continuous separating real-valued functions on X, then X is metrizable.

Proof. Let F = { fn : n ⩾ 1}. We may suppose without loss of generality that ∥ f ∥∞ ⩽ 1
for each f ∈ F . It is not hard to check that the function d : X × X → R given by

d(x, y) =
∞

∑
n=1

2−n| fn(x)− fn(y)|

is a metric inducing the topology on X. ■

THEOREM 4.6. Let X be a K-vector space and X′ a vector space of linear functionals on X
that separates points. The X′-topology τ′ on X makes it a locally convex topological vector
space whose dual is X′.

Proof. Due to Proposition 4.4, τ′ is Hausdorff. Note that the topology is generated by the
set

{Λ−1(U) : Λ ∈ X′, U ⊆ K is open}.

Hence, a base for the topology is given by finite intersections of elements of the above
form. Thus, is generated by intersections of the form

Λ−1
1 (U1) ∩ · · · ∩ Λ−1

n (Un),

where U1, . . . , Un ⊆ K are open sets. It immediately follows that this base is translation
invariant whence, the entire topology is translation invariant. A local base at 0 is given by
open sets of the above form, such that 0 ∈ Ui for 1 ⩽ i ⩽ n. We can further refine this local
base by choosing open sets of the form

V(Λ1, . . . , Λn; ε1, . . . , εn) = {x ∈ X : |Λix| ⩽ εi, 1 ⩽ i ⩽ n} .

Further, from this description, it is not hard to see that αV is a basic open set whenever
α > 0 and V a basic open set.

Now that we have established a local base for τ′, we show that (X, τ′) is indeed a
topological vector space. That τ′ is locally convex immediately follows from the above
description of a local base. Next, we show that addition is continuous, for which it suffices
to show continuity at (0, 0) ∈ X × X. Let U be a neighborhood of 0 in X, then U contains a
basic open set V of the above form. Since 1

2V + 1
2V ⊆ V, we see that addition is continuous.

To see that scalar multiplication is continuous, let x ∈ X, α ∈ K and x + V a neigh-
borhood of x. We may suppose that V is a basic open set of the above form. Since V
is absorbing, there is an s > 0 such that x ∈ sV. Choose r sufficiently small so that
r(r + s) + r|α| < 1. Then, if y ∈ x + rV, and |β − α| < r,

βy − αx = (β − α)y + α(y − x) ∈ r(r + s)V + |α|rV ⊆ V,
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since y ∈ (r + s)V. Hence, scalar multiplication is continuous and (X, τ′) is a locally
convex topological vector space.

Finally, let Λ be a continuous linear functional on X and consider a basic open set
V(Λ1, . . . , Λn, ε1, . . . , εn) such that |Λx| < 1 on V. Thus, there is a γ > 0 such that

|Λx| ⩽ γ max
1⩽i⩽n

|Λix|

whence, Λ is a linear combination of the Λi. ■

DEFINITION 4.7. Let X be a topological vector space whose dual X∗ separates points on X
(this is true in particular for locally convex TVSs). Then the X∗-topology on X is called the
weak topology and is denoted by (X, τw) or Xw.

Obviously the weak topology is coarser than the original topology. A set E ⊆ X is
said to be weakly bounded if it is bounded in the weak topology. Similarly, a sequence (xn)
is said to be weakly convergent to x if it converges in the weak topology. Since the weak
topology is Hausdorff, the limit of any weakly convergent sequence is unique.

PROPOSITION 4.8. Let X be a topological vector space on which X∗ separates points. Then

(a) Xw is a locally convex topological vector space.

(b) A set E ⊆ X is weakly bounded if and only if every Λ ∈ X∗ is bounded on E.

(c) A sequence (xn) is weakly convergent to x if and only if Λxn → Λx for every Λ ∈ X∗.

Proof. All three assertions are trivial. ■

PROPOSITION 4.9. Let X be a locally convex topological vector space and E ⊆ X a convex
subset. Then the weak closure Ew is the same as the original closure E.

Proof. Since the weak topology is coarser than the original topology, E ⊆ Ew. Now, let
x0 ∈ X \ E. Due to the Hahn-Banach Separation Theorem, there is an Λ ∈ X∗ and
γ1, γ2 ∈ R such that

ℜΛx0 < γ1 < γ2 < ℜΛy ∀y ∈ E ⊇ E.

Thus, there is a weak neighborhood of x0 not intersecting E, consequently, x0 /∈ Ew. This
completes the proof. ■

THEOREM 4.10. Suppose X is an infinite-dimensional normed linear space. Then the weak
topology on X is not metrizable.

Proof. We shall show that the weak topology (X, w) is not first-countable whence the
conclusion would follow. Suppose not, then there is a local base {Un} at 0. For each n ⩾ 1,
there is a finite subset Fn ⊆ X∗ and εn > 0 such that

Vn = {x ∈ X : | f (x)| < εn, ∀ f ∈ Fn} .

We contend that
X∗ =

⋃
n⩾1

span(Fn).
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Indeed, let g ∈ X∗ and
U = {x ∈ X : |g(x)| < 1}.

There is an index n ⩾ 1 such that Vn ⊆ U. Now, if x is in
⋂

f∈Fn

ker f , then so is λx for

every λ ∈ K, consequently, λx ∈ Vn and hence, |λ||g(x)| < 1 for every λ ∈ K. This forces
g(x) = 0, that is, ⋂

f∈Fn

ker f ⊆ ker g,

which, in light of Lemma 4.1 gives g ∈ span(Fn), proving our claim.
It follows that X∗ has at most countable dimension and since X is infinite-dimensional,

so is X∗, but this is absurd, since X∗ is a Banach space. ■

DEFINITION 4.11. Let X be a topological vector space and X∗. The evaluation functionals
induced by X form a separating vector space of functionals. The X-topology induced on
X∗ by these functionals is called the weak* topology.

THEOREM 4.12 (BANACH-ALAOGLU). Let X be a topological vector space and V a neigh-
borhood of 0. The polar of V:

K = {Λ ∈ X∗ : |Λx| ⩽ 1, ∀x ∈ V} ⊆ X∗

is weak*-compact.

Proof. Since V is a neighborhood of the origin, it is absorbing and hence, for each x ∈ X,
there is γ(x) > 0 such that x ∈ γ(x)V. For x ∈ V, choose γ(x) ⩽ 1. Let Dx denote the
compact set

Dx = {z ∈ K : |z| ⩽ γ(x)} , (1)

and
P = ∏

x∈X
Dx,

which is compact due to Tychonoff’s Theorem. Further, for each Λ ∈ K and x ∈ X, since
x/γ(x) ∈ V, we have |Λx| ⩽ |γ(x)|, consequently, the element (Λx)x∈X is an element of
P. Thus, we can identify K with a subset of P. Henceforth, we shall denote elements of P
as functions f : X → K. We shall show that:

(i) the subspace topology K inherits from P and the weak*-topology on K are the same,

(ii) with respect to the subspace topology, K is closed in P;

whence it follows that K is compact.
Let Λ0 ∈ K and consider a basic open set in the weak*-topology centered at Λ0 of the

form
W = {Λ ∈ X∗ : |Λxi − Λ0xi| < ε, 1 ⩽ i ⩽ n} .

In the product topology on P, the following set is open

V = { f ∈ P : | f (xi)− Λ0xi| < ε, 1 ⩽ i ⩽ n} .
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It is not hard to see that W ∩ K = V ∩ K. This shows that the subspace topology induced
on K by the product topology is finer than that induced by the weak*-topology.

On the other hand, choose any open set in the product topology in P intersecting K and
choose an element Λ0 in the intersection. The aforementioned open set contains one of the
form V as above and since W ∩ K = V ∩ K, we see that the weak*-topology is finer than
the subspace topology. This shows that the two topologies are the same.

Finally, we must show that K is closed in P. Let f0 ∈ K, x, y ∈ X and α, β ∈ K. We
contend that f0(αx + βy) = α f0(x) + β f0(y). Let ε > 0 and

V = { f ∈ P : | f (z)− f0(z)| < ε, z ∈ {x, y, αx + βy}} .

There is some f ∈ K ∩ V. Then,

| f0(αx + βy)− α f (x)− β f (y)| ⩽
| f0(αx + βy)− f (αx + βy)|+ |α f (x)− α f0(x)|+ |β f (y)− β f0(y)|
⩽ (|α|+ |β|+ 1)ε.

Since the above inequality holds for all ε > 0, we have that f0 is linear. Further, by
construction, f0 is bounded by 1 on V, since γ(x) ⩽ 1 for all x ∈ V and hence, f0 ∈ X∗. It
follows that f0 ∈ K and hence, K is closed in P, thereby completing the proof. ■

PROPOSITION 4.13 (RUDIN, EXERCISE 3.11). Let X be an infinite dimensional Fréchet
space. Then X∗ with the weak*-topology is of the first category in itself.

Proof. Let Vn = B(0, 1/n) ⊆ X and let Kn denote their respective polars, that is

Kn = {Λ ∈ X∗ : |Λx| ⩽ 1, ∀x ∈ Vn}.

First, we claim that X∗ =
∞⋃

n=1

Kn. Indeed, for any Λ ∈ X∗, note that the open set

Λ−1(BK(0, 1)) contains some Vn and hence, Λ ∈ Kn.
It remains to now show that these have empty interior. Indeed, suppose KN has

nonempty interior for some N ∈ N. Since KN is convex, symmetric, so is its interior. Thus,
we have that 0 lies in the interior of KN. As a result, there is an ε > 0 and x1, . . . , xn ∈ X
such that

W = {Λ ∈ X∗ : |Λxi| < ε, 1 ⩽ i ⩽ n} ⊆ KN.

Since KN is compact, it is bounded and hence, so is W. But since X∗ is infinite-dimensional
too, so is

⋂n
i=1 ker evxi ⊆ W which is contained in a bounded set, whence, must be the

trivial subspace.
Next, for any x ∈ X, note that

n⋂
i=1

ker evxi = {0} ⊆ ker evx,

thus x is a linear combination of the xi’s, that is, X is finite-dimensional, a contradiction.
This completes the proof. ■
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�� The Krein-Milman Theorem

DEFINITION 4.14. A subset E of a topological vector space X is said to be totally bounded if
to every neighborhood V of 0 in X corresponds a finite set F such that E ⊆ F + V.

REMARK 4.15. Note that we can require that F ⊆ E. Indeed, let V be a neighborhood of
0 and choose a neighborhood W of 0 such that W + W ⊆ V. There is a finite set F ⊆ X
such that E ⊆ F + W. For each f ∈ F such that ( f + W) ∩ E ̸= ∅, choose some e in the
intersection. For any w ∈ W, we have f + w − e = ( f − e) + w ∈ W + W ⊆ V. Hence,
f + W ⊆ e + V. The collection of all such e’s, say F̃ is such that E ⊆ F̃ + W

THEOREM 4.16. (a) If A1, . . . , An are compact convex sets in a topological vector space
X, then co(A1 ∪ · · · ∪ An) is compact.

(b) If X is an LCTVS and E ⊆ X is totally bounded, then co(E) is totally bounded.

(c) If X is a Fréchet space and K ⊆ X is compact, then co(X) is compact.

Proof. (a) Let

∆ = {(s1, . . . , sn) ∈ Rn : s1 + · · ·+ sn = 1, si ⩾ 0 ∀1 ⩽ i ⩽ n} .

Let A = A1 × · · · × An and define the map f : ∆ × A → X by

f (s, a) = s1a1 + · · ·+ snan.

This is a continuous map since addition and scalar multiplication are continuous on
X. Put K = f (S × A). Then, K is compact and is contained in co(A1 ∪ · · · ∪ An).

We shall show that K = co(A1 ∪ · · · ∪ An), for which is suffices to show that K is
convex (since each Ai is contained in K). Indeed, let α, β > 0 with α + β = 1. Then,
for (s, a), (t, b) ∈ S × A, we have

α
n

∑
i=1

siai + β
n

∑
i=1

tibi =
n

∑
i=1

(αsi + βti) ·
αsiai + βtibi

αsi + βti
= f (u, c),

where u = αs + βt and

ci =
αsiai + βtibi

αsi + βti
∈ Ai,

and we are done.

(b) Let U be a neighborhood of 0 in X and choose a convex, balanced neighborhood V of
0 in X such that V + V ⊆ U. There is a finite set F ⊆ X such that E ⊆ F + V, whence
E ⊆ co(F) + V. Since the latter is convex, we have co(E) ⊆ co(F) + V.

Due to part (a), co(F) is compact. The collection { f + V : f ∈ co(F)} is an open
cover of co(F) and hence, admits a finite subcover, co(F) ⊆ F1 + V for some F1 ⊆ X.
Therefore,

co(E) ⊆ F1 + V + V ⊆ F1 + U,

that is, co(E) is totally bounded.
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(c) Due to part (b), co(K) is totally bounded. Thus, its closure is totally bounded and
complete, whence compact. ■

LEMMA 4.17 (CARATHÉODORY). If E ⊆ Rn and x ∈ co(E), then x lies in the convex hull
of of some subset of E which contains at most n + 1 points.

Proof. We shall show that if k > n and x =
k+1

∑
i=1

tixi is a convex combination for some

xi ∈ Rn, then x is a convex combination of some k of these vectors. This is enough to prove
the statement of the theorem.

We may suppose without loss of generality that ti > 0 for 1 ⩽ i ⩽ k + 1. Consider the
linear map Rk+1 → Rn+1 given by

(a1, . . . , ak+1) 7→
(

k+1

∑
i=1

aixi,
k+1

∑
i=1

ai

)
.

The kernel of this map must be nontrivial and hence, there exists (a1, . . . , ak+1) ∈ Rk+1

with some ai ̸= 0, so that ∑k+1
i=1 aixi = 0 and ∑k+1

i=1 ai = 0. Set

|λ| = min
1⩽i⩽k+1

ti

|ai|
,

which is finite, since ai ̸= 0 for some 1 ⩽ i ⩽ k + 1. Choose the sign of λ so that λaj = λj
for some 1 ⩽ j ⩽ k + 1. Set ci = ti − λai ⩾ 0. Then,

k+1

∑
i=1

cixi =
k+1

∑
i=1

tixi − λ
k+1

∑
i=1

aixi = x,

and
k+1

∑
i=1

ci =
k+1

∑
i=1

ti − λ
k+1

∑
i=1

ai = 1.

Note that cj = 0 and hence, we have written x as a convex combination of some k of the
xi’s. ■

PROPOSITION 4.18. If K ⊆ Rn is compact, then so is co(K).

Proof. Let

∆ = {(s1, . . . , sn+1) ∈ Rn+1 : s1 + · · ·+ sn+1 = 1, si ⩾ 0 ∀1 ⩽ i ⩽ n + 1}.

Due to Carathéodory’s lemma, it follows that x ∈ co(K) if and only if x is a linear
combination of some n + 1 elements of K. Thus, the map ∆ × Kn+1 → Rn given by

(t, x1, . . . , xn+1) 7→ t1x1 + · · ·+ tn+1xn+1

is continuous and its image is co(K). This completes the proof. ■
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DEFINITION 4.19. Let X be a K-vector space and K ⊆ X. A non-empty set S ⊆ K is
called an extreme set of K if whenever x, y ∈ K, 0 < t < 1 such that (1 − t)x + ty ∈ S, then
x, y ∈ S.

The extreme points of K are the extreme sets that are singletons. The set of all extreme
points of K is denoted by E(K).

LEMMA 4.20. Let X be a topological vector space on which X∗ separates points. Suppose
A, B are disjoint, nonempty, compact, convex sets in X. Then there exists Λ ∈ X∗ such that

sup
x∈A

ℜΛx < inf
y∈B

ℜΛy.

Proof. Topologize X with the weak topology, which is coarser than the original topology,
and hence, A, B are compact. Now, use the Hahn-Banach separation theorem and the fact
that (Xw)∗ = X∗. ■

THEOREM 4.21 (KREIN-MILMAN). Let X be a topological vector space on which X∗

separates points. If K ⊆ X is a nonempty compact convex set in X, then K = co(E(K)).

Proof. Let P denote the poset of all nonemtpy compact extreme sets of K ordered by
inclusion. Note that P is nonempty, since K ∈ P . We make the following two observations
about P :

(a) If S ̸= ∅, is an intersection of elements of P , then S ∈ P .

(b) If S ∈ P , Λ ∈ X∗ and µ = max
x∈S

ℜΛx, then

SΛ = {x ∈ S : ℜΛx = µ} ∈ P .

Observation (a) is obvious. As for (b), first note that SΛ is closed in S, and hence, in K, thus,
is compact. Now, suppose x, y ∈ K and t > 0 such that tx + (1 − t)y ∈ SΛ ⊆ S. Since S is
an extreme set of K, x, y ∈ S, consequently, ℜΛx,ℜΛy ⩽ µ and

µ = ℜΛ(tx + (1 − t)y) ⩽ tµ + (1 − t)µ = µ,

whence x, y ∈ SΛ, thereby proving (b).
Choose some S ∈ P and let P ′ be the sub-poset of all members of P that are contained

in S. Let Ω be a maximal chain in P ′ and let M denote the intersection of all elements of
Ω. Since Ω has the finite intersection property and all sets in Ω are compact, M ̸= ∅ and
is compact.

We contend that M is a singleton. Indeed, since MΛ ⊆ M, due to the minimality of M,
we must have that MΛ = M for every Λ ∈ X∗. That is, ℜΛ(x − y) = 0 for all x, y ∈ M
and Λ ∈ X∗. Since X∗ separates points on X, we must have that x − y = 0, that is, M is a
singleton.

We have therefore proved that E(K) ∩ S ̸= ∅ for every S ∈ P . Now, since K is convex,
co(E(K)) ⊆ K, consequently, the former is compact. Suppose now that there is some
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x0 ∈ K \ co(E(K)). Applying the preceding lemma with B = {x0} and A = co(E(K)),
there is a Λ ∈ X∗ such that

ℜΛx0 > sup
y∈co(E(K))

ℜΛy.

Then, KΛ ∈ P and is disjoint from co(E(K)), a contradiction. Thus, co(E(K)) = K, thereby
completing the proof. ■

§5 DUALITY IN BANACH SPACES

Throughout this section, for a normed linear space X, we use x∗ to denote the elements of
its dual X∗. Further, there is a natural pairing

⟨·, ·⟩ : X × X∗ → K ⟨x, x∗⟩ = x∗(x).

DEFINITION 5.1. Suppose X is a Banach space, M is a subspace of X, and N is a subspace
of X∗. Their annihilators M⊥ and ⊥N are defined as follows

M⊥ = {x∗ ∈ X∗ : ⟨x, x∗⟩ = 0 for all x ∈ M}
⊥N = {x ∈ X : ⟨x, x∗⟩ = 0 for all x∗ ∈ N} .

Obviously, M⊥ is weak*-closed in X∗ and ⊥N is norm-closed in X.

THEOREM 5.2. Let X be a normed linear space, M a subspace of X and N a subspace of
X∗.

(a) ⊥(M⊥) is the norm-closure of M in X.

(b) (⊥N)⊥ is the weak*-closure of N in X∗.

Proof. Obviously M ⊆ ⊥(M⊥), and the latter is norm closed in X, and hence contains the
norm closure of M. On the other hand, if x is not in the norm closure of M, then due to
the Hahn-Banach theorem, there is an x∗ ∈ X∗ such that ⟨x, x∗⟩ ̸= 0 but x∗ vanishes on M.
Hence, x /∈ ⊥(M⊥).

Simiarly, N is contained in (⊥N)⊥, which is weak*-closed, therefore contains the weak*-
closure of N. On the other hand, if x∗ is not in the weak*-closure of N, using the fact that
X∗ is locally convex under the weak*-topology, there is a continuous linear functional
Λ : X∗ → K (w.r.t. the weak*-topology) that vanishes on N but not x∗. But Λ = evx for
some x ∈ X and since Λ vanishes on N, we have that x ∈ ⊥N. Therefore, x /∈ (⊥N)⊥. ■

THEOREM 5.3. Suppose X and Y are normed linear spaces, and T ∈ B(X, Y). Then

N (T∗) = R(T)⊥ and N (T) = ⊥R(T∗).

Proof. The proof is quite straightforward.

y∗ ∈ N ∗(T) ⇐⇒ T∗y∗ = 0 ⇐⇒ ⟨x, T∗y∗⟩ ∀x ∈ X

⇐⇒ ⟨Tx, y∗⟩ = 0 ∀x ∈ X ⇐⇒ y∗ ∈ R(T)⊥.
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Similarly,

x ∈ N (T) ⇐⇒ Tx = 0 ⇐⇒ ⟨Tx, y∗⟩ = 0 ∀y∗ ∈ X∗

⇐⇒ ⟨x, T∗y∗⟩ = 0 ∀y∗ ∈ X∗ ⇐⇒ x ∈ ⊥R(T∗).

This completes the proof. ■

COROLLARY. Let T ∈ B(X, Y) where X and Y are normed linear spaces.

(a) N (T∗) is weak*-closed in Y∗.

(b) R(T) is dense in Y if and only if T∗ is injective.

(c) T is injective if and only if R(T∗) is weak*-dense in X∗.

Proof. All three follow immediately from Hahn-Banach and the preceding result. ■

THEOREM 5.4. Let U and V be the open unit balls in the Banach spaces X and Y respec-
tively. If T ∈ B(X, Y), the following are equivalent:

(a) There is a δ > 0 such that ∥T∗y∗∥ ⩾ δ∥y∗∥ for every y∗ ∈ Y∗.

(b) T(U) ⊇ δV.

(c) T(U) ⊇ δV.

(d) T(X) = Y.

Proof. Suppose (a) holds and chooe y0 /∈ T(U). Using the Hahn-Banach separation
theorem, choose a y∗ ∈ Y∗ such that |⟨y, y∗⟩| ⩽ 1 for every y ∈ T(U), but |⟨y0, y∗⟩| > 1.
Thus, if x ∈ U, then we have

|⟨x, T∗y∗⟩| = |⟨Tx, y∗⟩| ⩽ 1.

Thus ∥T∗y∗∥ ⩽ 1, whence it follows from (a) that

∥y0∥ ⩾ ∥y0∥∥T∗y∗∥ ⩾ δ∥y0∥∥y∗∥ ⩾ δ|⟨y0, y∗⟩| > δ.

Consequently, if ∥y∥ ⩽ δ, then y ∈ T(U), as desired.
Next, suppose (b) holds. Replacing T by δ−1T, we may suppose that δ = 1, that is,

V ⊆ T(U), whence V ⊆ T(U). If y ∈ Y is non-zero, and ε > 0, then y/∥y∥ ∈ V, and we
can find an x0 ∈ U such that ∥Tx0 − y/∥y∥∥ < ε/∥y∥, therefore, there is an x ∈ X with
∥x∥ ⩽ ∥y∥ such that ∥Tx − y∥ < ε.

We shall now show that V ⊆ T(U). Pick some y ∈ V and set y1 = y. Choose a sequence
(εn) of positive reals such that

∞

∑
n=1

εn < 1 − ∥y1∥.
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We shall now define two sequences (xn) and (yn). Let n ⩾ 1 and suppose yn has been
chosen. Then there is an xn ∈ X such that ∥xn∥ ⩽ ∥yn∥ and ∥yn − Txn∥ < εn. Set

yn+1 = yn − Txn.

Note that for n ⩾ 1,
∥xn+1∥ ⩽ ∥yn+1∥ < εn,

according to our construction. Hence, the sequence (xn) is absolutely summable and since
we are in a Banach space, it is summable. It follows that

∥x∥ :=

∥∥∥∥∥ ∞

∑
n=1

xn

∥∥∥∥∥ ⩽ ∞

∑
n=1

∥xn∥ < ∥x1∥+
∞

∑
n=1

εn < 1,

since ∥x1∥ ⩽ ∥y1∥. Consequently, x ∈ U, and

Tx = lim
N→∞

N

∑
n=1

Txn = lim
N→∞

∞

∑
n=1

yn − yn+1 = y1 = y,

as desired.
If (c) holds, then using the fact that V is absorbing in Y, it is immediate that T is

surjective.
Finally, suppose (d) holds. Due to the open mapping theorem, there is a δ > 0 such

that δV ⊆ T(U). Hence

∥T∗y∗∥ = sup {|⟨x, T∗y∗⟩| : x ∈ U}
= sup {|⟨Tx, y∗⟩| : x ∈ U}
⩾ sup {|⟨y, y∗⟩| : y ∈ δV}
= δ sup {|⟨y, y∗⟩| : y ∈ V} = δ∥y∗∥.

This completes the proof. ■

THEOREM 5.5 (CLOSED RANGE THEOREM). If X and Y are Banach spaces and T ∈
B(X, Y), then the following are equivalent:

(a) R(T) is norm-closed in Y.

(b) R(T∗) is weak*-closed in X∗.

(c) R(T∗) is norm-closed in X∗.

Proof. Suppose first that (a) holds. We shall show that R(T∗) is its own weak*-closure.
Recall that the weak*-closure of R(T∗) is given by (⊥R(T∗))⊥ = N (T)⊥. Therefore, it
suffices to show that N (T)⊥ ⊆ R(T∗).

Pick x∗ ∈ N (T)⊥ and define a linear functional Λ on R(T) by

Λ(Tx) = ⟨x, x∗⟩ ∀ x ∈ X.
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This functional is well-defined, for if Tx = Tx′, then x− x′ ∈ N (T) and thus ⟨x− x′, x∗⟩ =
0. Next, since R(T) is closed in Y, it is a Banach space and hence, the open mapping
theorem applies, consequently, there is a constant K > 0 such that for each y ∈ R(T), there
is an x ∈ X with Tx = y and ∥x∥ ⩽ K∥y∥. Hence,

|Λy| = |Λ(Tx)| = |⟨x, x∗⟩| ⩽ ∥x∥∥x∗∥ ⩽ K∥y∥∥x∗∥,

i.e., Λ is continuous. This can then be extended to a linear functional y∗ ∈ Y∗. Hence, for
all x ∈ X, we have

⟨Tx, y∗⟩ = Λ(Tx) = ⟨x, x∗⟩.
Thus x∗ = T∗y∗, as desired.

Obviously, if (b) holds, then (c) does, since the norm topology on X∗ is finer than the
weak*-topology.

Suppose now that (c) holds. Let Z denote the norm-closure of R(T) in Y and let S
denote the corestriction of T to Z. Due to 15 5 (b), since R(S) is dense in Z, S∗ : Z∗ → X∗

is injective.
If z∗ ∈ Z∗, we can extend this to some y∗ ∈ Y∗ using Hahn-Banach. Then, for every

x ∈ X, we have
⟨x, T∗y∗⟩ = ⟨Tx, y∗⟩ = ⟨Sx, z∗⟩ = ⟨x, S∗z∗⟩.

Hence, S∗z∗ = T∗y∗, consequently, R(S∗) = R(T∗), is norm-closed due to (c), and
hence, complete. It follows from the open mapping theorem that S∗ : Z∗ → R(S∗) is an
isomorphism, owing to it being continuous and bijective between Banach spaces. Hence,
there is a constant c > 0 such that

c∥z∗∥ ⩽ ∥S∗z∗∥ ∀ z∗ ∈ Z∗.

Due to Theorem 5.4, S : X → Z is surjective. But since R(T) = R(S), we have that
R(T) = Z is a closed subspace of Y, thereby completing the proof. ■

§6 COMPACT OPERATORS

DEFINITION 6.1. A linear map T : X → Y between Banach spaces is said to be compact if
T(U) is relatively compact in Y where U is the unit ball in X.

The following proposition is immediate from the equivalence of compactness and
sequential compactness in metric spaces.

PROPOSITION 6.2. T is compact if and only if every bounded sequence (xn) in X contains
a subsequence (xnk) such that (Txnk) converges in Y.

DEFINITION 6.3. The spectrum σ(T) of an operator T ∈ B(X) is the set of all scalars λ
such that T − λI is not invertible.

THEOREM 6.4. Let X and Y be Banach spaces.

(a) If T ∈ B(X, Y) and dim R(T) < ∞, then T is compact.
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(b) If T ∈ B(X, Y), T is compact, and R(T) is closed, then dim R(T) < ∞.

(c) The compact operators form a closed subspace of B(X, Y) in its norm-topology.

(d) If T ∈ B(X), T is compact, and λ ̸= 0 is a scalar, then dim N (T − λI) < ∞.

(e) If dim X = ∞, T ∈ B(X), and T is compact, then 0 ∈ σ(T).

(f) If S, T ∈ B(X), and T is compact, then so are ST and TS.

Proof. (a) Let U denote the unit ball of X. Then T(U) is a bounded subset of R(T)
and since the latter is closed in Y, T(U) is a closed and bounded subset of R(T),
consequently, is compact.

(b) Since R(T) is closed in Y, it is complete, i.e., a Banach space. Due to the open
mapping theorem, T(U) is open in R(T) with compact closure, whence R(T) is
locally compact, and hence, finite dimensional.

(c) Let Tn → T in B(X, Y) where each Tn is a compact operator. We shall show that
T(U) is totally bounded in Y. Let ε > 0 and choose an N such that ∥T − TN∥ < ε/3.
Note that TN(U) is totally bounded in Y, and hence, there are x1, . . . , xn ∈ U such
that

TN(U) ⊆
n⋃

i=1

BY(TNxi, ε/3).

Now, for any y ∈ U, there is an index 1 ⩽ i ⩽ n such that TNy ∈ B(TNxi, ε/3). As a
result,

∥Ty − Txi∥ ⩽ ∥Ty − TNy∥+ ∥TNy − TNxi∥+ ∥TNxi − Txi∥ < ε.

Hence,

T(U) ⊆
n⋃

i=1

BY(Txi, ε),

and the conclusion follows.

(d) Let Y = N (T − λI). Then note that T acts on Y by y 7→ λy. Further, since T is
compact and Y is closed in X, the restriction of T to Y is compact and hence, Y must
be finite-dimensional.

(e) If 0 /∈ σ(T), then T is invertible, whence R(T) is closed but dim R(T) = ∞, a
contradiction.

(f) This follows from Proposition 6.2. ■

THEOREM 6.5. Suppose X and Y are Banach spaces and T ∈ B(X, Y). Then T is compact
if and only if T∗ ∈ B(Y∗, X∗) is compact.
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Proof. Suppose first that T is compact and let {y∗n} be a sequence in the unit ball of Y∗. We
shall show that T∗y∗ = y∗ ◦ T admits a convergent subsequence in X∗. Let K = T(U) ⊆ Y,
which, according to our assumption is compact in Y. Note that the collection {y∗n} is
equicontinuous and pointwise bounded on K. Due to the Arzelá-Ascoli Theorem, there is
a subsequence {y∗nk

} that converges uniformly on K.
We contend that {T∗y∗nk

} converges in the operator norm. Indeed, for any x ∈ U,

|(T∗y∗nk
(x)− T∗y∗nl

(x)| = |y∗nk
(Tx)− y∗nl

(Tx)|,

and since Tx ∈ K, the conclusion follows.
Conversely, suppose T∗ is compact. Consider the natural isometric embeddings ΦX :

X → X∗∗ and ΦY : Y → Y∗∗, which fit into a commutative diagram

X X //

ΦX
��

Y
ΦY
��

X∗∗
T∗∗
// Y∗∗.

(2)

Due to the first part of the proof, T∗∗ is compact. Thus, T∗∗(U∗∗) is totally bounded in
Y∗∗. Next, ΦX(U) is contained in U∗∗ and hence, T∗∗ΦX(U) = ΦYT(U) is totally bounded
in Y∗∗. Since ΦY is an isometry, it follows that T(U) is totally bounded in Y, thereby
completing the proof. ■

DEFINITION 6.6. A closed subspace M of a topological vector space X is said to be
complemented if there exists a closed subspace N of X such that

X = M + N and M ∩ N = {0}.

In this case, X is said to be the direct sum of M and N, denoted by X = M ⊕ N.

LEMMA 6.7. Let M be a closed subspace of a topological vector space X.

(a) If X is locally convex and dim M < ∞, then M is complemented in X.

(b) If dim(X/M) < ∞, then M is complemented in X.

Proof. (a) Let {e1, . . . , en} be a basis for M. Every x ∈ M has a unique representation

x = α1(x)e1 + · · ·+ αn(x)en.

Note that αi(ej) = 0 whenever i ̸= j. Due to the Hahn-Banach Theorem, each αi can

be extended to a continuous linear functional on X. Let N =
n⋂

i=1

N (αi). It is not hard

to argue that X = M ⊕ N.

(b) Let π : X → X/M be the quotient map, and let {e1, . . . , en} be a basis for X/M. Lift
this to {x1, . . . , xn} in X and let N be the vector subspace they span. Again, it is not
hard to argue that X = M ⊕ N. ■
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THEOREM 6.8. Let X be a Banach space, T ∈ B(X) a compact operator, and λ ̸= 0. Then
T − λI has closed range.

Proof. Let N = N (T − λI), which is a closed subspace of X. Due to Lemma 6.7, admits a
complement, say M. Let S : M → X be given by x 7→ Tx − λx, which is a bounded linear
operator. Since R(S) = R(T − λI), it suffices to show that the former is closed.

To this end, we first show that there is a constant β > 0 such that ∥Sx∥ ⩾ β∥x∥ for all
x ∈ M, which is equivalent to

β = inf
∥x∥=1
x∈M

∥Sx∥ > 0.

Suppose not. Then, there is a sequence xn ∈ M with ∥xn∥ = 1, such that Sxn → 0 as
n → ∞. Since T : X → X is compact, its restriction to M is also compact, whence, there is a
subsequence (xnk) such that Txnk → x0 for some x0 ∈ X. Replace xn with this subsequence.
Then, Txn − λxn → 0 and hence, λxn → x0. As a result,

Sx0 = lim
n→∞

S(λxn) = λ lim
n→∞

Sxn = 0.

But since S is injective, x0 = 0. This is absurd, since ∥x0∥ = limn→∞ ∥λxn∥ = |λ| > 0. It
follows that β > 0.

Finally, we show that R(S) is closed in X. Indeed, suppose y ∈ R(S); then there is a
sequence (xn) in M such that Sxn → y, that is (Sxn) is Cauchy. But since

β∥xn − xm∥ ⩽ ∥Sxn − Sxm∥,

so is (xn). Hence, xn → x0 for some x0 ∈ M; and Sx0 = y. This completes the proof. ■

THEOREM 6.9 (SPECTRUM OF A COMPACT OPERATOR). Let X be a Banach space and
T ∈ B(X) a compact operator.

(a) Every 0 ̸= λ ∈ σ(T) is an eigenvalue of T.

(b) For every λ ̸= 0, the increasing chain of subspaces

N (T − λI) ⊆ N ((T − λI)2) ⊆ · · ·

eventually stabilizes. Further, a these subspaces are finite dimensional.

(c) For every r > 0, the set
{λ ∈ σ(T) : |λ| > r}

is finite.

(d) As a consequence, σ(T) is countable and the only possible limit point of σ(T) is 0.

Proof. Suppose dim X = ∞, for if dim X < ∞, then all the above statements are trivial as
there are only finitely many eigenvalues.
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(a) Suppose 0 ̸= λ ∈ σ(T) is not an eigenvalue of T, then T − λI is injective, but not
surjective, else, due to the open mapping theorem, it would be invertible. Define

Yn = (T − λI)n(X).

Obviously, Yn+1 ⊆ Yn for all n ⩾ 1. Further, since the restriction of T to each of these
subspaces is compact, due to Theorem 6.4 (d), each Yn is infinite-dimensional and all
inclusions are strict.

For each n ⩾ 1, using the Riesz Lemma, choose yn ∈ Yn \ Yn+1 such that ∥yn∥ = 1
and

dist(yn, Yn+1) >
1
2

.

Since T is compact and (xn) is bounded, the sequence (Txn) must admit a convergent
subsequence. But for n < m, we have

∥Txn − Txm∥ = ∥(T − λI)xn + λxn − (T − λI)xm − λxm∥,

and since (T − λI)xn − (T − λI)xm − λxm ∈ Yn+1, we conclude that ∥Txn − Txm∥ >
λ/2, a contradiction.

(b) If λ is not an eigenvalue, then each N ((T − λI)n) is the trivial subspace and there is
nothing to prove. Suppose now that λ is an eigenvalue of T and set Yn = N ((T −
λI)n). Obviously Y1 ⊆ Y2 ⊆ · · · . Further, (T − λI)n = S + (−λ)n I where S is some
compact operator and hence, dim Yn < ∞. Next, note that if Yn = Yn+1 for some
n ⩾ 1, then Yn = Yn+1 = Yn+2 = · · · .

Suppose now that Yn ⊊ Yn+1 for every n ⩾ 1. Again, using the Riesz Lemma, choose
yn+1 ∈ Yn+1 \ Yn such that ∥yn+1∥ = 1 and

dist(yn+1, Yn) >
1
2

.

Again, since (yn) is bounded and T is compact, the sequence (Tyn) must admit a
convergent subsequence. But for 2 ⩽ n < m, we have

∥Tyn − Tym∥ = ∥(T − λI)yn + λyn − (T − λI)ym − λym∥,

and since (T−λI)yn − (T−λI)ym +λyn ∈ Ym−1, it follows that ∥Tyn −Txm∥ > λ/2,
a contradiction.

(c) Suppose there is an r > 0 such that the set {λ ∈ σ(T) : |λ| > r} is infinite. Choose a
countable subset {λ1, λ2, . . . } with corresponding eigenvectors {x1, x2, . . . }. Let Yn =
span{x1, . . . , xn}; when then form a strictly increasing chain of closed subspaces.

First, we contend that for n ⩾ 2, (T − λn I)(Yn) ⊆ Yn−1. Indeed, any element of Yn
can be written uniquely as

Yn ∋ y = α1x1 + · · ·+ αnxn.
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Then, (T −λn I)y = α1(T −λn I)x1 + · · ·+ αn−1(T −λn I)xn−1. And for 1 ⩽ i ⩽ n− 1,
we have

(T − λi I)(T − λn)xi = (T − λn I)(T − λi I)xi = 0,

whence (T − λn)xi ∈ Yi.

Next, using the Riesz Lemma, for n ⩾ 2, choose yn ∈ Yn \ Yn−1 such that ∥yn∥ = 1
and

dist(yn, Yn−1) >
1
2

.

Since (yn) is bounded and T is compact, the sequence (Tyn) admits a convergent
subsequence. But for 2 ⩽ n < m, we have

∥Tyn − Tym∥ = ∥(T − λn I)yn + λnyn − (T − λm I)ym − λmym∥,

and since
(T − λn I)yn + λnyn − (T − λm I)ym ∈ Ym−1,

we get that ∥Tyn − Tym∥ > |λm|/2 > r/2, a contradiction.

(d) Note that

σ(T) = {0} ∪
⋃

n⩾1

{
λ ∈ σ(T) : |λ| > 1

n

}
,

and being a countable union of finite sets, σ(T) is countable. Next, suppose 0 ̸= µ ∈
K is a limit point of σ(T). There is an ε > 0 such that |µ| > ε. But since the set of
eigenvalues in K \ B(0, ε) is finite, µ cannot be their limit point. This completes the
proof. ■

�� Examples

THEOREM 6.10 (MINKOWSKI’S INTEGRAL INEQUALITY). Let (X,M, µ) and (Y,N, λ) be
positive measure spaces. If f : X × Y → R is non-negative and measurable with respect to
the product measure, then for 1 ⩽ p < ∞,

{∫
X

(∫
Y

f (x, y) dλ(y)
)p

dµ(x)
} 1

p

⩽
∫

Y

(∫
X

f (x, y)p dµ(x)
) 1

p
dλ(y)

Proof. Since p = 1 is just Fubini, we assume p > 1 and let q be the conjugate exponent to p.
Let H : X → R be defined as

H(x) =
∫

Y
f (x, y) dλ(y),
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which is a measurable function on X due to Fubini. We now have the series of inequalities

∥H∥p
p =

∫
X

∫
Y

f (x, y)H(x)p−1 dλ(y)dµ(x)

=
∫

Y

∫
X

f (x, y)H(x)p−1 dµ(x)dλ(y)

⩽
∫

Y

(∫
X

f (x, y)pdµ(x)
) 1

p
(∫

X
H(x)pq−q

) 1
q

dλ(y)

=
∫

Y

(∫
X

f (x, y)p dµ(x)
) 1

p
∥H∥

p
q
p dλ(y)

and hence

∥H∥p ⩽
∫

X

(∫
X

f (x, y)p dµ(x)
) 1

p
dλ(y),

thereby completing the proof. ■

THEOREM 6.11. Let 1 < p < ∞ and define the Hardy operator H : Lp(0, ∞) → Lp(0, ∞) as

H f (x) =
1
x

∫ x

0
f (t) dt.

Then, H is a non-compact operator with operator norm

∥H|| = p
p − 1

.

Proof. For operator norm, take x−1/pχ[0,N] and let N → ∞. ■

§7 REFLEXIVE SPACES

DEFINITION 7.1. A normed linear space X is said to be reflexive if the natural embedding
Φ : X → X∗∗ is surjective.

PROPOSITION 7.2. Let X be a normed linear space. The natural embedding Φ : X → X∗∗

is a topological imbedding when X is given the weak topology and X∗ is given the weak*-
topology.

Proof. ■

THEOREM 7.3 (KAKUTANI). A Banach space X is reflexive if and only if its norm-closed
unit ball is weakly compact.

Proof. Let B, B∗∗ denote the norm-closed unit balls of X and X∗∗ respectively. If X were
reflexive, then the natural embedding Φ : X → X∗∗ is surjective. Due to the preceding
result, Φ is a homeomorhpism when X is given the weak topology and X∗∗ is given the
weak*-topology. Since B∗∗ is compact in the weak*-topology, and Φ is an isometry, we see
that B must be compact in the weak topology.
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Conversely, suppose B is compact in the weak topology. Again, due to the preceding
proposition, Φ(B) is compact and convex in the weak*-topology and Φ(B) ⊆ B∗∗. If X
were not reflexive, then Φ(B) ⊊ B∗∗. Choose x∗∗ ∈ B∗∗ \ Φ(B). Due to the Hahn-Banach
Separation Theorem, there is a linear functional Λ : X∗∗ → K that is continuous with
respect to the weak*-topology on X∗ and there are γ1, γ2 ∈ R such that

ℜΛ(x∗∗) < γ1 < γ2 < ℜΛ(y) ∀y ∈ Φ(B).

Note that there is some 0 ̸= x∗ ∈ X∗ such that Λ = evx∗ , and hence,

ℜx∗∗(x∗) < γ1 < γ2 ⩽ inf
y∈Φ(B)

ℜy(x∗) = inf
x∈B

ℜx∗(x).

The rightmost quantity is precisely −∥x∗∥. Thus ℜx∗∗(x∗) < −∥x∗∥, in particular,
|x∗∗(x∗)| > ∥x∗∥, whence ∥x∗∗∥ > 1, a contradiction, since we chose it inside B∗∗. This
completes the proof. ■

COROLLARY. Every closed, bounded convex subset of a reflexive Banach space is weakly
compact.

Proof. This follows from the fact that a convex closed subset of an LCTVS is also weakly
closed. ■

§8 HILBERT SPACES

DEFINITION 8.1. An inner product space is a K-vector space H together with a function
(·, ·) : H × H → K such that

(i) (x, y) = (y, x),

(ii) (x + y, z) = (x, z) + (y, z),

(iii) (αx, y) = α(x, y),

(iv) (x, x) ⩾ 0, and (x, x) = 0 if and only if x = 0,

for all x, y, z ∈ H and α ∈ K.
Obviously, ∥x∥ :=

√
(x, x) defines a norm on H. If H is complete with respect to this

norm, then H is said to be a Hilbert space.

PROPOSITION 8.2. Let H be an inner product space and x, y ∈ H. Then,

|(x, y)| ⩽ ∥x∥∥y∥ and ∥x + y∥ ⩽ ∥x∥+ ∥y∥.

Proof. For every λ ∈ K, we have

0 ⩽ (x + λy, x + λy) = |λ|2∥y∥2 + ∥x∥2 + 2ℜ(x, λy).
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For every α ∈ R, we can choose λ ∈ K such that |λ| = |α| and ℜ(x, λy) = α|(x, y)|. Thus,

α2∥y∥2 + 2α(x, y) + ∥x∥2 ⩾ 0

for every α ∈ R. Thus,

4|(x, y)|2 ⩽ 4∥x∥2∥y∥2 =⇒ |(x, y)| ⩽ ∥x∥∥y∥. (3)

Finally, note that

∥x + y∥2 = ∥x∥2 + ∥y∥2 + 2ℜ(x, y) ⩽ ∥x∥2 + ∥y∥2 + 2|(x, y)| ⩽ (∥x∥+ ∥y∥)2,

thereby completing the proof. ■

THEOREM 8.3. Let H be a Hilbert space. Every nonempty closed convex E ⊆ H contains a
unique x of minimal norm.

Proof. Let
d = inf{∥x∥ : x ∈ E}.

Choose a sequence (xn) in E such that ∥xn∥ → d as n → ∞. Since E is convex, 1
2(xn + xm) ∈

E, whence ∥xn + xm∥ ⩾ 2d, for all m, n ⩾ 1.
Next, using the “parallelogram identity”,

∥xn − xm∥2 = 2∥xn∥2 + 2∥xm∥2 − ∥xn + xm∥2.

Let ε > 0 and choose N ⩾ 1 such that whenever n ⩾ N,

d ⩽ ∥xn∥ ⩽
√

d2 + ε2.

Thus, for m, n ⩾ N,

∥xn − xm∥2 ⩽ 4d2 + 4ε2 − ∥xn + xn∥2 ⩽ 4ε2,

thus ∥xn − xm∥ ⩽ 2ε whenever m, n ⩾ N. This shows that (xn) is Cauchy and hence,
converges to some x ∈ E. Obviously, ∥x∥ = d.

As for uniqueness, suppose x, y ∈ E with ∥x∥ = ∥y∥ = d. Then,

0 ⩽ ∥x − y∥2 = 2∥x∥2 + 2∥y∥2 − ∥x + y∥2 ⩽ 2d2 + 2d2 − 4d2 = 0.

Thus, x = y, thereby completing the proof. ■

The above theorem fails quite spectacularly for Banach spaces.

EXAMPLE 8.4. Let X = C[0, 1] the R-vector space of real-valued continuous functions on
[0, 1] with the supremum norm. Let

M =

{
f ∈ X :

∫ 1/2

0
f (t) dt −

∫ 1

1/2
f (t) dt = 1

}
.

Then, M is a closed convex subset of X but no element of M has minimal norm.
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Proof. Obviously, M is convex. To see that it is closed, note that the linear functional

T : X → R f 7→
∫ 1/2

0
f (t) dt −

∫ 1

1/2
f (t) dt

is a bounded linear functional, and hence, is continuous. Thus, M is closed too.
Next, for any f ∈ M,

1 =

∣∣∣∣∫ 1/2

0
f (t) dt −

∫ 1

1/2
f (t) dt

∣∣∣∣ ⩽ ∫ 1

0
| f (t)| dt ⩽ ∥ f ∥∞.

We contend that
inf {∥ f ∥∞ : f ∈ M} = 1.

To see this, fix some 0 < δ < 1/2. Define the function

f (x) =


1 + ε 0 ⩽ x ⩽ 1

2 − δ
1+ε

δ

(
1
2 − x

)
1
2 − δ ⩽ x ⩽ 1

2 + δ

−(1 + ε) 1
2 + δ ⩽ x ⩽ 1.

Then, ∫ 1/2

0
f (t) dt −

∫ 1

1/2
f (t) dt = (1 + ε)(1 − 2δ) + δ(1 + ε) = (1 − δ)(1 + ε).

Choosing

ε =
δ

1 − δ
,

we get T f = 1. Note that ∥ f ∥∞ = 1 + ε and as δ → 0+, we get ∥ f ∥∞ → 1+. This proves
our claim.

Finally, suppose f ∈ M such that ∥ f ∥∞ = 1. Then,

0 =
∫ 1/2

0
1 − f (t) dt +

∫ 1

1/2
1 + f (t) dt.

Since both integrals are non-negative and the functions are continuous, we must have
f (t) = 1 whenever 0 ⩽ t ⩽ 1/2 and f (t) = −1 whenever 1/2 ⩽ t ⩽ 1, a contradiction.
This completes the proof. ■

THEOREM 8.5. Let M be a closed subspace of a Hilbert space H, then H = M ⊕ M⊥.

Proof. Since
M⊥ =

⋂
x∈M

ker(·, x),

it is a closed subspace of H. Obviously, M ∩ M⊥ = {0}. It remains to show that H =
M + M⊥. Indeed, let x ∈ H and let x1 ∈ M be the unique element minimizing the distance
to x. We contend that x2 = x − x1 is perpendicular to x1.
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Indeed, note that for every y ∈ M, we have

∥x2∥2 ⩽ ∥x2 + y∥2 =⇒ ∥y∥2 + 2ℜ(x2, y) ⩾ 0,

for all y ∈ M. Suppose (x2, y) ̸= 0 for some y ∈ M. We can choose y such that ℜ(x2, y) =
−|(x2, y)|. Then, replacing y by αy for some α > 0, we have α2∥y∥2 − 2α|(x, y)| ⩾ 0 for all
α > 0. This is obviously false, and hence, (x2, y) ̸= 0 for all y ∈ M, thereby completing the
proof. ■

The above theorem fails for closed subspaces of Banach spaces.

EXAMPLE 8.6. c0 ⊆ ℓ∞ is not complemented.

Proof. We begin with a claim.
Claim. Let T : ℓ∞ → ℓ∞ be a bounded linear operator with c0 ⊆ ker T. Then there is an
infinite subset A ⊆ N such that Tx = 0 whenever x is supported in A.
Proof of Claim: Suppose not. Then, for every infinite subset A ⊆ N, there is an x ∈ ℓ∞,
supported in A such that Tx ̸= 0. Choose an uncountable collection {Ai : i ∈ I} of infinite
subsets of N with pairwise finite intersections. According to our assumption, there are
xi ∈ ℓ∞ supported in Ai with Txi ̸= 0 and ∥xi∥ = 1.

Since I is uncountable, there is an n ∈ N such that

In = {i ∈ I : (Txi)(n) ̸= 0}
is uncountable (because the union of all the In’s is I). Further, there is a positive integer k
such that

In,k =

{
i ∈ I : |(Txi)(n)| ⩾

1
k

}
is uncountable (because the union of all the In,k’s is In).

Let J ⊆ In,k be finite and set

y = ∑
j∈J

sgn
(
(Txj)(n)

)
· xj.

Then,

(Ty)(n) = ∑
j∈J

sgn
(
(Txj)(n)

)
· (Txj)(n) ⩾ ∑

j∈J

1
k
=

|J|
k

.

Note that for i ̸= j, Ai ∩ Aj is finite and hence, we can write y = x + z, where x has
finite support and ∥z∥ ⩽ 1. Thus, x ∈ c0 ⊆ ker T and hence,

|J|
k

⩽ ∥Ty∥ = ∥Tx + Tz∥ = ∥Tz∥ ⩽ ∥T∥ =⇒ |J| ⩽ k∥T∥,

which is absurd, since In,k is infinite. This proves the claim. □
Coming back, suppose c0 were complemented in ℓ∞. Then, there would be a projection

operator P : ℓ∞ → c0 ⊆ ℓ∞. Set T = id − P. Since c0 ⊆ ker T, due to the claim above, there
is an infinite subset A ⊆ N, such that Tx = 0 whenever x is supported in A. Consider
χA ∈ ℓ∞, the characteristic function of the set A. But note that

P(χA) = (id − T)(χA) = χA /∈ c0,

a contradiction. This completes the proof. ■
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THEOREM 8.7 (RIESZ REPRESENTATION LEMMA). Let H be a Hilbert space. The natural
map H → H∗ given by y 7→ (·, y) is an isometric and surjective.

Proof. Obviously, the map is injective and linear. To see isometry, note that (y, y) = ∥y∥2,
whence ∥(·, , y)∥ ⩾ ∥y∥ and due to Cauchy-Schwarz,

|(x, y)| ⩽ ∥x∥∥y∥ =⇒ ∥(·, y)∥ ⩽ ∥y∥ =⇒ ∥(·, y)∥ = ∥y∥.

It remains to show surjectivity. Let Λ ̸= 0 be a continuous linear functional on H and
N = ker Λ. Since N is closed, we can write H = N ⊕ N⊥. Choose a nonzero vector z ∈ N⊥.
For any x ∈ H,

x − Λx
Λz

z ∈ ker Λ,

whence

0 =

(
x − Λx

Λz
z, z
)
= (x, z)− Λx

Λz
∥z∥2.

Thus,

Λx =

(
x,

Λz
∥z∥2 z

)
,

thereby completing the proof. ■

THEOREM 8.8. Let H be a Hilbert space and suppose f : H × H → K is sesquilinear and
bounded, that is,

M := sup {| f (x, y)| : ∥x∥ = ∥y∥ = 1} < ∞,
then there exists a unique S ∈ B(H) such that

f (x, y) = (x, Sy) ∀x, y ∈ H.

Further, ∥S∥ = M.

Proof. Fix y ∈ H and consider the mapping x 7→ f (x, y). This is a continuous linear
functional on H and hence, is given by x 7→ (x, Sy) for a unique Sy ∈ H. We claim that the
association y 7→ Sy is linear.

Indeed, if y1, y2 ∈ H, then

f (·, y1 + y2) = f (·, y1) + f (·, y2) = f (·, Sy1) + f (·, Sy2) = f (·, Sy1 + Sy2) .

Due to uniqueness of S(y1 + y2), we see that S(y1 + y2) = Sy1 + Sy2. Next, let α ∈ K and
y ∈ H. Then,

(·, S(αy)) = f (·, αy) = α f (·, y) = α(·, Sy) = (·, αSy),
whence S(αy) = αSy, i.e., S is linear.

Finally, we must show that ∥S∥ = M. Indeed, for ∥x∥ = ∥y∥ = 1:

| f (x, y)| ⩽ |(x, Sy)| ⩽ ∥x∥∥Sy∥ ⩽ ∥S∥,

whence M ⩽ ∥S∥. On the other hand, if Sy ̸= 0, then

∥Sy∥ =

(
Sy

∥Sy∥ , Sy
)
= f

(
Sy

∥Sy∥ , y
)
⩽ M

Taking supremum over ∥y∥ = 1, we have that ∥S∥ ⩽ M ⩽ ∥S∥, thereby completing the
proof. ■
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�� Adjoints

DEFINITION 8.9. Let T ∈ B(H). The map f : H × H → K given by f (x, y) = (Tx, y), is a
bounded sesquilinear form on H, whence, there is a T∗ ∈ B(H) such that

(Tx, y) = f (x, y) = (x, T∗y) ∀x, y ∈ H.

Next, note that

(x, Ty) = (y, T∗x) = (T∗x, y) = (x, T∗∗y) ∀x, y ∈ H.

Hence, T∗∗ = T. On the other hand,

∥T∗∥ = sup{|(Tx, y)| : ∥x∥ = ∥y∥ = 1} ⩽ ∥T∥.

Consequently, ∥T∥ = ∥T∗∗∥ ⩽ ∥T∗∥ ⩽ ∥T∥, whence, ∥T∗∥ = ∥T∥.
Similarly, the following identities are easy to show for S, T ∈ B(H):

(S + T)∗ = S∗ + T∗, (αS)∗ = αS∗, and (ST)∗ = T∗S∗.

Therefore,
∥Tx∥2 = (Tx, Tx) = (x, T∗Tx) ⩽ ∥T∗T∥∥x∥2 ∀x ∈ H.

Hence, ∥T∥2 ⩽ ∥T∗T∥ ⩽ ∥T∗∥∥T∥ = ∥T∥2, whence ∥T∥2 = ∥T∗T∥. This makes B(H) a
C*-algebra.

�� Compact Self-Adjoint Operators

LEMMA 8.10. Let H be a Hilbert space and T ∈ B(H) a compact self-adjoint operator.
Then

∥T∥ = sup{|⟨Tx, x⟩| : ∥x∥ = 1}.

Proof. Let B denote the quantity on the right hand side. Due to the Cauchy-Schwarz

Inequality, B ⩽ ∥T∥. Let x ̸= 0 and set λ =
√

∥Tx∥
∥x∥ .

We have

⟨Tx, Tx⟩ = 1
4

∣∣∣⟨T(λx + λ−1Tx), λx + λ−1Tx⟩ − ⟨T(λx − λ−1Tx), λx − λ−1Tx⟩
∣∣∣

⩽
1
4

∣∣∣⟨T(λx + λ−1Tx), λx + λ−1Tx⟩
∣∣∣+ 1

4

∣∣∣⟨T(λx + λ−1Tx), λx + λ−1Tx⟩
∣∣∣

⩽
B
4

(
∥λx + λ−1Tx∥2 + ∥λx − λ−1Tx∥2

)
=

B
2

(
∥λx∥2 + ∥λ−1Tx∥2

)
= B∥x∥∥Tx∥.

Thus, ∥Tx∥ ⩽ B∥x∥, whence ∥T∥ ⩽ B, thereby completing the proof. ■

LEMMA 8.11. With the notation of the preceding lemma, either ∥T∥ or −∥T∥ is an eigen-
value of T.
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Proof. Due to the preceding lemma, there is a sequence of unit vectors (xn) in H such that
|⟨Txn, xn⟩| → ∥T∥. Since T is self-adjoint,

⟨Tx, x⟩ = ⟨x, Tx⟩ = ⟨Tx, x⟩,

and hence, ⟨Tx, x⟩ ∈ R. Therefore, moving to a subsequence, we may suppose that
⟨Txn, xn⟩ → λ ∈ {±∥T∥}. Further, since T is compact, we may replace (xn) with a
subsequence such that Txn → λy for some y ∈ H.

We contend that xn → y. First, note that

|⟨Txn, xn⟩| ⩽ ∥Txn∥∥xn∥ = ∥Txn∥ ⩽ ∥T∥ = |λ|.

By our choice of the sequence (xn), |⟨Txn, xn⟩| → |λ| and hence, ∥Txn∥ → |λ|. Next,

∥λxn − Txn∥2 = ⟨λxn − Txn, λxn − Txn⟩
= λ2 + ∥Txn∥2 − ⟨λxn, Txn⟩ − ⟨Txn, λxn⟩
= λ2 + ∥Txn∥2 − 2λ⟨Txn, xn⟩

which goes to 0 as n → ∞. Hence, ∥λxn − Txn∥ → 0 as n → ∞, consequently, xn → y,
thereby completing the proof. ■

§9 BANACH ALGEBRAS

DEFINITION 9.1. A Banach algebra is a C-algebra A equipped with a norm ∥ · ∥ : A → [0, ∞)
with respect to which it is a Banach space and

∥xy∥ ⩽ ∥x∥∥y∥ ∀x, y ∈ A.

The Banach algebra is said to be unital if it possesses a multiplicative identity.
An involution on an algebra A is a map

A → A x 7→ x∗

of order 2 that satisfies

(x + y)∗ = x∗ + y∗ (λx)∗ = λx∗ (xy)∗ = y∗x∗.

An algebra equipped with such an involution is called a ∗-algebra. A Banach ∗-algebra that
satisfies

∥x∗x∥ = ∥x∥2 ∀x ∈ A
is called a C∗-algebra.

REMARK 9.2. If A is a C∗-algebra, for x ̸= 0, we have

∥x∥2 = ∥x∗x∥ ⩽ ∥x∗∥∥x∥ =⇒ ∥x∥ ⩽ ∥x∗∥ ⩽ ∥x∗∗∥ = ∥x∥,

whence ∥x∥ = ∥x∗∥. That is, the involution is an isometry.
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DEFINITION 9.3. If A and B are Banach algebras, a homomorphism is a bounded linear map
ϕ : A → B such that ϕ(xy) = ϕ(x)ϕ(y) for all x, y ∈ A.

Further, if A and B are Banach ∗-algebras, a ∗-homomorphism is a homomorphism of
Banach algebras ϕ : A → B such that ϕ(x∗) = ϕ(x)∗ for all x ∈ A.

THEOREM 9.4. Let A be a unital Banach algebra.

(a) If |λ| > ∥x∥, then λ − x is invertible in A.

(b) If x is invertible, and ∥y∥ < ∥x−1∥−1, then x − y is invertible with inverse

(x − y)−1 = ∑
n⩾0

(x−1y)nx−1.

(c) If x is invertible and ∥y∥ < 1
2∥x−1∥−1, then

∥(x − y)−1 − x−1∥ < 2∥x−1∥2∥y∥.

(d) A× ⊆ A is open and x 7→ x−1 on A× is continuous.

Proof. (a) We have

(λ − x)−1 = λ−1
(

e − λ−1x
)−1

= ∑
n⩾0

λ−(n+1)x−n,

which converges because things are Cauchy and all the good stuff.

(b) Again, we can write

(x − y)−1 =
(

x(e − x−1y)
)−1

= (e − x−1y)−1x−1 = ∑
n⩾0

(x−1y)x−1.

(c) Using the above expansion, we can write

∥(x − y)−1 − x−1∥ ⩽ ∑
n⩾0

∥x−1∥n+2∥y∥n+1 < 2∥x−1∥2∥y∥.

(d) Due to part (b), A× is open in A and due to part (c), x 7→ x−1 is continuous.
■

DEFINITION 9.5. Let A be a unital Banach algebra and x ∈ A. The spectrum of x is

σ(x) = {λ ∈ C : λe − x is not invertible} .

For λ /∈ σ(x), define the resolvent of x as

Rx(λ) = (λe − x)−1 : C \ σ(x) → A.
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PROPOSITION 9.6. For any x ∈ A, σ(x) is a compact subset of C that is contained in the
disk {λ ∈ C : |λ| ⩽ ∥x∥}.

Proof. Obviously, if |λ| > ∥x∥, then λe − x is invertible. Thus, σ(x) is contained in the
above disk. Consider the map λ 7→ λe − x, which is continuous and hence, the preimage
of A× is open in C. As a result, σ(x) is closed, thereby completing the proof. ■

PROPOSITION 9.7. Rx is an analytic function. And, Rx(λ) → 0 as λ → ∞.

Proof. We have

Rx(µ)− Rx(λ) = (µe − x)−1 − (λe − x)−1

= Rx(µ) ((λe − x)− (µe − x)) Rx(λ).

Hence,
Rx(µ)− Rx(λ)

µ − λ
= −Rx(µ)Rx(λ).

In the limit µ → λ, we get
R′

x(λ) = −Rx(λ)
2.

As for the second part, simply note that for |λ| > ∥x∥,

∥Rx(λ)∥ =

∥∥∥∥∥∑
n⩾0

λ−(n+1)xn

∥∥∥∥∥ ⩽ |λ|−1 ∑
n⩾0

|λ|−n∥x∥n =
1

|λ| − ∥x∥ ,

which goes to 0 as λ → ∞, thereby completing the proof. ■

THEOREM 9.8 (GELFAND-MAZUR). Let A be a unital Banach algebra σ(x) ̸= ∅ for every
x ∈ A.

Proof. Suppose σ(x) = ∅ for some x ∈ A. Then, Rx : C → A is an analytic function. For
any Λ ∈ A∗, Λ ◦ Rx is an entire function and is bounded, since

lim
λ→∞

Λ(Rx(λ)) = Λ
(

lim
λ→∞

Rx(λ)

)
= 0.

Due to Liouville’s Theorem, Λ ◦ Rx must be constant on C and equal to 0. Since this is true
for every Λ ∈ A∗, we see that R(λ) = 0 for every λ ∈ C, which is absurd. This completes
the proof. ■

COROLLARY. If A is a unital Banach algebra in which every nonzero element is invertible,
then A = Ce.

Proof. Suppose x ∈ A \ Ce, then λe − x ̸= 0 for every λ ∈ C, whence, λe − x is invertible
for every λ ∈ C, a contradiction. ■

DEFINITION 9.9. Let A be a unital Banach algebra. For x ∈ A, the spectral radius of x is
defined to be

ρ(x) := sup {|λ| : λ ∈ σ(x)} .
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We have the obvious inequality ρ(x) ⩽ ∥x∥.

THEOREM 9.10 (SPECTRAL RADIUS FORMULA). Let A be a unital Banach algebra and
x ∈ A. Then,

ρ(x) = lim
n→∞

∥xn∥1/n.

Proof. If λ ∈ σ(x), then

λne − xn = (λe − x)
(

λn−1e + · · ·+ xn−1
)

.

Consequently, λne − xn cannot be invertible. Hence, |λ|n ⩽ ∥xn∥. In particular, this gives

ρ(x) ⩽ lim inf
n→∞

∥xn∥1/n.

Next, for |λ| > ∥x∥, we have a Laurent series about infinity:

Λ ◦ Rx(λ) = ∑
n⩾0

λ−(n+1)Λ(xn).

Note that Λ ◦ Rx is analytic on |λ| > ρ(x) and hence, the above Laurent series must be
valid there too.

Hence, for any |λ| > ρ(x), there is a constant CΛ > 0 such that

|Λ(λ−nxn)| = |λ−nΛ(xn)| ⩽ CΛ ∀n ∈ N.

This holds for all Λ ∈ A∗. Thus, the sequence (λ−nxn) is bounded, that is, there is a C > 0
such that ∥xn∥ ⩽ C|λ|n. Hence,

lim sup
n→∞

∥xn∥1/n ⩽ lim sup
n→∞

C1/n|λ| = |λ|.

Taking infimum over λ, we get

lim sup
n→∞

∥xn∥1/n ⩽ ρ(x) ⩽ lim inf
n→∞

∥xn∥1/n,

thereby completing the proof. ■

DEFINITION 9.11. Let A be a unital Banach algebra. A multiplicative functional on A is a
nonzero homomorhpism h : A → C. The set of all multiplicative functionals on A is called
the spectrum of A and is denoted by σ(A).

PROPOSITION 9.12. Let A be a unital Banach algebra and suppose h ∈ σ(A).

(a) h(e) = 1.

(b) If x ∈ A×, then h(x) ̸= 0.

(c) |h(x)| ⩽ ρ(x) ⩽ ∥x∥ for all x ∈ A. That is, ∥h∥ ⩽ 1.
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Proof. (a) Since h ̸= 0, there is an x ∈ A such that h(x) ̸= 0. Then,

h(x) = h(xe) = h(x)h(e) =⇒ h(e) = 1.

(b) Obviously,
1 = h(e) = h(x−1x) = h(x−1)h(x) =⇒ h(x) ̸= 0.

(c) Suppose |λ| > ρ(x). Then, λe − x ∈ A×, consequently,

0 ̸= h(λe − x) = λ − h(x) =⇒ h(x) ̸= λ.

Since this holds for all |λ| > ρ(x), we have |h(x)| ⩽ ρ(x) ⩽ ∥x∥. ■

As a consequence, σ(A) is contained in the closed unit ball of A∗. Equip the latter
with the weak*-topology. Using nets, it is easy to see that σ(A) is closed in A∗. Due to
Banach-Alaoglu, the closed unit ball of A∗ is weak*-compact and hence, so is σ(A) with
the subspace topology from the weak*-topology on A∗. Thus, σ(A) is a compact Hausdorff
space.

PROPOSITION 9.13. Let A be a commutative unital Banach algebra and J ⊊ A be a
proper ideal.

(a) J ⊆ A \A×

(b) J is a proper ideal.

(c) J is contained in a maximal ideal.

(d) Every maximal ideal is closed.

Proof. The first assertion is obvious. As for the second, note that A \ A× is closed and
hence, J ⊆ A \A×. Consequently, J ̸= A. To see that it is an ideal, suppose x ∈ J and
a ∈ A. Then, there is a sequence (xn) converging to x. Consequently, (axn) converges to
ax. But each axn ∈ J and hence, ax ∈ J . This proves (b).

The third assertion is a standard application of Zorn’s lemma. As for (d), if M is a
maximal ideal, then M ⊆ M ⊊ A due to (b). The maximality of M forces M = M,
thereby completing the proof. ■

THEOREM 9.14. Let A be a commutative unital Banach algebra. Then, the map h 7→ ker h
is a bijective correspondence between σ(A) and the set of all maximal ideals in A.

Proof. The map is obviously an injection. We establish surjectivity. Let M be a maximal
ideal in A and consider the quotient algebra A/M equipped with the norm:

∥x +M∥ = inf {∥x + y∥ : y ∈ M} .

This is again a commutative unital Banach algebra in which every non-zero element is
invertible (standard fact from ring theory). Due to Gelfand-Mazur, A/M ∼= C(e +M).
The composition

A −→ A/M ∼= C(e +M) ∼= C

is the required linear functional, thereby proving surjectivity. ■
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DEFINITION 9.15. Let A be a commutative unital Banach algebra. For each x ∈ A, there is
a continuous function x̂ : σ(A) → C given by h 7→ h(x). This gives a map

ΓA : A → C(σ(A)) x 7→ x̂,

known as the Gelfand transform on A.

PROPOSITION 9.16. Let A be a commutative unital Banach algebra and x ∈ A.

(a) The Γ : A → C(σ(A)) is a homomorphism, and ê is the constant function 1.

(b) x is invertible if and only if x̂ never vanishes.

(c) The range of x̂ : σ(A) → C is precisely σ(x).

(d) ∥x̂∥sup = ρ(x) ⩽ ∥x∥.

Proof. (a) Obvious.

(b) If x is invertible, then due to (a), so is x̂, whence it never vanishes. On the other hand,
if x is not invertible, then it is contained in some maximal ideal M, whence, there is
an h ∈ σ(A) that vanishes on x. Thus, x̂(h) = 0, that is, x̂ vanishes somewhere.

(c) Next, suppose λ = x̂(h) = h(x). Then, h(λe − x) = 0, hence, λe − x is not invertible,
i.e. λ ∈ σ(x). Similarly, if λ ∈ σ(x), then λe − x is not invertible and hence, x̂
vanishes somewhere, consequently, h(λe − x) = 0 for some h ∈ σ(A). This shows
that λ is in the range of x̂.

(d) Follows from (c). ■

DEFINITION 9.17. Let A be a commutative unital Banach ∗-algebra. If Γ : A → C(σ(A))
is a ∗-homomorphism, then A is said to be symmetric.

REMARK 9.18. Note that A being symmetric is the same as saying

x̂∗ = x̂ ∀x ∈ A.

PROPOSITION 9.19. Let A be a commutative Banach ∗-algebra.

(a) A is symmetric if and only if x̂ is real-valued whenever x = x∗.

(b) Every C*-algebra is symmetric.

(c) If A is symmetric, Γ(A) is dense in C(σ(A)).

Proof. (a) If A is symmetric and x∗ = x, then x̂ = x̂∗ = x̂, whence x̂ is real-valued. Next,
we prove the converse. For any x ∈ A, write

x =
x + x∗

2︸ ︷︷ ︸
y

+
x − x∗

2︸ ︷︷ ︸
z

.

Note that y∗ = y and z + z∗ = 0. Our hypothesis implies ŷ is real-valued and
ẑ + ẑ = 0. Thus,

x̂∗ = ŷ∗ + ẑ∗ = ŷ − ẑ = ŷ + ẑ = x̂.
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(b) Let x ∈ A be such that x∗ = x. Suppose h(x) = α + iβ. We shall show that β = 0.
Indeed, for t ∈ R, let z = x + ite. Then,

z∗z = (x − ite)(x + ite) = x2 + t2e.

And hence,

|α + (β + t)i|2 = |h(z)|2 ⩽ ∥z∥2 = ∥z∗z∥ = ∥x2 + t2e∥ ⩽ ∥x∥2 + t2.

That is,
α2 + 2βt + β2 ⩽ ∥x∥2 ∀t ∈ R.

Thus, β = 0 and due to (a), A is symmetric.

(c) Note that Γ(A) contains all the constant functions and thus, the family Γ(A) does
not vanish at any point. Next, by definition, Γ(A) separates points. Further, since Γ
is a ∗-homomorophism, Γ(A) is closed under taking conjugates. Thus, Γ(A) is dense
in C(σ(A)) due to the Stone-Weierstrass Theorem. ■

PROPOSITION 9.20. Let A be a commutative unital Banach algebra.

(a) If x ∈ A, then ∥x̂∥sup = ∥x∥ if and only if ∥x2k∥ = ∥x∥2k
for all k ⩾ 1.

(b) Γ : A → C(σ(A)) is an isometry if and only if ∥x2∥ = ∥x∥2 for all x ∈ A.

Proof. (a) This follows immediately from the spectral radius formula.

∥x̂∥sup = ρ(x) = lim
k→∞

∥x2k∥1/2k
= lim

k→∞
∥x∥2k·2−k

= ∥x∥.

(b) We have
∥x2k∥ = ∥x2k−1∥2 = · · · = ∥x∥2k

. ■

THEOREM 9.21 (GELFAND-NAIMARK). If A is a commutative unital C*-algebra, then
Γ : A → C(σ(A)) is an isometric ∗-isomorphism.

Proof. That Γ is a ∗-homomorphism has already been established. We first show that Γ is
an isometry. Let x ∈ A and set y = x∗x. Then, y∗ = y, so

∥y2k∥ =
∥∥∥(y2k−1

)∗
y2k−1

∥∥∥ = ∥y2k−1∥2 = · · · = ∥y∥2k
.

Due to part (a) of the preceding result, ∥ŷ∥sup = ∥y∥. But ŷ = x̂x̂ = |x̂|2. Hence,

∥x̂∥2
sup = ∥ŷ∥sup = ∥y∥ = ∥x∥2 =⇒ ∥x̂∥sup = ∥x∥,

whence, due to part (b) of the preceding result, Γ is an isometry. Thus, its image is closed
in C(σ(A)). But we already argued that Γ(A) is dense in C(σ(A)) and hence, Γ must be
surjective. This completes the proof. ■
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§10 DISTRIBUTIONS

�� The topology on DK

Let Ω ⊆ Rn be an open set. We begin by topologizing C∞(Ω). Fix an exhaustion {Ki} of
Ω by compact sets. That is,

• Ω =
∞⋃

i=1

Ki, and

• Ki ⊆ K◦
i+1 for all i ⩾ 1.

Define the seminorms pN : C∞(Ω) → R given by

pN(ϕ) = sup {|∂αϕ(x)| : x ∈ KN, |α| ⩽ N} .

That this is a separating family of seminorms is obvious, and since this is a countable
family, the induced locally convex vector topology on C∞(Ω) is metrizable.

It is easy to see that the “evaluation functionals” on C∞(Ω) equipped with this topology
are continuous, therefore,

DK :=
⋂

x∈Ω\K

ker evx

is closed in C∞(Ω). It is easy to see that a (countable) local base at 0 is given by the sets

VN =

{
f ∈ C∞(Ω) : pN( f ) <

1
N

}
for N ⩾ 1. Further, in this topology C∞(Ω) is a Fréchet space1 and since DK is closed, it
to is a Fréchet space. It can also be showed that C∞(Ω) has the Heine-Borel property and
hence, the same conclusion holds for DK.

�� Distributions

Let Ω ⊆ Rn be an open set. Define

D(Ω) =
⋃

K⋐Ω

DK.

Introduce the seminorms ∥ · ∥N : D(Ω) → R given by

∥ϕ∥N = max {|∂αϕ(x)| : x ∈ Ω, |α| ⩽ N} ,

for ϕ ∈ D(Ω) and N ⩾ 0. The restrictions of these seminorms to DK are still seminorms.
We claim that they induce the same topology as the canoical topology of DK discussed
in the preceding (sub)section. First, there is a positive integer N0 such that K ⊆ KN for
all N ⩾ N0. For these N, ∥ϕ∥N = pN(ϕ) if ϕ ∈ DK. Further, since ∥ϕ∥N ⩽ ∥ϕ∥N+1, the

1I might add in the details to this some day.
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topologies induced by either sequence of seminorms are unchanged if we let N start at N0
instead of 1. Thus, the two topologies coincide and a local base is given by sets of the form

VN =

{
ϕ ∈ DK : ∥ϕ∥N <

1
N

}
.

In particular, DK is still a Fréchet space having the Heine-Borel property.

DEFINITION 10.1. Let Ω ⊆ Rn be a nonempty open set.

(a) For every compact K ⋐ Ω, let τK denote the standard Fréchet space topology of DK.

(b) Let β denote the collection of all convex balanced sets W ⊆ D(Ω) such that DK ∩W ∈
τK for every K ⋐ Ω.

(c) τ is the collection of all unions of sets of the form ϕ + W, with ϕ ∈ D(Ω) and W ∈ β.

THEOREM 10.2. (a) τ is a topology on D(Ω), and β is a local base for τ.

(b) τ makes D(Ω) into a locally convex topological vector space.

Proof. (a) Let V1, V2 ∈ τ. We shall show that for all ϕ ∈ V1 ∩ V2, there is some W ∈ β
such that ϕ + W ⊆ V1 ∩ V2. Since each Vi is open, there is some Wi ∈ β such that
ϕ ∈ ϕi + Wi ⊆. Let K ⋐ Ω such that ϕ, ϕ1, ϕ2 ∈ DK. Since each DK ∩ Wi is open
in DK, Wi is convex and balanced, and ϕ − ϕi ∈ DK ∩ Wi. Since the Minkowski
functional on DK corresponding to DK ∩ Wi is continuous, there is a 0 < δi < 1 such
that ϕ − ϕi ∈ (1 − δi)Wi. Hence,

ϕ − ϕi + δiWi ⊆ (1 − δi) ⊆ Wi =⇒ ϕ + δiWi ⊆ ϕi + Wi ⊆ Vi,

whence ϕ + (δ1W1) ∩ (δ2W2) ⊆ V1 ∩ V2. Since δ1W1 ∩ δ2W2 ∈ β, the conclusion
follows.

(b) Since β consists of convex sets, it suffices to show that τ makes D(Ω) a topological
vector space. First, we must show that the space is T1. Let ϕ1 ̸= ϕ2 ∈ D(Ω), and set

W = {ϕ ∈ D(Ω) : ∥ϕ∥0 < ∥ϕ1 − ϕ2∥0},

where ∥ · ∥0 is precisely the sup-norm on Ω. By definition, it is easy to see that W ∈ β
and ϕ1 /∈ ϕ2 + W, consequently, {ϕ1} is closed.

To see that addition is continuous, let (ϕ1, ϕ2) 7→ ϕ1 +ϕ2 and V an open set containing
ϕ1 + ϕ2. Since β forms a local base for the topology, we can find some W ∈ β such
that (ϕ1 + ϕ2) + W ⊆ V, and(

ϕ1 +
1
2

W
)
+

(
ϕ2 +

1
2

W
)
⊆ (ϕ1 + ϕ2) + W ⊆ V.

Thus, addition is continuous.
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Finally, we must show that scalar multiplication is continuous. Let α0 ∈ K and
ϕ0 ∈ D(Ω). Then,

αϕ − α0ϕ0 = α(ϕ − ϕ0) + (α − α0)ϕ0.

Let V be an open set containing α0ϕ0, and choose a W ∈ β such that α0ϕ0 + W ⊆ V.
There is a δ > 0 such that δϕ0 ∈ 1

2W. Next, choose c > 0 such that 2c(|α0|+ δ) = 1.
For |α − α0| < δ and ϕ − ϕ0 ∈ cW, we have

αϕ − α0ϕ0 ∈ |α|cW +
1
2

W ⊆ c(|α0|+ δ)W +
1
2

W ⊆ W,

as desired. This completes the proof. ■

THEOREM 10.3. (a) A convex balanced subset V of D(Ω) is open if and only if V ∈ β.

(b) The topology τK of any DK ⊆ D(Ω) coincides with the subspace topology that DK
inherits from D(Ω).

(c) If E is a bounded subset of D(Ω), then E ⊆ DK for some K ⊆ Ω and there are real
numbers 0 < MN < ∞ such that every ϕ ∈ E satisfies the inequalities ∥ϕ∥N ⩽ MN
for N ⩾ 0.

(d) D(Ω) has the Heine-Borel property, that is, closed and bounded sets are compact.

(e) If {ϕi} is a Cauchy sequence in D(Ω), then {ϕi} ⊆ DK for some compact K ⊆ Ω, and

lim
(i,j)→∞

∥ϕi − ϕj∥N = 0

for all N ⩾ 0.

(f) If ϕi → 0 in the topology of D(Ω), then there is a compact set K ⊆ Ω which contains
the support of every ϕi and ∂αϕi → 0 uniformly as i → ∞, for every multi-index α.

(g) D(Ω) is a Fréchet space.

Proof. Let V ∈ τ and ϕ ∈ DK ∩ V. Since β form a local base, there is a W ∈ β such that
ϕ + W ⊆ V. Hence,

ϕ + (DK ∩ W) ⊆ DK ∩ V.

Since DK ∩ W is open in DK, we have that DK ∩ V ∈ τK.

(a) Now, let V be a convex balanced subset of D(Ω). If V is open, then due to our
observation above, V ∈ β. The converse direction is trivial since β ⊆ τ.

(b) The above remark shows that the induced topology on DK is coarser than τK. Con-
versely, suppose E ∈ τK. We have to show that E = DK ∩ V for some V|inτ. By
definition, for every ϕ ∈ E, there is a positive integer N and δ > 0 such that

{ψ ∈ DK : ∥ψ − ϕ∥N < δ} ⊆ E.
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Set Wϕ = {ψ ∈ D(Ω) : ∥ψ∥N < δ} ∈ β, so that

DK ∩ (ϕ + Wϕ) = ϕ +DK ∩ Wϕ ⊆ E.

Since Wϕ ∈ β for every ϕ ∈ E, we see that V :=
⋃

ϕ∈E
(ϕ + Wϕ) is an element of τ and

V ∩ E = E, as desired.

(c) Suppose E does not lies in any DK. Using an exhaustion of Ω, we can find a sequence
of functions ϕm ∈ E and distinct points xm ∈ Ω with no limit point in Ω such that
ϕm(xm) ̸= 0. Let W be the set of all ϕ ∈ D(Ω) which satisfy

|ϕ(xm)| <
1
m
|ϕm(xm)| ∀ m ⩾ 1.

Note that

W ∩DK =
⋂

xm∈W∩DK

{
ϕ ∈ DK : |ϕ(xm)| <

1
m
|ϕm(xm)|

}
,

which is a finite intersection since only finitely many of the xm’s can be contained
in K (as they do not admit a limit point in Ω). Thus, W ∩DK is open, owing to the
continuity of the “evaluation functionals” on DK; hence W ∈ β. Since ϕm /∈ mW, no
multiple of W contains E, which shows that E is not bounded. Hence, every bounded
E lies in some DK. Being a bounded subset of DK, every seminorm on DK is bounded
on E, whence the last assertion of (c) follows.

(d) This follows immediately from the above parts, since every bounded set is contained
in some DK, whose subspace topology is same as the canonical topology, in which it
has the Heine-Borel property.

(e) Every Cauchy sequence is bounded and hence, is contained in some DK, which
has its canonical topology induced by the seminorms ∥ · ∥N, whence the conclusion
follows.

(f) This follows immediately from (e).

(g) Finally, we have shown that any Cauchy sequence in D(Ω) lies in DK, which is
Fréchet, whence it must converge. This completes the proof. ■

THEOREM 10.4. Let Λ be a linear map from D(Ω) to a locally convex space Y. Then the
following are equivalent:

(a) Λ is continuous.

(b) Λ is bounded.

(c) If ϕi → 0 in D(Ω), then Λϕi → 0 in Y.

(d) The restriction of Λ to every DK ⊆ D(Ω) are continuous.
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Proof. (a) =⇒ (b) is well known. Next, if ϕi → 0 in D(Ω), then it is contained in some DK
for a compact K ⋐ Ω. Since the restriction of Λ to DK is continuous and it is a metrizable
topological vector space, Λϕi → 0 in Y, thereby proving (b) =⇒ (c).

To see (c) =⇒ (d), it suffices to show that the restriction of Λ to each DK is sequentially
continuous. If ϕi → 0 in DK and since the topology of DK is the subspace topology, we
see that ϕi → 0 in D(Ω) and according to our assumption, Λϕi → 0 in Y, which proves
sequential continuity.

Finally, let U be a convex balanced neighborhood of 0 in Y. It suffices to show that
V = Λ−1U is open. Note that V is a convex balanced subset of D(Ω) containing 0. Due to
Theorem 10.3 (a), V is open in D(Ω) if and only if V ∩DK is open in DK for every compact
K ⋐ Ω. But this is precisely the content of (d), thereby completing the proof. ■

DEFINITION 10.5. A linear functional on D(Ω) continuous with respect to the topology τ
is called a distribution.

THEOREM 10.6. If Λ is a linear functional on D(Ω), the following are equivalent:

(a) Λ ∈ D ′(Ω).

(b) To every compact K ⋐ Ω, corresponds a nonnegative integer N and a constant C < ∞
such that

|Λϕ| ⩽ C∥ϕ∥N ∀ ϕ ∈ DK.

Proof. If Λ ∈ D ′(Ω), then the restriction of Λ to every DK is continuous and so is bounded
on some neighborhood of the origin, containing an open neighborhood of the form

{ϕ ∈ DK : ∥ϕ∥N <
1
N
},

whence (b) follows.
Conversely, suppose (b) holds. Then, as argued above, the restriction of Λ to every DK

is continuous, and due to the preceding theorem, Λ is continuous. ■

EXAMPLE 10.7. There are some canonical examples of distributions. If f ∈ L1
loc(Ω), then

the map Λ f : D(Ω) → R given by

Λ f (ϕ) =
∫

Ω
f (x)ϕ(x) dx ∀ ϕ ∈ D(Ω).

If K = Supp ϕ, then
|Λ f (ϕ)| ⩽ ∥ f ∥L1(K)∥ϕ∥0,

and hence Λ f is a distribution of order 0.

EXAMPLE 10.8 (DIRAC DISTRIBUTION). The map Λ : D(Ω) → R defined by ϕ 7→ ϕ(0)
is a distribution of order 0, since

|Λ(ϕ)| ⩽ ∥ϕ∥0.

This is known as the Dirac distribution.
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DEFINITION 10.9. Let Λ ∈ D ′(Ω) be a distribution and α a multi-index. Define ∂αΛ ∈
D ′(Ω) by

(∂αΛ) (ϕ) = (−1)|α|Λ (∂αϕ) .

We show that this is indeed a distribution. Let K ⋐ Ω be a compact set. Then there is
an integer N and C > 0 such that

|Λ(ϕ)| ⩽ C∥ϕ∥N ∀ ϕ ∈ DK.

Then,
|(∂αΛ)(ϕ)| ⩽ C∥∂αϕ∥N ⩽ C∥ϕ∥N+|α| ∀ ϕ ∈ DK,

as desired.
We further note that the formula

∂α∂βΛ = ∂α+βΛ = ∂β∂αΛ

holds for every distribution Λ ∈ D ′(Ω). This is quite straightforward, since(
∂α∂βΛ

)
(ϕ) = (−1)|α|∂βΛ (∂αϕ) = (−1)|α|+|β|Λ

(
∂α+βϕ

)
=
(

∂α+βΛ
)
(ϕ),

as desired.

DEFINITION 10.10. Let Λ ∈ D ′(Ω) be a distribution and f ∈ C∞(Ω). Define f Λ ∈ D ′(Ω)
as

( f Λ)(ϕ) = Λ ( f ϕ) ∀ ϕ ∈ DK.

We contend that this is indeed a distribution. For any multi-index α, we have

∂α ( f ϕ) = ∑
β+γ=α
β,γ⩾0

α!
β!γ!

(∂β f )(∂γϕ).

If K ⋐ Ω is a compact set, then there is a positive integer N and a constant C > 0 such
that |Λ( f )| ⩽ C∥ϕ∥N for all ϕ ∈ DK. Define

C′ = sup
{
|∂β f (x)| : x ∈ K, |β| ⩽ N

}
.

Then, for any x ∈ K, and |α| ⩽ N, we have

|∂α( f ϕ)(x)| ⩽ ∑
β+γ=α
β,γ⩾0

α!
β!γ!

C′|∂γϕ(x)| ⩽

 ∑
β+γ=α
β,γ⩾0

α!
β!γ!

C′

 ∥ϕ∥N

As α ranges over all multi-indices of absolute value at most N, we can take supremum of
the left hand side to obtain

∥ f ϕ∥N ⩽ C′′∥ϕ∥N,

where C′′ is a constant independent of ϕ. Therefore,

( f Λ)(ϕ) = Λ( f ϕ) ⩽ C∥ f ϕ∥N ⩽ CC′′∥ϕ∥N,

and hence, f Λ is a distribution.
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THEOREM 10.11 (COUNTABLE PARTITION OF UNITY). If Γ is a c ollection of open sets in
Rn whose union is Ω, then there exists a sequence {ψi} of elements in D(Ω), with ψi ⩾ 0,
such that

(a) each ψi is supported in some member of Γ,

(b) ∑
i

ψi(x) = 1 for every x ∈ Ω,

(c) to every compact K ⋐ Ω, there is an integer m and an open set W ⊇ K such that

ψ1(x) + · · ·+ ψm(x) = 1 ∀ x ∈ W.

Such a collection {ψi} is called a locally finite partition of unity in Ω subordinate to the open
cover Γ.

DEFINITION 10.12. Suppose Λ ∈ D ′(Ω). If ω ⊂ Ω is an open set and if Λϕ = 0 for every
ϕ ∈ D(Ω), we say that Λ vanishes in ω. Let W be the union of all open ω ⊆ Ω in which Λ
vanishes. The set Ω \ W is the support of Λ.

THEOREM 10.13. If W is as above, then Λ vanishes in W.

Proof. Let Γ be the collection of all ω as in the above definition. Let {ψi} be a locally finite
partition of unity in W, subordinate to Γ. If ϕ ∈ D(W), then since ϕ has compact support
contained in W, all but finitely many ψi vanish on the support of ϕ, in particular, we can
write

ϕ = ∑
i

ψiϕ,

where the sum on the right is essentially finite. Thus, we can write

Λ(ϕ) = ∑
i

Λ(ψiϕ),

but the support of each ψi is contained in some ω on which Λ vanishes. Consequently, the
sum on the right is identically 0, as desired. ■

THEOREM 10.14. Let Λ ∈ D ′(Ω) and SΛ be the support of Λ.

(a) If the support of ϕ ∈ D(Ω) is disjoint from SΛ, then Λϕ = 0.

(b) If SΛ is empty, then Λ = 0.

(c) If ψ ∈ C∞(Ω) and ψ = 1 on some open set V containing SΛ, then ϕΛ = Λ.

(d) If SΛ is a compact subset of Ω, then Λ has finite order. In fact, there is a constant
C < ∞ and a nonnegative integer N such that |Λϕ| ⩽ C∥ϕ∥N for every ϕ ∈ D(Ω).
Further, Λ extends in a unique way to a continuous linear functional on C∞(Ω).

Proof. (a) This is just a restatement of the preceding result.

(b) Again, this is an immediate consequence of either the preceding result or (a).
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(c) Let ψ ∈ D(Ω). Consider the function ϕ − ψϕ. This vanishes on V, an open set
containing SΛ, and hence, the support of ϕ − ψϕ is disjoint from SΛ. Due to (a), we
must have

Λ (ϕ − ψϕ) = 0 =⇒ Λϕ = Λ(ψϕ) = (ψΛ)(ϕ),

as desired.

(d) In light of Theorem 10.11 (d) with Γ = {Ω}, there is a ψ ∈ D(Ω) which is identically
1 on an open set V containing SΛ. Due to (c), we have ψΛ = Λ. Let K denote the
support of ψ. Then, there is a positive integer N and a constant C > 0 such that
|Λϕ| ⩽ C∥ϕ∥N for all ϕ ∈ DK. Consequently, for any ϕ ∈ D(Ω), we can write

|Λϕ| = |Λ(ψϕ)| ⩽ C∥ψϕ∥N ⩽ CC′∥ϕ∥N,

where the last inequality has been argued earlier while showing that the differen-
tiation of a distribution gives a distribution. It follows that Λ is a distribution of
finite order and that the constant CC′ is independent of the choice of compact set
containing the support of ϕ.

Finally, we must show that there is a unique extension of Λ to C∞(Ω). For each
f ∈ C∞(Ω), define

Λ f = Λ(ψ f ).

This is obviously an extension of Λ defined on D(Ω). We must show that this is
continuous. Indeed, recall that K is the support of ψ and choose an exhaustion
K0 ⊂ K1 ⊂ · · · of Ω. Choose a positive integer M sufficiently large so that M ⩾ N
and K ⊆ KM. Further, using an analogous argument as before, there is a constant C̃
such that ρM(ψ f ) ⩽ C̃ρM( f ). Indeed, for |α| ⩽ M and x ∈ KM, we have

|∂α( f ψ)(x)| =

∣∣∣∣∣∣∣∣ ∑
β+γ=α
β,γ⩾0

α!
β!γ!

∂βψ(x)∂γ f (x)

∣∣∣∣∣∣∣∣ ⩽ C̃ρM( f ).

It follows that Λ is a continuous linear functional on C∞(Ω). It remains to show
that D(Ω) is dense in C∞(Ω), whence it would follow that the extension is unique.
Indeed, for any f ∈ C∞(Ω) and positive integer n, we can find ψn ∈ D(Ω) such that
ψn = 1 on Kn. Then, f − ψn f = 0 on Km for all m ⩽ n. In particular, this means
that pm( f − ψn f ) → 0 as n → ∞, consequently, ψn f → f in C∞(Ω), as desired. This
completes the proof. ■
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