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§1 PROJECTIVE MODULES

DEFINITION 1.1. An A-module M is said to be projective if the functor HomA(M,−) :ModA →ModA
is exact.

§§ Kaplansky’s Theorem

THEOREM 1.2. Let (A,m,k) be a local ring. If M is a projective A-module, then M is free.

We begin by proving two lemmas.

LEMMA 1.3. Let R be any (commutative) ring, and F an A-module which is a direct sum of countably
generated submodules. If M is a direct summand of F, then M is also a direct sum of countably
generated submodules.

Proof. Let F = M⊕N and F = ⊕
λ∈Λ

Eλ where each Eλ is a countably generated R-submodule of F. Our

first order of business will be to construct, using transfinite induction, a sequence of submodules
(Fα)α∈Ord of F such that

(i) if α<β, then Fα ⊆ Fβ.

(ii) F =⋃
α

Fα.
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(iii) if α is a limit ordinal, then Fα = ⋃
β<α

Fβ.

(iv) Fα+1/Fα is countably generated.

(v) Fα = Mα⊕Nα, where Mα = Fα∩M and Nα = Fα∩N.

(vi) each Fα is a direct sum of a suitable subset of {Eλ : λ ∈Λ}.

Begin by setting F0 = 0. Suppose for an ordinal α> 0, Fβ has been defined for all ordinals β<α. If α
is a limit ordinal then set

Fα = ⋃
β<α

Fβ.

We must show that Fα satisfies the aforementioned conditions. Clearly (i) and (iii) are satisfied; and
further since each Fβ is a direct sum of a subset of {Eλ : λ ∈Λ}, it would follow that so is Fα, thereby
verifying (vi). To verify (v), it suffices to show that Fα = Mα+Nα, but this is clear since any element of
Fα is also an element of Fβ for some β<α.

Next, suppose α is not a limit ordinal so that α= β+1 for some ordinal β. This construction is
a bit involved. First, if Fβ = F, then the construction stops at β. Suppose now that Fβ⊊ F. Let Q1
be any one of the Eλ not contained in Fβ. Take a countable set of generators x11, x12, . . . of Q1. Since
F = M⊕N, we can write

x11 = m11 +n11 for m11 ∈ M and n11 ∈ N.

Further, using the decomposition F = ⊕
λ∈Λ

Eλ, we can write

m11 =
∑
λ∈Λ
finite

mλ
11 and n11 =

∑
λ∈Λ
finite

nλ11.

Now let Q2 be the sum of those Eλ’s for which λ occurs in the two expressions above. Since Q2 is a
finite direct sum of some Eλ’s, it is countably generated. Let x21, x22, . . . be a countable generating set
of Q2. Just as before, we can (uniquely) decompose x12 = m12 +n12 with m12 ∈ M and n12 ∈ N; and
further decompose

m12 =
∑
λ∈Λ
finite

mλ
12 and n12 =

∑
λ∈Λ
finite

nλ12.

Again, set Q3 to be the direct sum of those Eλ’s for which λ occurs in the two expressions above, so that
Q3 is countably generated too. Pick a countable generating set x31, x32, . . . of Q3. Next decompose x21
and repeat the procedure above to obtain Q4 and its countable generating set x41, x42, . . . . Decompose
x13 next and repeat ad infinitum.

x11 x12 x13 x14 . . .
x21 x22 x23 x24 . . .
x31 x32 x33 x34 . . .
x41 x42 x43 x44 . . .
...

...
...

...
. . .

To be explicit, the order in which we decompose the xi j ’s is

x11, x12, x21, x13, x22, x31, x14, . . . .
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Finally, set Fα to be the submodule of F generated by Fβ and {xi j : i, j Ê 1}. Clearly Fα/Fβ is countably
generated and Fβ ⊆ Fα, which verifies (i) and (iv). Since {xni : i Ê 1} generates Qn, we in fact have

Fα = Fβ+
∑
nÊ1

Qn,

whence Fα is a direct sum of a subset of {Eλ : λ ∈Λ}. It remains to verify (v), and to this end, it suffices
to show that Fα = Mα+Nα. An element of Fα can be written as

fβ+
∑
i, j

finite

ai jxi j,

for some fβ ∈ Fβ and ai j ∈ R. Recall that we can write

xi j = mi j +ni j, mi j =
∑
λ∈Λ
finite

mλ
i j, and ni j =

∑
λ∈Λ
finite

nλi j.

Note that each mλ
i j is contained in one of the Qn’s, and hence, in Fα. Therefore mi j and ni j are

elements of Fα, and hence, are elements of Mα and Nα respectively. Further, by the inductive
hypothesis, fβ = mβ+ nβ for some mβ ∈ Mβ ⊆ Mα and nβ ∈ Nβ ⊆ Nα, whence it follows that Fα =
Mα+Nα, thereby verifying (v).

Next, note that the composition

Fα+1 ↠ Mα+1 ↠ Mα+1/Mα

has kernel containing Fα and therefore, Mα+1/Mα is a quotient of Fα+1/Fα, which is countably
generated, and hence so is Mα+1/Mα. Next, since Mα is a direct summand of Fα, it is also a direct
summand of F. Hence, Mα is a direct summand of Mα+1. Thus, we can write

Mα+1 = Mα⊕M′
α+1,

where M′
α+1 is countably generated. When α is a limit ordinal, set M′

α = 0. It is now easy to see that

Mα = ⊕
βÉα

M′
β.

And since M =⋃
α

Mα, it follow that

M =⊕
α

M′
α,

thereby completing the proof. ■
LEMMA 1.4. Let M be a projective module over a local ring (A,m) and x ∈ M. Then there exists a
direct summand of M containing x which is a free module.

Proof. We can write F as a direct summand of a free A-module F = M⊕N. Choose a basis B = {ui}i∈I
such that x has the minimum possible non-zero coefficients when expressed as an A-linear combination
of the ui ’s. Write

x = a1u1 +·· ·+anun

for some 0 ̸= ai ∈ A. Note that we must have ai ∉ ∑
j ̸=i

Aa j for 1É i É n. Indeed, if we could write

an = b1a1 +·· ·+bn−1an,
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then

x =
n−1∑
i=1

ai(ui +biun),

and {u1 + b1un, . . . ,un−1 + bn−1un,un}∪ {u j : j ̸= 1, . . . ,n} is also a basis of F, which would contradict
the minimality in the choice of B.

Set ui = yi + zi where yi ∈ M and zi ∈ N. Since x ∈ M, we must have

x = a1 y1 +·· ·+an yn.

We can write each yi in coordinates as

yi =
n∑

j=1
ci ju j + ti,

for some ci j ∈ A and ti ∈ F which is a linear combination of uk ’s for k ̸= 1, . . . ,n. Thus

x =
n∑

i=1
ai yi =

n∑
i=1

n∑
j=1

ai ci ju j +
n∑

i=1
ai ti.

By the uniqueness of coordinate representation with respect to a basis, we get

ai =
n∑

j=1
a j c ji =⇒

n∑
j=1

a j
(
c ji −δ ji

)= 0

for 1 É i É n. Since elements in A \m are invertible, we must have that cii ∈ 1+m for all 1 É i É n
and ci j ∈ m for 1 É i ̸= j É n. In particular, this means the matrix C = (

ci j
)

is invertible since its
determinant is in 1+m.

We claim that B̃ = {y1, . . . , yn}∪ {ui : i ̸= 1, . . . ,n} is a basis for F. The invertibility of C shows that
each ui can be written as an A-linear combination of elements in B̃, and hence, the A-linear span of
B̃ is all of F. To see that B̃ is A-linearly independent, suppose

0=
n∑

i=1
f i yi +

∑
λ̸=1,...,n

fλuλ.

Substituting the representation of yi in the basis B, we have

0=
n∑

i=1
f i

(
n∑

j=1
ci ju j + ti

)
+ ∑
λ̸=1,...,n

fλuλ.

Therefore, in particular, (
f1 · · · fn

)
C= 0,

and the invertibility of C would mean f i = 0 for 1É i É n; consequently,∑
λ̸=1,...,n

fλuλ = 0,

so that fλ = 0 for all λ. Hence B̃ is a basis of F. Let F1 denote the A-submodule generated by
{y1, . . . , yn}. This is a free direct summand of F contained in M, and hence, is a free direct summand of
M containing x. ■
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Proof of Theorem 1.2. M is a direct summand of a free module, and every free module is a direct sum
of countably generated submodules. Hence M itself is a direct sum of countably generated projective
modules. Therfore, it is sufficient to prove the theorem assuming M is countably generated.

Let {ω1,ω2, . . . } be a countable generating set for M. By Lemma 1.4, there exists a free direct
summand F1 of M containing ω1. Write M = F1⊕M1 and let ω′

2 denote the M1 component of ω2. Since
M1 is projective, using Lemma 1.4, there exists a free direct summand F2 of M1 containing ω2. Then
M1 = F2 ⊕M2 so that M = F1 ⊕F2 ⊕M2. Let ω′

3 denote the M2-component of ω3 and repeat the above
process ad infinitum. That would yield M = F1 ⊕F2 ⊕·· · , whence M is free. ■

§§ Projective Covers

DEFINITION 1.5. Let R be a ring and M an R-module. A submodule K of M is said to be small if for
any R-submodule N of M

K +N = M =⇒ N = M.

We denote this by K ≪ M.

We give two standard examples of small submodules.

(i) Let (R,m,k) be a local ring, M a finite R-module, and K =mM. Due to Nakayama’s lemma, for
any R-submodule N of M, if N +mM = M, then N = M. Thus K ≪ M.

(ii) Similarly, let (R,m,k) be an Artinian local ring, M any R-module, and K =mM. If N is an
R-submodule of M such that N +mM = M, then m (M/N)= M/N. But since m is nilpotent, we
must have that M/N = 0, so that M = N. Thus K ≪ M.

DEFINITION 1.6. Let R be a ring and M an R-module. A projective cover of M is a pair (P, f ), where
P is a projective R-module and f : P → M a surjective R-linear map such that ker f ≪ M.

REMARK 1.7. Unlike the situation for injective hulls, projective covers need not always exist. For
example, consider the Z-module Z/pZ, where p > 0 is a rational prime. Suppose f : P → Z/pZ is a
projective cover. Since P is a projective Z-module, it must be free. Set K = ker f ≪ P. Since P/K is a
simple Z-module, K is a maximal submodule of P. On the other hand, since K ≪ P, for any proper
submodule N of K , if N were not contained in K , then K +N = P, whence N = P, a contradiction.
Thus, K must contain every proper submodule of P. This is absurd, since P admits quotients of the
form Z/qZ for primes q ̸= p.

THEOREM 1.8. Every module over an Artinian ring admits a projective cover.

Proof. Let A be an Artinian ring, so that we can write A = A1 ×·· ·× An as a product of Artinian local
rings (A i,mi,ki) for 1 É i É n. Any A-module M is of the form M1 × ·· ·× Mn where each Mi is an
A i-module. From this reduction, it is easy to see that it suffices to prove the theorem in the Artinian
local case.

Therefore, let (A,m,k) be an Artinian local ring and M an A-module. Choose a k-basis {xλ : λ ∈Λ}
of M/mM, where xλ ∈ M for all λ ∈Λ. Let F denote the free A-module on Λ, i.e.,

F = ⊕
λ∈Λ

Aeλ,

and let f : F → M be the unique A-linear map sending eλ 7→ xλ for all λ ∈Λ. The k-linear independence
of Λ forces ker f =mF ≪ F due to (ii). Using the projectivity of F as an R-module, we can lift f to a
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map f̃ : F → M making
M

��

F

f̃
;;

f
// M/mM

commute. Since f is surjective, we have mM+ im f̃ = M, that is, m
(
M/ im f̃

)= M/ im f̃ . Again, since m
is nilpotent, we have M/ im f̃ = 0, that is, f̃ is surjective. Finally, since ker f̃ ⊆ ker f , it is also a small
submodule of F, and hence (F, f̃ ) is a projective cover of M. ■
PROPOSITION 1.9. Let M be an R-module. Then⋂{

maximal proper submodules of M
}
=∑{

small submodules of M
}
.

This submodule is called the radical of M and is denoted by rad(M).

Proof. If K ≪ M and L is any maximal proper submodule of M, then K must be contained in L, else
K +L = M which would impoly L = M, a contradiction. Thus every small submodule of M is contained
in every maximal proper submodule of M. Hence, the sum of all small submodules of M is contained
in the intersection of all maximal proper submodules of M.

Conversely, suppose x ∈ M is contained in the intersection of all maximal proper submodules of
M. We claim that Rx ≪ M. Indeed, if N is a proper submodule of M such that Rx+N = M, then
M/N is a cyclic R-module, so that it admits a non-zero simple quotient. In particular, N is contained
in a maximal proper submodule K of M. But x ∈ K by assumption; and hence Rx+N ⊆ K ⊊ M, a
contradiction. This shows that Rx ≪ M, thereby completing the proof. ■
PROPOSITION 1.10. If {Mλ}λ∈Λ is a collection of R-module, then

rad

(⊕
λ∈Λ

Mλ

)
= ⊕
λ∈Λ

rad(Mλ).

Proof. Straightforward. ■
PROPOSITION 1.11. Let R denote the Jacobson radical of a ring R. Then for any R-module M,
RM ⊆ rad(M).

Proof. If N ⊊ M is a maximal proper submodule of M, then M/N is isomorphic to R/m for some
maximal ideal m of R. Since R⊆m, RM ⊆ N. Thus RM ⊆ rad(M). ■
PROPOSITION 1.12. Let R be a ring and P a projective R-module. Then rad(P) =RP, where R
denotes the Jacobson radical of R.

Proof. There is an R-module Q such that F = P ⊕Q is a free module. In view of Proposition 1.10 and
Proposition 1.11

RP ⊕RQ ⊆ rad(P)⊕rad(Q)= rad(F)=RF =RP ⊕RQ.

Hence radP =RP. ■
THEOREM 1.13. A flat module over an Artinian ring is projective.
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Proof. Let R be an Artinian ring and E a flat R-module. In view of Theorem 1.8, there exists a
projective cover f : P → E. Set K = ker f ≪ P, and hence ker f ⊆RP. Now since P and E are flat
R-modules, the “multiplication maps”

µ1 : R⊗R P →RP and µ2 : R⊗R E →RE

are isomorphisms, which can be seen either using the equational criterion of flatness of just invoking
the Tor long exact sequence. Further note that the diagram

0 // R⊗R K 1⊗ι // R⊗R P
1⊗ f
//

µ1

��

R⊗R E

µ2

��

// 0

RP g
// RE

commutes where g is the restriction of f to RP. Since E is flat, the Tor long exact sequence gives that
the top row is short exact. Using the fact that µ1 and µ2 are isomorphisms, we can write

K = ker f = ker g =µ1 (ker(1⊗ f ))=µ1 (im(1⊗ ι))=RK .

But R is nilpotent in R, and hence K = 0, that is, E ∼= P is projective. ■
COROLLARY. An arbitrary product of projective modules over an Artinian ring is projective.

Proof. This follows immediately from Theorem 2.9 and Theorem 1.13. ■

§2 FLAT MODULES

DEFINITION 2.1. An A-module M is said to be flat if the functor −⊗A M :ModA →ModA is exact.

DEFINITION 2.2. Let M be an A-module and
∑n

i=1 f ixi = 0 be a relation in M for f i ∈ A and xi ∈ M.
We say that the relation is trivial if there exists an integer m Ê 0, elements yj ∈ M for 1É j É m and
ai j ∈ A for 1É i É n and 1É j É m such that

xi =
m∑

j=1
ai j yj ∀ 1É i É n and 0=

n∑
i=1

ai j f i ∀ 1É j É m.

LEMMA 2.3 (EQUATIONAL CRITERION OF FLATNESS). An A-module M is flat if and only if every
relation in M is trivial.

Proof. Suppose M is flat and
∑n

i=1 f ixi = 0 is a relation in M. Let a= ( f1, . . . , fn)⊆ A and consider the
A-linear surjection An = ⊕n

i=1 Ae i → I given by e i 7→ f i whose kernel is K ⊆ An. That is, 0 → K →
An → a→ 0. Since M is flat, tensoring with M preserves exactness and we have an exact sequence

0−→ K ⊗A M −→ An ⊗A M −→ a⊗A M −→ 0.

Note that the natural map a⊗A M → R ⊗A M is injective due to the flatness of M. Consequently,∑n
i=1 f i ⊗ xi maps to 0 in R ⊗A M and hence, must be zero in a⊗A M. The exactness of the above

sequence furnishes an element
∑m

j=1 k j ⊗ yj ∈ K ⊗A M that maps to 0 in An ⊗A M.
Each k j can be written in the form

n∑
i=1

ai j e i ∀ 1É j É m,
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and hence, the image of
∑m

j=1 k j ⊗ yj in An ⊗A M is

m∑
j=1

m∑
i=1

ai j e i ⊗ yj =
n∑

i=1
e i ⊗

(
m∑

j=1
ai j yj

)
= 0,

and the conclusion follows.
Conversely, suppose every relation in M is trivial and let a be a finitely generated ideal of A.

It suffices to show that TorA
1 (A/a, M) = 0, which is equivalent (from the Tor long exact sequence) to

showing that the map a⊗A M → A⊗A M is injective.
Suppose

∑n
i=1 f i ⊗ xi ∈ a⊗A M maps to 0 in A⊗A M. Then,

∑n
i=1 f ixi = 0 in M, consequently, there

is an m Ê 0, yj ∈ M, ai j ∈ M for 1É i É n and 1É j É m such that

xi =
m∑

j=1
ai j yj ∀ 1É i É n and 0=

n∑
i=1

ai j f i ∀ 1É j É m.

Consequently, in a⊗A M,
n∑

i=1
f i ⊗ xi =

n∑
i=1

f i ⊗
(

m∑
j=1

ai j yj

)
=

(
n∑

i=1
ai j f i

)
⊗ yj = 0.

This proves injectivity, thereby completing the proof. ■
LEMMA 2.4. Let (A,m,k) be a local ring and M a flat A-module. If x1, . . . , xn ∈ M are such that their
images x1, . . . , xn ∈ M/mM are linearly independent over k, then x1, . . . , xn are linearly independent
over A.

Proof. We prove this statement by induction on n. If n = 1, then a ∈ A is such that ax1 = 0 and x1 ̸= 0.
From Lemma 2.3, there are b1, . . . ,bm ∈ A and y1, . . . , ym ∈ M such that

x1 =
m∑

j=1
b j yj and ab j = 0 ∀ 1É j É m.

Since x1 ∉mM, it follows that at least one of the b j ’s must be a unit, whence a = 0.
Now, suppose n > 1 and there is a relation

∑n
i=1 aixi = 0 in M. From Lemma 2.3, there is an m Ê 0,

yj ∈ M, and bi j ∈ A for 1É i É n and 1É j É m such that

xi =
m∑

j=1
bi j yj ∀ 1É i É n and 0=

n∑
i=1

bi jai ∀ 1É j É m.

Since xn ∉mM, at least one of the bn j ’s must be a unit, whence we can write

an =
n−1∑
i=1

ciai,

for some ci ∈ A for 1É i É n−1. Therefore, we have

0=
n∑

i=1
aixi =

n−1∑
i=1

ai(xi + cixn).

Since x1, . . . , xn−1 are k-linearly independent in M/mM, we see that x1 + c1xn, . . . , xn−1 + cn−1xn must
also be k-linearly independent. Due to the induction hypothesis, a1 = ·· · = an−1 = 0 and hence, an = 0.
This completes the proof. ■
THEOREM 2.5. Let (A,m,k) be a local ring. If M is a finitely generated flat A-module, then M is free.

Proof. Let x1, . . . , xn ∈ M be a minimal generating set, that is, x1, . . . , xn are k-linearly independent in
M/mM. Due to the preceding lemma, x1, . . . , xn are linearly independent over A, and hence, M is a
free A-module. ■
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§§ Cartier’s Theorem

THEOREM 2.6 (CARTIER). Let M be a finitely generated module over an integral domain A. If for
every m ∈MaxSpec(A), Mm is free as an Am-module, then M is a projective A-module.

Proof. First show that M is a torsion-free A-module. Suppose am = 0 for some 0 ̸= a ∈ A and m ∈ M.
Let a be the annihilator of m in A and m a maximal ideal containing A. Note that a

1
m
1 = 0 in Mm,

which is free over Am, an integral domain, whence, is torsion free. That is, m
1 = 0, whence, there is

some s ∈ A \m such that sm = 0, which is absurd, since a⊆m. This shows that M is torsion-free.
Now, choose a set of generators {mi : 1 É i É n} for M over A. Let P be the collection of A-

endomorphisms of M which are of the form

m 7−→
n∑

i=1
f i(m)mi,

where f1, . . . , fn : M → A are A-module homomorphisms. Note that P is an A-submodule of EndA(M).
We shall show that idM ∈P .

Let m be a maximal ideal of A. We know that Mm is free as an Am-module and hence, there are
Am-module homomorphisms f i : Mm → Am such that

m′ =
n∑

i=1
f ′i (m

′)
mi

1
∀m′ ∈ Mm.

To see that this is possible, first consider an Am-basis {e i : 1É i É N} for Mm. We can write

e i =
n∑

j=1
ai j

m j

1
∀ 1É i É N.

Further, there are Am-linear maps f i : Mm → Am such that

m′ =
N∑

j=1
f j(m′)e j.

Set

f ′j(m
′)=

N∑
i=1

ai j f i(m′) ∀ m′ ∈ Mm.

Then,
n∑

j=1
f ′j(m

′)
m j

1
=

N∑
i=1

n∑
j=1

ai j f i(m′)
m j

1
=

N∑
i=1

f i(m′)e i = m′.

Coming back, since M is torsion-free, the canonical map M → Mm is an injective map of A-modules.
Further, we can find an s ∈ A \m such that s f ′i

( m j
1

) ∈ A for 1É i, j É n.
Note that m′ 7→ s f ′i (m

′) is Am-linear as a map Mm → Am, and hence, is A-linear. The restriction
of this map to M ⊆ Mm takes values in A. Thus, we can identify s f ′i with an A-linear map M → A.
Further, for every m ∈ M, we have

sm =
n∑

i=1
s f ′i (m)mi.

That is, s · idM ∈P . Now, let a be the collection of all a ∈ A such that a · idM ∈P . Then a is an ideal
of A. If a were a proper ideal, it would be contained in a maximal ideal m. But from our preceding
conclusion, there is some s ∈ A \m such that s · idM ∈P , a contradiction. Thus, a= A, in particular,
idM ∈P .
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Finally, we show that M is projective. We have shown that there are A-linear maps f i : M → A
such that

m =
n∑

i=1
f i(m)mi ∀ m ∈ M.

Let F be the free module
⊕n

i=1 Ae i and let g : F → M be given by e i 7→ mi and f : M → F given by

f (m)=
n∑

i=1
f i(m)e i.

By our construction, g ◦ f = idM , and hence M is a direct summand of F, i.e. M is projective. ■
COROLLARY. A finitely generated flat module over an integral domain is projective.

Proof. Follows from Theorem 2.6 and Theorem 2.5. ■

§§ Finitely Presented Modules and Flatness

THEOREM 2.7. Let M be a finitely presented A-module and N be any A-module. If B is a flat
A-algebra, then there is a natural isomorphism

HomA(M, N)⊗A B ∼=HomB(M⊗A B, N ⊗A B).

Proof. Fixing N and B, there are contravariant functors F ,G :Modop
A →ModB given by

F (M)=HomA(M, N)⊗A B G (M)=HomB(M⊗A B, N ⊗A B).

Define the natural transformation λ : F =⇒ G given by

λM ( f ⊗b)= b · ( f ⊗ idB).

We first show that this is natural in M. Indeed, suppose ϕ : M′ → M is A-linear, we wish to show that

F (M) //

λM
��

F (M′)

λM′
��

G (M) // G (M′)

commutes. Consider f ⊗b ∈F (M), which maps to f ◦ϕ⊗b ∈F (M′), which maps to b · ( f ◦ϕ⊗ idB) ∈
G (M′). On the other hand, under λM , f ⊗b maps to b · ( f ⊗ idB) ∈G (M), which maps to b · ( f ◦ϕ⊗ idB),
which shows commutativity.

Next, suppose M = An were free of finite rank. In this case, there is a sequence of isomorphisms

HomA(An, N)⊗A B ∼= Nn ⊗A B ∼= (N ⊗A B)n ∼=HomB(Bn, N ⊗A B)∼=HomB(An ⊗A B, N ⊗A B).

Under the above isomorphism, f ⊗b first maps to ( f (e1), . . . , f (en))⊤⊗b in Nn ⊗A B. Under the second
map, it goes to ( f (e1)⊗ b, . . . , f (en)⊗ b)⊤ in (N ⊗A B)n. Under the third map it goes to the unique
morpism g : Bn → N ⊗A B that sends e i 7→ f (e i)⊗b.

Consider the map b · ( f ⊗ idB) ∈HomB(An ⊗A B, N ⊗A B). Under this map, e i ∈ Bn is the same as
e i ⊗1 ∈ An ⊗B, which maps to b · ( f (e i)⊗1)= f (e i)⊗b ∈ N ⊗A B. It follows that this is the same as the
aforementioned g. Thus, λM is an isomorphism in this case.
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Finally, there is an exact sequence Am → An → M → 0 since M is finitely presented. This fits into
a commutative diagram

0 // F (M) //

λ
��

F (An) //

λ
��

F (Am)

λ
��

0 // G (M) // G (An) // G (Am)

where the last two λ’s are isomorphisms. Due to the Five Lemma (after adding another column of
zeros to the left), we see that λM : F (M)→G (M) must be an isomorphism, thereby completing the
proof. ■
COROLLARY. Let M be a finitely presented A-module and N be any A-module. Then for every
p ∈Spec(A),

HomA(M, N)p ∼=HomAp

(
Mp, Np

)
.

Proof. Note that the localization functor at p ∈Spec(A) is naturally isomorphic to −⊗A Ap. ■
THEOREM 2.8. Let M be a finitely presented A-module. Then the following are equivalent

(a) M is projective.

(b) Mp is a free Ap-module for all p ∈Spec(A).

(c) Mm is a free Am-module for all m ∈MaxSpec(A).

Proof. That (a) =⇒ (b) =⇒ (c) is obvious. It suffices to show that (c) =⇒ (a). To this end, we
shall show that HomA(M,−) is an exact functor. We know that HomA(M,−) is left exact so let
0→ N ′ → N → N ′′ → 0 be a short exact sequence. Upon application of the above functor, note that we
have an exact sequence

0−→HomA(M, N ′)−→HomA(M, N)−→HomA(M, N ′′)→ K → 0,

where K is the cokernel. Localizing the above sequence at a maximal ideal m and using the exactness
of localization and the preceding result, we have an exact sequence

0−→HomAm
(Mm, N ′

m)−→HomAm
(Mm, Nm)−→HomAm

(Mm, N ′′
m)→ Km → 0.

But since Mm is a free Am-module, the functor HomAm
(Mm,−) is exact, whence Km = 0 for every

m ∈MaxSpec(A). This shows that K = 0, that is, M is projective. ■
THEOREM 2.9. Let A be a Noetherian ring and {Mλ}λ∈Λ a family of flat A-modules. Then M = ∏

λ∈Λ
Mλ

is also a flat A-module.

Proof. Recall that M being flat is equivalent to TorA
1 (R/I, M)= 0 for every finitely generated ideal I of

A. This is equivalent to showing that the natural “multiplication” map I ⊗A M → IM is injective for
every finitely generated ideal I of A.

Let I = (a1, . . . ,an), and let f : An → A be the map given by

f (x1, . . . , xn)= a1x1 +·· ·+anxn,

and set K = ker f ⊆ An. Since each Mλ is flat, tensoring gives us an exact sequence

0→ K ⊗A Mλ→ Mn
λ → Mλ.

11



Consider an element in ker(I ⊗A M → IM), which can be written as
n∑

i=1
ai ⊗ξi

for some ξi ∈ M for 1É i É n. That is,
n∑

i=1
aiξi = 0 ∈ IM.

We can further write ξi =
(
ξλi

)
λ∈Λ. Hence, for each λ ∈Λ,

n∑
i=1

aiξ
λ
i = 0 in Mλ.

Hence, (
ξλ1 , . . . ,ξλn

)
∈ ker

(
Mn

λ → Mλ

)= im
(
K ⊗A Mλ→ Mn

λ

)
.

Since A is Noetherian, K is a finite A-module generated by some β1, . . . ,βr ∈ K and write

βi =
(
bi

1, . . . ,bi
n

)
∈ K ⊆ An

for 1É i É r. Now,
(
ξλ1 , . . . ,ξλn

)
is the image of some

r∑
i=1

βi ⊗ηλi ∈ K ⊗A Mλ

for some ηλi ∈ Mλ for 1É i É r and λ ∈Λ. Therefore,

r∑
i=1

(
bi

1, . . . ,bi
n

)
⊗ηλ 7−→

(
r∑

i=1
bi

1η
λ
i , . . . ,

r∑
i=1

bi
nη

λ
i

)
=

(
ξλ1 , . . . ,ξλn

)
,

so that

ξλi =
r∑

j=1
b j

iη
λ
j

for 1É i É n and λ ∈Λ. Further, since β j ∈ K , we have
n∑

i=1
aib

j
i = 0 for 1É j É r.

Setting ηi =
(
ηλi

)
λ∈Λ ∈ M for 1É i É r, we have

n∑
i=1

ai ⊗ξi =
n∑

i=1
ai ⊗

(
r∑

j=1
b j

iη j

)

=
n∑

i=1

r∑
j=1

ai ⊗b j
iη j

=
r∑

j=1

(
n∑

i=1
ai ⊗b j

i

)
⊗η j

= 0,

thereby completing the proof. ■
REMARK 2.10. A ring is said to be coherent if every finitely generated ideal is finitely presented. We
note that Theorem 2.9 holds even for coherent rings with the same proof, since the Noetherian-ness of
A was used only to conclude the finiteness of K , which also follows from the fact that the kernel of a
surjective homomorphism from a finitely generated module to a finitely presented module is again
finitely generated.
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§3 INJECTIVE MODULES

DEFINITION 3.1. An A-module M is said to be injective if the (contravariant) functor HomA(−, M) :
Modop

A →ModA is exact.

THEOREM 3.2 (BAER’S CRITERION). An A-module E is injective if and only if for every ideal aP A,
every A-linear map a→ E can be extended to an A-linear map A → E.

Proof. The forward direction is tautological. We prove the converse. Suppose N É M are A-modules
and α : N → E is an A-linear map. We shall extend α to a map M → E.

Let Σ be the collection of all pairs (N ′,α′) where N É N ′ É M and α′ : N ′ → E is A-linear such that
α′|N =α. Using a standard Zorn argument, Σ admits a maximal element α′ : N ′ → E extending α. We
contend that N ′ = M.

Suppose not. Then choose some x ∈ M \ N ′ and let a= (N ′ : A x) P A. Consider the composite map

a
x−→ N ′ α′

−→ E, which extends to a map f : A → E and set N ′′ = N ′+ Ax É M. Define α′′ : N ′′ → E by

α′′(n′+ax)=α′(n′)+ f (a).

This is well defined, for if n′
1 +a1x = n′

2 +a2x, then (a1 −a2)x = n′
2 −n′

1, i.e. (a1 −a2) ∈ a and hence,

f (a1 −a2)=α′((a1 −a2)x)=α′(n′
2 −n′

1).

But note that (N ′,α′)< (N ′′,α′′) in Σ, a contradiction. Thus N ′ = M and we are done. ■
COROLLARY. Let A be a noetherian ring. If {E i : i ∈ I} is a collection of injective A-modules, then
E =⊕

i∈I
E i is an injective A-module.

Proof. Let aP A and f : a→ E be A-linear. Note that a= (a1, . . . ,an) is finitely generated, and each
f (ai) has support contained in a finite subset of I. Thus, f (a) is contained in a direct sum of a finite
subset of {E i : i ∈ I}. But note that a finite direct sum of injectives in injective over any ring, and hence,
f can be extended to all of A, thereby completing the proof. ■
COROLLARY. Let A be a PID. An A-module E is injective if and only if it is divisible.

Proof. Immediate from Theorem 3.2. ■

§§ Injective Hulls

DEFINITION 3.3. Let M É E be A-modules. Then E is said to be an essential extension of M if every
non-zero submodule of E intersects M non-trivially. We denote this by M Ée E.

REMARK 3.4. The above is equivalent to requiring that for every x ∈ E \ {0}, there is an a ∈ A \ {0}
such that ax ∈ M \{0}.

We note some trivial properties of essential extensions before proceeding.

PROPOSITION 3.5. Let L É M É N be A-modules. Then

L Ée M and M Ée N ⇐⇒ L Ée N.

Proof. Straightforward. ■
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PROPOSITION 3.6. Let M É E be A-modules. Consider the set

E = {N É E : M Ée N}.

Then E has a maximal element.

Proof. Standard application of Zorn’s lemma. ■
PROPOSITION 3.7. If N1 Ée M1 and N2 Ée M2, then N1 ⊕N2 Ée M1 ⊕M2.

Proof. Trivial. ■
REMARK 3.8. Before we proceed, we make an important observation. Suppose M Ée N and suppose
there is a commutative diagram:

N
f

  

M
?�

OO

� � // E.

We claim that f is injective. Indeed, due to the commutativity of the diagram, ker f ∩M = 0, but since
M Ée N, we have that ker f = 0.

DEFINITION 3.9. Let M É E be A-modules. Then E is said to be an injective hull of M if E is an
injective A-module and M Ée E. It is customary to denote E by EA(M).

PROPOSITION 3.10. Suppose M É E and N É F are A-modules such that E and F are injective hulls
of M and N respectively. Then E⊕F is an injective hullof M⊕N.

Proof. Obviously E⊕F is injective and due to the preceding result, an essential extension of M⊕N.
The conclusion follows. ■
PROPOSITION 3.11. An A-module E is injective if and only if E has no proper essential extensions.

Proof. Suppose E were injective and E Ée M. Then, there is a submodule N of M such that M = E⊕N.
If N were non-trivial, then it would intersect E trivially, thus N must be trivial and E = M.

Conversely, suppose E has no proper essential extensions. There is an injective module I such
that E ,→ I. We shall show that E is a direct summand of I. Indeed, consider the collection

Σ= {N É I : E∩N = 0} .

A standard application of Zorn’s lemma furnishes a maximal element N of Σ. Note that if M is a
submodule of I properly containing N, then E∩M ̸= 0. The canonical projection I ↠ I/N restricts to
an injective map on E and any submodule of I/N is of the form M/N for some M containing N. Thus,
it follows that E ,→ I/N is an essential extension. But since E does not admit any proper essential
extensions, we must have that the aforementioned map is surjective, that is, E + N = I, whence
E⊕N = I and hence, E is injective. ■
THEOREM 3.12. Let M É E be A-modules. The following are equivalent:

(a) E is an injective hull of M.

(b) E is a minimal injective A-module containing M.

(c) E is a maximal essential extension of M.
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Proof. (a) =⇒ (b) Suppose I is an injective module such that M É I É E. Since M Ée E, we have that
I Ée E. But due to Proposition 3.11, we see that I = E.

(b) =⇒ (c) Let N É E be a maximal element of {N É E : M Ée N}. We contend that N has no proper
essential extensions. Suppose f : N ,→ L is an essential extension. Then, there is a map L → E making

E

0 // N
/ �

>>

f
// L

OO

commute. We claim that the map L → E is injective. Indeed, if 0 ̸= x ∈ L maps to 0, then there is an
0 ̸= a ∈ A such that 0 ̸= ax ∈ f (N). But since N ,→ E, we have that ax = 0, a contradiction. Thus, in
E, L = N, since N has no proper essential extensions in E. Consequently, N has no proper essential
extensions, that is, N is injective, whence N = E.

(c) =⇒ (a) Injectivity follows from the fact that E has no proper essential extensions due to
maximality. ■
THEOREM 3.13. Let M be an A-module. Then there exists an injective hull M ,→ E, which is unique
up to isomorphism.

Proof. Let I be an injective module such that M ,→ I. Using (b) =⇒ (c) of the proof of Theorem 3.12,
we see that a maximal essential extension E of M contained in I is an injective hull.

It remains to establish uniqueness. Suppose M ,→ E′ is another injective hull. Then, there is a
commutative diagram

E′

M �
�

//
. �

>>

E

OO

with the induced map E → E′ injective as argued in the preceding proof. The maximality of essential-
ness and transitivity of essentialness both imply that E → E′ must be an isomorphism. ■
THEOREM 3.14 (CANTOR-SCHRÖDER-BERNSTEIN). If M and N are injective A-modules with
injective A-linear maps M ,→ N and N ,→ M, then M ∼= N.

Proof. We may suppose that N É M, whence there is a submodule P of M such that M = N ⊕P where
P is injective too. Let f : M → N be an injective A-linear map.

Note first that if x0 + f (x1)+ ·· ·+ f (n)(xn) = 0 where xi ∈ P, then all xi = 0. Indeed, f (x1)+ ·· ·+
f (n)(xn) ∈ im( f ) ⊆ N and x0 ∈ P, whence x0 = 0. Since f is injective, we have x1 +·· ·+ f (n−1)(xn) = 0.
Working downwards, we have our conclusion.

Now, set X = P⊕ f (P)⊕ f (2)(P)⊕·· · ⊆ M and let E = EA( f (X ))⊆ N an injective hull. Write N = E⊕Q.
Since X = P ⊕ f (X ), we have

E(X )∼= E(P ⊕ f (X ))∼= E(P)⊕E( f (X ))∼= P ⊕E.

On the other hand, since f is injective,

E(X )∼= E( f (X ))= E =⇒ P ⊕E ∼= E.

Consequently,
M = N ⊕P =Q⊕E⊕P ∼=Q⊕E ∼= N,

thereby completing the proof. ■
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PROPOSITION 3.15. Let A be a noetherian ring and M an A-module. Then AssA(E(M))=AssA(M).
In particular, E(A/p)= {p} for every p ∈Spec(A).

Proof. Since M ,→ E(M), we have that AssA(M)⊆AssA(E(M)). Conversely, suppose p ∈AssA(E(M)),
that is, R/p ,→ E(M) and identify R/p with a submodule of E(M). Since M Ée E(M), (R/p)∩ M ̸= 0.
Choosing a non-zero x in the intersection, we have that AnnA(x) = p, that is, p ∈ AssA(M). This
completes the proof. ■
DEFINITION 3.16. A nonzero A-module M is said to be decomposable if there are nonzero submodules
N1, N2 É M such that M = N1⊕N2. An A-module that is not decomposable is said to be indecomposable.

THEOREM 3.17 (MATLIS). Let A be a noetherian ring and M an A-module. Then,

(a) E is an indecomposable injective A-module if and only if E ∼= E(A/p) for some p ∈Spec(A).

(b) EA(A/p) ̸∼= E(A/q) if p ̸= q ∈Spec(A).

(c) every injective A-module can be written as a direct sum of indecomposable A-modules.

Proof. (a) Suppose E is an indecomposable injective A-module and choose some p ∈AssA(E). There
is an injection A/p ,→ E, which extends to an injection (due to Remark 3.8) E(A/p) ,→ E. Since E
is indecomposable, E ∼= E(A/p).

Conversely, we must show that E = E(A/p) is indecomposable. Suppose E = E1 ⊕E2. The map
A/p ,→ E1 ⊕E2 sends 1 ∈ A/p to some (x1, x2) ∈ E1 ⊕E2. Then,

p=AnnA((x1, x2))=AnnA(x1)∩AnnA(x2),

whence, we may suppose without loss of generality that p = AnnA(x1). Consequently, the
composition A/p ,→ E ↠ E1 is injective. This means that E ↠ E1 is a lift of an injection
A/p ,→ E1, whence E ↠ E1 must be injective (due to Remark 3.8), that means E2 = 0, as desired.

(b) Follows from the fact that AssA(E(A/p))= {p}.

(c) This is another standard Zorn argument. Begin with the collection

Σ= {{E i}i∈I : each E i is indecomposable injective, and their sum is direct} .

Choose a maximal element {E i}i∈J in Σ and let I =⊕
i∈J E i. Suppose I ̸= E. Since I is injective

(owing to A being noetherian), we can write E = I ⊕E′. Since E′ ̸= 0, it has an associated prime,
p. We can then write E′ = E(A/p)⊕E′′, contradicting the maximality of {E i}i∈J . This completes
the proof. ■

§4 UNCATEGORIZED

§§ Eakin-Nagata Theorem

THEOREM 4.1 (FORMANEK). Let A be a ring, and B a finitely generated faithful A-module. Suppose
the set of A-submodules Σ= {aB : aP A} has the ascending chain condition, then A is noetherian.
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Proof. It suffices to show that B is a noetherian A-module since it is finitely generated and faithful.
Suppose not. Then consider the collection

Γ= {aB : aP A, B/aB is a non-noetherian A-module} ,

which contains (0) and hence is non-empty. Since Σ has the ascending chain condition, so does Γ,
whence, it contains a maximal element aB.

Replacing B by B/aB, we see that B is a non-noetherian A-module. This may not be faithful and
hence, replace A by A/AnnA(B). Then, B is a finite, non-noetherian, faithful A-module such that for
every ideal 0 ̸= a◁ A, B/aB is a noetherian A-module.

Next, set
M= {N É B : B/N is a faithful A-module} ,

which is non-empty, since {0} ∈M. Suppose B is generated as an A-module by b1, . . . ,bn. It is not hard
to argue that

N ∈M ⇐⇒ ∀ a ∈ A \{0}, {ab1, . . . ,abn} ̸⊆ N.

It follows that every chain in M has a maximal element and hence Zorn’s Lemma applies to furnish a
maximal element N0 ∈Γ.

If B/N0 is a noetherian A-module, then A is noetherian since B/N0 is faithful and finite. If not,
replace B with B/N0, which is still a finite faithful A-module and satisfies:

(1) B is a non-noetherian A-module.

(2) for any ideal 0 ̸= aP A, B/aB is a noetherian A-module.

(3) for any submodule 0 ̸= N of B, B/N is not faithful as an A-module.

Now, let N be a non-zero submodule of B. Due to (3), there is a 0 ̸= a ∈ A such that aB ⊆ N. Due
to (2), B/aB is a noetherian A-module with N/aB as a submodule. Thus, N/aB is a noetherian, in
particular, a finite A-module. Since aB is also finite as an A-module, we have that N is a finite
A-module. Hence, B is a noetherian A-module, which is absurd. This completes the proof. ■
THEOREM 4.2 (EAKIN-NAGATA). Let A ⊆ B be an extension of rings such that B is a finite A-module.
If B is a noetherian ring, then so is A.

Proof. Note that B is a finite, faithful A-module, since 1 ∈ B. The conclusion follows from Theorem 4.1.
■
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