Projective, Injective, and Flat Modules Swayam Chube July 2, 2025 # **CONTENTS** | 1.1 Kaplansky's Theorem 1.2 Projective Covers 2 Flat Modules 2.1 Cartier's Theorem 2.2 Finitely Presented Modules and Flatness 3 Injective Modules 3.1 Injective Hulls 4 Uncategorized 4.1 Eakin-Nagata Theorem | 1 | | jective Modules | 1 | |--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---|------|-----------------------------------------|----| | 2 Flat Modules 2.1 Cartier's Theorem 2.2 Finitely Presented Modules and Flatness 3 Injective Modules 3.1 Injective Hulls 4 Uncategorized | | 1.1 | Kaplansky's Theorem | 1 | | 2.1 Cartier's Theorem 2.2 Finitely Presented Modules and Flatness 3 Injective Modules 3.1 Injective Hulls 4 Uncategorized | | 1.2 | Projective Covers | 5 | | 2.2 Finitely Presented Modules and Flatness | | Flat | Modules | 7 | | 3 Injective Modules 3.1 Injective Hulls | | 2.1 | Cartier's Theorem | 9 | | 3.1 Injective Hulls | | 2.2 | Finitely Presented Modules and Flatness | 10 | | 4 Uncategorized | | | | | | | | 3.1 | Injective Hulls | 13 | | 4.1 Eakin-Nagata Theorem | | Unc | eategorized | 16 | | | | 4.1 | Eakin-Nagata Theorem | 16 | # **§1 Projective Modules** **DEFINITION 1.1.** An *A*-module *M* is said to be *projective* if the functor $\operatorname{Hom}_A(M,-):\mathfrak{Mod}_A\to\mathfrak{Mod}_A$ is exact. ## §§ Kaplansky's Theorem **THEOREM 1.2.** Let (A, \mathfrak{m}, k) be a local ring. If M is a projective A-module, then M is free. We begin by proving two lemmas. **LEMMA 1.3.** Let R be any (commutative) ring, and F an A-module which is a direct sum of countably generated submodules. If M is a direct summand of F, then M is also a direct sum of countably generated submodules. *Proof.* Let $F = M \oplus N$ and $F = \bigoplus_{\lambda \in \Lambda} E_{\lambda}$ where each E_{λ} is a countably generated R-submodule of F. Our first order of business will be to construct, using transfinite induction, a sequence of submodules $(F_{\alpha})_{\alpha \in \mathbf{Ord}}$ of F such that (i) if $\alpha < \beta$, then $F_{\alpha} \subseteq F_{\beta}$. (ii) $$F = \bigcup_{\alpha} F_{\alpha}$$. - (iii) if α is a limit ordinal, then $F_{\alpha} = \bigcup_{\beta < \alpha} F_{\beta}$. - (iv) $F_{\alpha+1}/F_{\alpha}$ is countably generated. - (v) $F_{\alpha} = M_{\alpha} \oplus N_{\alpha}$, where $M_{\alpha} = F_{\alpha} \cap M$ and $N_{\alpha} = F_{\alpha} \cap N$. - (vi) each F_{α} is a direct sum of a suitable subset of $\{E_{\lambda} : \lambda \in \Lambda\}$. Begin by setting $F_0 = 0$. Suppose for an ordinal $\alpha > 0$, F_{β} has been defined for all ordinals $\beta < \alpha$. If α is a limit ordinal then set $$F_{\alpha} = \bigcup_{\beta < \alpha} F_{\beta}.$$ We must show that F_{α} satisfies the aforementioned conditions. Clearly (i) and (iii) are satisfied; and further since each F_{β} is a direct sum of a subset of $\{E_{\lambda} \colon \lambda \in \Lambda\}$, it would follow that so is F_{α} , thereby verifying (vi). To verify (v), it suffices to show that $F_{\alpha} = M_{\alpha} + N_{\alpha}$, but this is clear since any element of F_{α} is also an element of F_{β} for some $\beta < \alpha$. Next, suppose α is not a limit ordinal so that $\alpha = \beta + 1$ for some ordinal β . This construction is a bit involved. First, if $F_{\beta} = F$, then the construction stops at β . Suppose now that $F_{\beta} \subsetneq F$. Let Q_1 be any one of the E_{λ} not contained in F_{β} . Take a countable set of generators x_{11}, x_{12}, \ldots of Q_1 . Since $F = M \oplus N$, we can write $$x_{11} = m_{11} + n_{11}$$ for $m_{11} \in M$ and $n_{11} \in N$. Further, using the decomposition $F = \bigoplus_{\lambda \in \Lambda} E_{\lambda}$, we can write $$m_{11} = \sum_{\substack{\lambda \in \Lambda \\ ext{finite}}} m_{11}^{\lambda} \quad ext{ and } \quad n_{11} = \sum_{\substack{\lambda \in \Lambda \\ ext{finite}}} n_{11}^{\lambda}.$$ Now let Q_2 be the sum of those E_{λ} 's for which λ occurs in the two expressions above. Since Q_2 is a finite direct sum of some E_{λ} 's, it is countably generated. Let x_{21}, x_{22}, \ldots be a countable generating set of Q_2 . Just as before, we can (uniquely) decompose $x_{12} = m_{12} + n_{12}$ with $m_{12} \in M$ and $n_{12} \in N$; and further decompose $$m_{12} = \sum_{\substack{\lambda \in \Lambda \\ \text{finite}}} m_{12}^{\lambda} \quad \text{ and } \quad n_{12} = \sum_{\substack{\lambda \in \Lambda \\ \text{finite}}} n_{12}^{\lambda}.$$ Again, set Q_3 to be the direct sum of those E_{λ} 's for which λ occurs in the two expressions above, so that Q_3 is countably generated too. Pick a countable generating set x_{31}, x_{32}, \ldots of Q_3 . Next decompose x_{21} and repeat the procedure above to obtain Q_4 and its countable generating set x_{41}, x_{42}, \ldots Decompose x_{13} next and repeat ad infinitum. To be explicit, the order in which we decompose the x_{ij} 's is $$x_{11}, x_{12}, x_{21}, x_{13}, x_{22}, x_{31}, x_{14}, \ldots$$ Finally, set F_{α} to be the submodule of F generated by F_{β} and $\{x_{ij}: i, j \ge 1\}$. Clearly F_{α}/F_{β} is countably generated and $F_{\beta} \subseteq F_{\alpha}$, which verifies (i) and (iv). Since $\{x_{ni}: i \ge 1\}$ generates Q_n , we in fact have $$F_{\alpha} = F_{\beta} + \sum_{n \geq 1} Q_n,$$ whence F_{α} is a direct sum of a subset of $\{E_{\lambda} : \lambda \in \Lambda\}$. It remains to verify (v), and to this end, it suffices to show that $F_{\alpha} = M_{\alpha} + N_{\alpha}$. An element of F_{α} can be written as $$f_{\beta} + \sum_{\substack{i,j \text{finite}}} a_{ij} x_{ij},$$ for some $f_{\beta} \in F_{\beta}$ and $a_{ij} \in R$. Recall that we can write $$x_{ij} = m_{ij} + n_{ij}, \quad m_{ij} = \sum_{\substack{\lambda \in \Lambda \\ ext{finite}}} m_{ij}^{\lambda}, \quad ext{and} \quad n_{ij} = \sum_{\substack{\lambda \in \Lambda \\ ext{finite}}} n_{ij}^{\lambda}.$$ Note that each m_{ij}^{λ} is contained in one of the Q_n 's, and hence, in F_{α} . Therefore m_{ij} and n_{ij} are elements of F_{α} , and hence, are elements of M_{α} and N_{α} respectively. Further, by the inductive hypothesis, $f_{\beta} = m_{\beta} + n_{\beta}$ for some $m_{\beta} \in M_{\beta} \subseteq M_{\alpha}$ and $n_{\beta} \in N_{\beta} \subseteq N_{\alpha}$, whence it follows that $F_{\alpha} = M_{\alpha} + N_{\alpha}$, thereby verifying (v). Next, note that the composition $$F_{\alpha+1} \rightarrow M_{\alpha+1} \rightarrow M_{\alpha+1}/M_{\alpha}$$ has kernel containing F_{α} and therefore, $M_{\alpha+1}/M_{\alpha}$ is a quotient of $F_{\alpha+1}/F_{\alpha}$, which is countably generated, and hence so is $M_{\alpha+1}/M_{\alpha}$. Next, since M_{α} is a direct summand of F_{α} , it is also a direct summand of F. Hence, M_{α} is a direct summand of $M_{\alpha+1}$. Thus, we can write $$M_{\alpha+1} = M_{\alpha} \oplus M'_{\alpha+1}$$ where $M'_{\alpha+1}$ is countably generated. When α is a limit ordinal, set $M'_{\alpha} = 0$. It is now easy to see that $$M_{\alpha} = \bigoplus_{\beta \leq \alpha} M_{\beta}'.$$ And since $M = \bigcup_{\alpha} M_{\alpha}$, it follow that $$M = \bigoplus_{\alpha} M'_{\alpha}$$, thereby completing the proof. **LEMMA 1.4.** Let M be a projective module over a local ring (A, \mathfrak{m}) and $x \in M$. Then there exists a direct summand of M containing x which is a free module. *Proof.* We can write F as a direct summand of a free A-module $F = M \oplus N$. Choose a basis $B = \{u_i\}_{i \in I}$ such that x has the minimum possible non-zero coefficients when expressed as an A-linear combination of the u_i 's. Write $$x = a_1 u_1 + \dots + a_n u_n$$ for some $0 \neq a_i \in A$. Note that we must have $a_i \notin \sum_{j \neq i} Aa_j$ for $1 \leq i \leq n$. Indeed, if we could write $$a_n = b_1 a_1 + \cdots + b_{n-1} a_n,$$ then $$x = \sum_{i=1}^{n-1} a_i (u_i + b_i u_n),$$ and $\{u_1 + b_1 u_n, \dots, u_{n-1} + b_{n-1} u_n, u_n\} \cup \{u_j : j \neq 1, \dots, n\}$ is also a basis of F, which would contradict the minimality in the choice of B. Set $u_i = y_i + z_i$ where $y_i \in M$ and $z_i \in N$. Since $x \in M$, we must have $$x = a_1 y_1 + \dots + a_n y_n.$$ We can write each y_i in coordinates as $$y_i = \sum_{j=1}^n c_{ij} u_j + t_i,$$ for some $c_{ij} \in A$ and $t_i \in F$ which is a linear combination of u_k 's for $k \neq 1, ..., n$. Thus $$x = \sum_{i=1}^{n} a_i y_i = \sum_{i=1}^{n} \sum_{j=1}^{n} a_i c_{ij} u_j + \sum_{i=1}^{n} a_i t_i.$$ By the uniqueness of coordinate representation with respect to a basis, we get $$a_i = \sum_{j=1}^n a_j c_{ji} \implies \sum_{j=1}^n a_j (c_{ji} - \delta_{ji}) = 0$$ for $1 \le i \le n$. Since elements in $A \setminus m$ are invertible, we must have that $c_{ii} \in 1 + m$ for all $1 \le i \le n$ and $c_{ij} \in m$ for $1 \le i \ne j \le n$. In particular, this means the matrix $\mathbf{C} = (c_{ij})$ is invertible since its determinant is in 1 + m. We claim that $\widetilde{B} = \{y_1, \dots, y_n\} \cup \{u_i : i \neq 1, \dots, n\}$ is a basis for F. The invertibility of \mathbb{C} shows that each u_i can be written as an A-linear combination of elements in \widetilde{B} , and hence, the A-linear span of \widetilde{B} is all of F. To see that \widetilde{B} is A-linearly independent, suppose $$0 = \sum_{i=1}^{n} f_i y_i + \sum_{\lambda \neq 1, \dots, n} f_{\lambda} u_{\lambda}.$$ Substituting the representation of y_i in the basis B, we have $$0 = \sum_{i=1}^{n} f_i \left(\sum_{j=1}^{n} c_{ij} u_j + t_i \right) + \sum_{\lambda \neq 1, \dots, n} f_{\lambda} u_{\lambda}.$$ Therefore, in particular, $$(f_1 \quad \cdots \quad f_n) \mathbf{C} = 0,$$ and the invertibility of ${\bf C}$ would mean $f_i=0$ for $1 \le i \le n$; consequently, $$\sum_{\lambda \neq 1,...,n} f_{\lambda} u_{\lambda} = 0,$$ so that $f_{\lambda} = 0$ for all λ . Hence \widetilde{B} is a basis of F. Let F_1 denote the A-submodule generated by $\{y_1, \ldots, y_n\}$. This is a free direct summand of F contained in M, and hence, is a free direct summand of M containing x. *Proof of Theorem* 1.2. M is a direct summand of a free module, and every free module is a direct sum of countably generated submodules. Hence M itself is a direct sum of countably generated projective modules. Therfore, it is sufficient to prove the theorem assuming M is countably generated. Let $\{\omega_1, \omega_2, \ldots\}$ be a countable generating set for M. By Lemma 1.4, there exists a free direct summand F_1 of M containing ω_1 . Write $M = F_1 \oplus M_1$ and let ω_2' denote the M_1 component of ω_2 . Since M_1 is projective, using Lemma 1.4, there exists a free direct summand F_2 of M_1 containing ω_2 . Then $M_1 = F_2 \oplus M_2$ so that $M = F_1 \oplus F_2 \oplus M_2$. Let ω_3' denote the M_2 -component of ω_3 and repeat the above process ad infinitum. That would yield $M = F_1 \oplus F_2 \oplus \cdots$, whence M is free. #### §§ Projective Covers **DEFINITION 1.5.** Let R be a ring and M an R-module. A submodule K of M is said to be *small* if for any R-submodule N of M $$K + N = M \Longrightarrow N = M$$. We denote this by $K \ll M$. We give two standard examples of small submodules. - (i) Let (R, \mathfrak{m}, k) be a local ring, M a finite R-module, and $K = \mathfrak{m}M$. Due to Nakayama's lemma, for any R-submodule N of M, if $N + \mathfrak{m}M = M$, then N = M. Thus $K \ll M$. - (ii) Similarly, let (R, \mathfrak{m}, k) be an Artinian local ring, M any R-module, and $K = \mathfrak{m}M$. If N is an R-submodule of M such that $N + \mathfrak{m}M = M$, then $\mathfrak{m}(M/N) = M/N$. But since \mathfrak{m} is nilpotent, we must have that M/N = 0, so that M = N. Thus $K \ll M$. **DEFINITION 1.6.** Let R be a ring and M an R-module. A *projective cover* of M is a pair (P, f), where P is a projective R-module and $f: P \to M$ a surjective R-linear map such that $\ker f \ll M$. **REMARK 1.7.** Unlike the situation for injective hulls, projective covers need not always exist. For example, consider the \mathbb{Z} -module $\mathbb{Z}/p\mathbb{Z}$, where p>0 is a rational prime. Suppose $f:P\to\mathbb{Z}/p\mathbb{Z}$ is a projective cover. Since P is a projective \mathbb{Z} -module, it must be free. Set $K=\ker f\ll P$. Since P/K is a simple \mathbb{Z} -module, K is a maximal submodule of P. On the other hand, since $K\ll P$, for any proper submodule N of K, if N were not contained in K, then K+N=P, whence N=P, a contradiction. Thus, K must contain every proper submodule of P. This is absurd, since P admits quotients of the form $\mathbb{Z}/q\mathbb{Z}$ for primes $q\neq p$. **THEOREM 1.8.** Every module over an Artinian ring admits a projective cover. *Proof.* Let A be an Artinian ring, so that we can write $A = A_1 \times \cdots \times A_n$ as a product of Artinian local rings $(A_i, \mathfrak{m}_i, k_i)$ for $1 \le i \le n$. Any A-module M is of the form $M_1 \times \cdots \times M_n$ where each M_i is an A_i -module. From this reduction, it is easy to see that it suffices to prove the theorem in the Artinian local case. Therefore, let (A, \mathfrak{m}, k) be an Artinian local ring and M an A-module. Choose a k-basis $\{\overline{x}_{\lambda} : \lambda \in \Lambda\}$ of $M/\mathfrak{m}M$, where $x_{\lambda} \in M$ for all $\lambda \in \Lambda$. Let F denote the free A-module on Λ , i.e., $$F = \bigoplus_{\lambda \in \Lambda} A e_{\lambda},$$ and let $f: F \to M$ be the unique A-linear map sending $e_{\lambda} \mapsto \overline{x}_{\lambda}$ for all $\lambda \in \Lambda$. The k-linear independence of Λ forces $\ker f = \mathfrak{m}F \ll F$ due to (ii). Using the projectivity of F as an R-module, we can lift f to a map $\widetilde{f}: F \to M$ making $$F \xrightarrow{\widetilde{f}} M / \mathfrak{m}M$$ commute. Since f is surjective, we have $\mathfrak{m}M+\operatorname{im}\widetilde{f}=M$, that is, $\mathfrak{m}\big(M/\operatorname{im}\widetilde{f}\big)=M/\operatorname{im}\widetilde{f}$. Again, since \mathfrak{m} is nilpotent, we have $M/\operatorname{im}\widetilde{f}=0$, that is, \widetilde{f} is surjective. Finally, since $\ker\widetilde{f}\subseteq\ker f$, it is also a small submodule of F, and hence (F,\widetilde{f}) is a projective cover of M. **PROPOSITION 1.9.** Let M be an R-module. Then $$\bigcap \Big\{ \text{maximal proper submodules of } M \Big\} = \sum \Big\{ \text{small submodules of } M \Big\}.$$ This submodule is called the radical of M and is denoted by rad(M). *Proof.* If $K \ll M$ and L is any maximal proper submodule of M, then K must be contained in L, else K + L = M which would impoly L = M, a contradiction. Thus every small submodule of M is contained in every maximal proper submodule of M. Hence, the sum of all small submodules of M is contained in the intersection of all maximal proper submodules of M. Conversely, suppose $x \in M$ is contained in the intersection of all maximal proper submodules of M. We claim that $Rx \ll M$. Indeed, if N is a proper submodule of M such that Rx + N = M, then M/N is a cyclic R-module, so that it admits a non-zero simple quotient. In particular, N is contained in a maximal proper submodule K of M. But $x \in K$ by assumption; and hence $Rx + N \subseteq K \subsetneq M$, a contradiction. This shows that $Rx \ll M$, thereby completing the proof. **PROPOSITION 1.10.** If $\{M_{\lambda}\}_{{\lambda}\in\Lambda}$ is a collection of R-module, then $$\operatorname{rad}\left(\bigoplus_{\lambda\in\Lambda}M_{\lambda}\right)=\bigoplus_{\lambda\in\Lambda}\operatorname{rad}(M_{\lambda}).$$ *Proof.* Straightforward. **PROPOSITION 1.11.** Let \mathfrak{R} denote the Jacobson radical of a ring R. Then for any R-module M, $\mathfrak{R}M \subseteq \operatorname{rad}(M)$. *Proof.* If $N \subsetneq M$ is a maximal proper submodule of M, then M/N is isomorphic to R/\mathfrak{m} for some maximal ideal \mathfrak{m} of R. Since $\mathfrak{R} \subseteq \mathfrak{m}$, $\mathfrak{R} M \subseteq N$. Thus $\mathfrak{R} M \subseteq \mathrm{rad}(M)$. **PROPOSITION 1.12.** Let R be a ring and P a projective R-module. Then $rad(P) = \Re P$, where \Re denotes the Jacobson radical of R. *Proof.* There is an R-module Q such that $F = P \oplus Q$ is a free module. In view of Proposition 1.10 and Proposition 1.11 $$\Re P \oplus \Re Q \subseteq \operatorname{rad}(P) \oplus \operatorname{rad}(Q) = \operatorname{rad}(F) = \Re F = \Re P \oplus \Re Q.$$ Hence $rad P = \Re P$. **THEOREM 1.13.** A flat module over an Artinian ring is projective. *Proof.* Let R be an Artinian ring and E a flat R-module. In view of Theorem 1.8, there exists a projective cover $f: P \to E$. Set $K = \ker f \ll P$, and hence $\ker f \subseteq \Re P$. Now since P and E are flat R-modules, the "multiplication maps" $$\mu_1: \mathfrak{R} \otimes_R P \to \mathfrak{R}P$$ and $\mu_2: \mathfrak{R} \otimes_R E \to \mathfrak{R}E$ are isomorphisms, which can be seen either using the equational criterion of flatness of just invoking the Tor long exact sequence. Further note that the diagram $$egin{aligned} 0 & \longrightarrow \mathfrak{R} \otimes_R K & \stackrel{\mathbb{1} \otimes \iota}{\longrightarrow} \mathfrak{R} \otimes_R P & \stackrel{\mathbb{1} \otimes f}{\longrightarrow} \mathfrak{R} \otimes_R E & \longrightarrow 0 \ & \downarrow^{\mu_1} & \downarrow^{\mu_2} & \downarrow^{\mu_2} \ & \mathfrak{R} P & \stackrel{g}{\longrightarrow} \mathfrak{R} E \end{aligned}$$ commutes where g is the restriction of f to $\Re P$. Since E is flat, the Tor long exact sequence gives that the top row is short exact. Using the fact that μ_1 and μ_2 are isomorphisms, we can write $$K = \ker f = \ker g = \mu_1(\ker(\mathbb{1} \otimes f)) = \mu_1(\operatorname{im}(\mathbb{1} \otimes \iota)) = \mathfrak{R}K.$$ But \Re is nilpotent in R, and hence K = 0, that is, $E \cong P$ is projective. **COROLLARY.** An arbitrary product of projective modules over an Artinian ring is projective. *Proof.* This follows immediately from Theorem 2.9 and Theorem 1.13. ## §2 FLAT MODULES **DEFINITION 2.1.** An *A*-module *M* is said to be *flat* if the functor $- \otimes_A M : \mathfrak{Mod}_A \to \mathfrak{Mod}_A$ is exact. **DEFINITION 2.2.** Let M be an A-module and $\sum_{i=1}^n f_i x_i = 0$ be a relation in M for $f_i \in A$ and $x_i \in M$. We say that the relation is trivial if there exists an integer $m \ge 0$, elements $y_j \in M$ for $1 \le j \le m$ and $a_{ij} \in A$ for $1 \le i \le n$ and $1 \le j \le m$ such that $$x_i = \sum_{j=1}^m a_{ij} y_j \quad \forall \ 1 \le i \le n \quad \text{and} \quad 0 = \sum_{j=1}^n a_{ij} f_i \quad \forall \ 1 \le j \le m.$$ **LEMMA 2.3 (EQUATIONAL CRITERION OF FLATNESS).** An *A*-module *M* is flat if and only if every relation in *M* is trivial. *Proof.* Suppose M is flat and $\sum_{i=1}^{n} f_i x_i = 0$ is a relation in M. Let $\mathfrak{a} = (f_1, \ldots, f_n) \subseteq A$ and consider the A-linear surjection $A^n = \bigoplus_{i=1}^{n} Ae_i \to I$ given by $e_i \mapsto f_i$ whose kernel is $K \subseteq A^n$. That is, $0 \to K \to A^n \to \mathfrak{a} \to 0$. Since M is flat, tensoring with M preserves exactness and we have an exact sequence $$0 \longrightarrow K \otimes_A M \longrightarrow A^n \otimes_A M \longrightarrow \mathfrak{a} \otimes_A M \longrightarrow 0.$$ Note that the natural map $\mathfrak{a} \otimes_A M \to R \otimes_A M$ is injective due to the flatness of M. Consequently, $\sum_{i=1}^n f_i \otimes x_i$ maps to 0 in $R \otimes_A M$ and hence, must be zero in $\mathfrak{a} \otimes_A M$. The exactness of the above sequence furnishes an element $\sum_{j=1}^m k_j \otimes y_j \in K \otimes_A M$ that maps to 0 in $A^n \otimes_A M$. Each k_i can be written in the form $$\sum_{i=1}^{n} a_{ij} e_i \quad \forall \ 1 \leq j \leq m,$$ and hence, the image of $\sum_{j=1}^{m} k_j \otimes y_j$ in $A^n \otimes_A M$ is $$\sum_{j=1}^{m}\sum_{i=1}^{m}a_{ij}e_{i}\otimes y_{j}=\sum_{i=1}^{n}e_{i}\otimes\left(\sum_{j=1}^{m}a_{ij}y_{j}\right)=0,$$ and the conclusion follows. Conversely, suppose every relation in M is trivial and let \mathfrak{a} be a finitely generated ideal of A. It suffices to show that $\operatorname{Tor}_1^A(A/\mathfrak{a},M)=0$, which is equivalent (from the Tor long exact sequence) to showing that the map $\mathfrak{a}\otimes_A M\to A\otimes_A M$ is injective. Suppose $\sum_{i=1}^n f_i \otimes x_i \in \mathfrak{a} \otimes_A M$ maps to 0 in $A \otimes_A M$. Then, $\sum_{i=1}^n f_i x_i = 0$ in M, consequently, there is an $m \ge 0$, $y_i \in M$, $a_{i,j} \in M$ for $1 \le i \le n$ and $1 \le j \le m$ such that $$x_i = \sum_{j=1}^m a_{ij} y_j \quad \forall \ 1 \le i \le n \quad \text{and} \quad 0 = \sum_{i=1}^n a_{ij} f_i \quad \forall \ 1 \le j \le m.$$ Consequently, in $\mathfrak{a} \otimes_A M$, $$\sum_{i=1}^n f_i \otimes x_i = \sum_{i=1}^n f_i \otimes \left(\sum_{j=1}^m a_{ij} y_j\right) = \left(\sum_{i=1}^n a_{ij} f_i\right) \otimes y_j = 0.$$ This proves injectivity, thereby completing the proof. **LEMMA 2.4.** Let (A, \mathfrak{m}, k) be a local ring and M a flat A-module. If $x_1, \ldots, x_n \in M$ are such that their images $\overline{x}_1, \ldots, \overline{x}_n \in M/\mathfrak{m}M$ are linearly independent over k, then x_1, \ldots, x_n are linearly independent over A. *Proof.* We prove this statement by induction on n. If n = 1, then $a \in A$ is such that $ax_1 = 0$ and $\overline{x}_1 \neq 0$. From Lemma 2.3, there are $b_1, \ldots, b_m \in A$ and $y_1, \ldots, y_m \in M$ such that $$x_1 = \sum_{j=1}^m b_j y_j$$ and $ab_j = 0 \quad \forall \ 1 \le j \le m$. Since $x_1 \notin \mathfrak{m}M$, it follows that at least one of the b_j 's must be a unit, whence a = 0. Now, suppose n > 1 and there is a relation $\sum_{i=1}^{n} a_i x_i = 0$ in M. From Lemma 2.3, there is an $m \ge 0$, $y_j \in M$, and $b_{ij} \in A$ for $1 \le i \le n$ and $1 \le j \le m$ such that $$x_i = \sum_{j=1}^m b_{ij} y_j \quad \forall \ 1 \le i \le n \quad \text{and} \quad 0 = \sum_{i=1}^n b_{ij} a_i \quad \forall \ 1 \le j \le m.$$ Since $x_n \notin \mathfrak{m}M$, at least one of the b_{nj} 's must be a unit, whence we can write $$a_n = \sum_{i=1}^{n-1} c_i a_i,$$ for some $c_i \in A$ for $1 \le i \le n-1$. Therefore, we have $$0 = \sum_{i=1}^{n} a_i x_i = \sum_{i=1}^{n-1} a_i (x_i + c_i x_n).$$ Since $\overline{x}_1, \dots, \overline{x}_{n-1}$ are k-linearly independent in $M/\mathfrak{m}M$, we see that $\overline{x}_1 + \overline{c}_1\overline{x}_n, \dots, \overline{x}_{n-1} + \overline{c}_{n-1}\overline{x}_n$ must also be k-linearly independent. Due to the induction hypothesis, $a_1 = \dots = a_{n-1} = 0$ and hence, $a_n = 0$. This completes the proof. **THEOREM 2.5.** Let (A, \mathfrak{m}, k) be a local ring. If M is a finitely generated flat A-module, then M is free. *Proof.* Let $x_1, \ldots, x_n \in M$ be a minimal generating set, that is, $\overline{x}_1, \ldots, \overline{x}_n$ are k-linearly independent in $M/\mathfrak{m}M$. Due to the preceding lemma, x_1, \ldots, x_n are linearly independent over A, and hence, M is a free A-module. #### §§ Cartier's Theorem **THEOREM 2.6 (CARTIER).** Let M be a finitely generated module over an integral domain A. If for every $\mathfrak{m} \in \operatorname{MaxSpec}(A)$, $M_{\mathfrak{m}}$ is free as an $A_{\mathfrak{m}}$ -module, then M is a projective A-module. *Proof.* First show that M is a torsion-free A-module. Suppose am=0 for some $0 \neq a \in A$ and $m \in M$. Let $\mathfrak a$ be the annihilator of m in A and $\mathfrak m$ a maximal ideal containing A. Note that $\frac{a}{1}\frac{m}{1}=0$ in $M_{\mathfrak m}$, which is free over $A_{\mathfrak m}$, an integral domain, whence, is torsion free. That is, $\frac{m}{1}=0$, whence, there is some $s \in A \setminus \mathfrak m$ such that sm=0, which is absurd, since $\mathfrak a \subseteq \mathfrak m$. This shows that sm=0 is torsion-free. Now, choose a set of generators $\{m_i: 1 \le i \le n\}$ for M over A. Let $\mathscr P$ be the collection of A-endomorphisms of M which are of the form $$m \longmapsto \sum_{i=1}^n f_i(m)m_i,$$ where $f_1, ..., f_n : M \to A$ are A-module homomorphisms. Note that \mathscr{P} is an A-submodule of $\operatorname{End}_A(M)$. We shall show that $\operatorname{id}_M \in \mathscr{P}$. Let \mathfrak{m} be a maximal ideal of A. We know that $M_{\mathfrak{m}}$ is free as an $A_{\mathfrak{m}}$ -module and hence, there are $A_{\mathfrak{m}}$ -module homomorphisms $f_i: M_{\mathfrak{m}} \to A_{\mathfrak{m}}$ such that $$m' = \sum_{i=1}^n f_i'(m') \frac{m_i}{1} \quad \forall m' \in M_{\mathfrak{m}}.$$ To see that this is possible, first consider an $A_{\mathfrak{m}}$ -basis $\{e_i: 1 \leq i \leq N\}$ for $M_{\mathfrak{m}}$. We can write $$e_i = \sum_{j=1}^n a_{ij} \frac{m_j}{1} \quad \forall \ 1 \leq i \leq N.$$ Further, there are $A_{\mathfrak{m}}$ -linear maps $f_i: M_{\mathfrak{m}} \to A_{\mathfrak{m}}$ such that $$m' = \sum_{j=1}^{N} f_j(m')e_j.$$ Set $$f'_j(m') = \sum_{i=1}^N a_{ij} f_i(m') \quad \forall \ m' \in M_{\mathfrak{m}}.$$ Then, $$\sum_{j=1}^{n} f'_{j}(m') \frac{m_{j}}{1} = \sum_{i=1}^{N} \sum_{j=1}^{n} a_{ij} f_{i}(m') \frac{m_{j}}{1} = \sum_{i=1}^{N} f_{i}(m') e_{i} = m'.$$ Coming back, since M is torsion-free, the canonical map $M \to M_{\mathfrak{m}}$ is an injective map of A-modules. Further, we can find an $s \in A \setminus \mathfrak{m}$ such that $sf_i'\left(\frac{m_j}{1}\right) \in A$ for $1 \le i,j \le n$. Note that $m' \mapsto sf'_i(m')$ is $A_{\mathfrak{m}}$ -linear as a map $M_{\mathfrak{m}} \to A_{\mathfrak{m}}$, and hence, is A-linear. The restriction of this map to $M \subseteq M_{\mathfrak{m}}$ takes values in A. Thus, we can identify sf'_i with an A-linear map $M \to A$. Further, for every $m \in M$, we have $$sm = \sum_{i=1}^{n} sf_i'(m)m_i.$$ That is, $s \cdot \mathbf{id}_M \in \mathscr{P}$. Now, let \mathfrak{a} be the collection of all $a \in A$ such that $a \cdot \mathbf{id}_M \in \mathscr{P}$. Then \mathfrak{a} is an ideal of A. If \mathfrak{a} were a proper ideal, it would be contained in a maximal ideal \mathfrak{m} . But from our preceding conclusion, there is some $s \in A \setminus \mathfrak{m}$ such that $s \cdot \mathbf{id}_M \in \mathscr{P}$, a contradiction. Thus, $\mathfrak{a} = A$, in particular, $\mathbf{id}_M \in \mathscr{P}$. Finally, we show that M is projective. We have shown that there are A-linear maps $f_i:M\to A$ such that $$m = \sum_{i=1}^{n} f_i(m) m_i \quad \forall \ m \in M.$$ Let F be the free module $\bigoplus_{i=1}^n Ae_i$ and let $g: F \to M$ be given by $e_i \mapsto m_i$ and $f: M \to F$ given by $$f(m) = \sum_{i=1}^{n} f_i(m)e_i.$$ By our construction, $g \circ f = \mathbf{id}_M$, and hence M is a direct summand of F, i.e. M is projective. COROLLARY. A finitely generated flat module over an integral domain is projective. *Proof.* Follows from Theorem 2.6 and Theorem 2.5. ### §§ Finitely Presented Modules and Flatness **THEOREM 2.7.** Let M be a finitely presented A-module and N be any A-module. If B is a flat A-algebra, then there is a natural isomorphism $$\operatorname{Hom}_A(M,N) \otimes_A B \cong \operatorname{Hom}_B(M \otimes_A B, N \otimes_A B).$$ *Proof.* Fixing N and B, there are contravariant functors $\mathscr{F},\mathscr{G}:\mathfrak{Mod}_A^{op}\to\mathfrak{Mod}_B$ given by $$\mathscr{F}(M) = \operatorname{Hom}_A(M, N) \otimes_A B \qquad \mathscr{G}(M) = \operatorname{Hom}_B(M \otimes_A B, N \otimes_A B).$$ Define the natural transformation $\lambda: \mathscr{F} \Longrightarrow \mathscr{G}$ given by $$\lambda_M(f \otimes b) = b \cdot (f \otimes \mathbf{id}_B).$$ We first show that this is natural in M. Indeed, suppose $\varphi: M' \to M$ is A-linear, we wish to show that $$\begin{array}{ccc} \mathscr{F}(M) & \longrightarrow \mathscr{F}(M') \\ \lambda_M & & \downarrow \lambda_{M'} \\ \mathscr{G}(M) & \longrightarrow \mathscr{G}(M') \end{array}$$ commutes. Consider $f \otimes b \in \mathscr{F}(M)$, which maps to $f \circ \varphi \otimes b \in \mathscr{F}(M')$, which maps to $b \cdot (f \circ \varphi \otimes \mathbf{id}_B) \in \mathscr{G}(M')$. On the other hand, under λ_M , $f \otimes b$ maps to $b \cdot (f \otimes \mathbf{id}_B) \in \mathscr{G}(M)$, which maps to $b \cdot (f \circ \varphi \otimes \mathbf{id}_B)$, which shows commutativity. Next, suppose $M = A^n$ were free of finite rank. In this case, there is a sequence of isomorphisms $$\operatorname{Hom}_A(A^n, N) \otimes_A B \cong N^n \otimes_A B \cong (N \otimes_A B)^n \cong \operatorname{Hom}_B(B^n, N \otimes_A B) \cong \operatorname{Hom}_B(A^n \otimes_A B, N \otimes_A B).$$ Under the above isomorphism, $f \otimes b$ first maps to $(f(e_1), \ldots, f(e_n))^{\top} \otimes b$ in $N^n \otimes_A B$. Under the second map, it goes to $(f(e_1) \otimes b, \ldots, f(e_n) \otimes b)^{\top}$ in $(N \otimes_A B)^n$. Under the third map it goes to the unique morpism $g: B^n \to N \otimes_A B$ that sends $e_i \mapsto f(e_i) \otimes b$. Consider the map $b \cdot (f \otimes \mathbf{id}_B) \in \operatorname{Hom}_B(A^n \otimes_A B, N \otimes_A B)$. Under this map, $e_i \in B^n$ is the same as $e_i \otimes 1 \in A^n \otimes B$, which maps to $b \cdot (f(e_i) \otimes 1) = f(e_i) \otimes b \in N \otimes_A B$. It follows that this is the same as the aforementioned g. Thus, λ_M is an isomorphism in this case. Finally, there is an exact sequence $A^m \to A^n \to M \to 0$ since M is finitely presented. This fits into a commutative diagram $$\begin{array}{cccc} 0 & \longrightarrow \mathscr{F}(M) & \longrightarrow \mathscr{F}(A^n) & \longrightarrow \mathscr{F}(A^m) \\ \downarrow & & \downarrow \lambda & & \downarrow \lambda \\ 0 & \longrightarrow \mathscr{G}(M) & \longrightarrow \mathscr{G}(A^n) & \longrightarrow \mathscr{G}(A^m) \end{array}$$ where the last two λ 's are isomorphisms. Due to the Five Lemma (after adding another column of zeros to the left), we see that $\lambda_M : \mathscr{F}(M) \to \mathscr{G}(M)$ must be an isomorphism, thereby completing the proof. **COROLLARY.** Let M be a finitely presented A-module and N be any A-module. Then for every $\mathfrak{p} \in \operatorname{Spec}(A)$, $$\operatorname{Hom}_A(M,N)_{\mathfrak{p}} \cong \operatorname{Hom}_{A_{\mathfrak{p}}}(M_{\mathfrak{p}},N_{\mathfrak{p}}).$$ *Proof.* Note that the localization functor at $\mathfrak{p} \in \operatorname{Spec}(A)$ is naturally isomorphic to $-\otimes_A A_{\mathfrak{p}}$. **THEOREM 2.8.** Let M be a finitely presented A-module. Then the following are equivalent - (a) *M* is projective. - (b) $M_{\mathfrak{p}}$ is a free $A_{\mathfrak{p}}$ -module for all $\mathfrak{p} \in \operatorname{Spec}(A)$. - (c) $M_{\mathfrak{m}}$ is a free $A_{\mathfrak{m}}$ -module for all $\mathfrak{m} \in \operatorname{MaxSpec}(A)$. *Proof.* That $(a) \Longrightarrow (b) \Longrightarrow (c)$ is obvious. It suffices to show that $(c) \Longrightarrow (a)$. To this end, we shall show that $\operatorname{Hom}_A(M,-)$ is an exact functor. We know that $\operatorname{Hom}_A(M,-)$ is left exact so let $0 \to N' \to N \to N'' \to 0$ be a short exact sequence. Upon application of the above functor, note that we have an exact sequence $$0 \longrightarrow \operatorname{Hom}_A(M, N') \longrightarrow \operatorname{Hom}_A(M, N) \longrightarrow \operatorname{Hom}_A(M, N'') \longrightarrow K \longrightarrow 0$$ where K is the cokernel. Localizing the above sequence at a maximal ideal \mathfrak{m} and using the exactness of localization and the preceding result, we have an exact sequence $$0 \longrightarrow \operatorname{Hom}\nolimits_{A_{\mathfrak{m}}}(M_{\mathfrak{m}}, N'_{\mathfrak{m}}) \longrightarrow \operatorname{Hom}\nolimits_{A_{\mathfrak{m}}}(M_{\mathfrak{m}}, N_{\mathfrak{m}}) \longrightarrow \operatorname{Hom}\nolimits_{A_{\mathfrak{m}}}(M_{\mathfrak{m}}, N''_{\mathfrak{m}}) \rightarrow K_{\mathfrak{m}} \rightarrow 0.$$ But since $M_{\mathfrak{m}}$ is a free $A_{\mathfrak{m}}$ -module, the functor $\operatorname{Hom}_{A_{\mathfrak{m}}}(M_{\mathfrak{m}},-)$ is exact, whence $K_{\mathfrak{m}}=0$ for every $\mathfrak{m} \in \operatorname{MaxSpec}(A)$. This shows that K=0, that is, M is projective. **THEOREM 2.9.** Let A be a Noetherian ring and $\{M_{\lambda}\}_{{\lambda}\in\Lambda}$ a family of flat A-modules. Then $M=\prod_{{\lambda}\in\Lambda}M_{\lambda}$ is also a flat A-module. *Proof.* Recall that M being flat is equivalent to $\operatorname{Tor}_1^A(R/I,M)=0$ for every finitely generated ideal I of A. This is equivalent to showing that the natural "multiplication" map $I\otimes_A M\to IM$ is injective for every finitely generated ideal I of A. Let $I = (a_1, ..., a_n)$, and let $f: A^n \to A$ be the map given by $$f(x_1,\ldots,x_n)=a_1x_1+\cdots+a_nx_n,$$ and set $K = \ker f \subseteq A^n$. Since each M_{λ} is flat, tensoring gives us an exact sequence $$0 \to K \otimes_A M_\lambda \to M_\lambda^n \to M_\lambda$$. Consider an element in $\ker(I \otimes_A M \to IM)$, which can be written as $$\sum_{i=1}^{n} a_i \otimes \xi_i$$ for some $\xi_i \in M$ for $1 \le i \le n$. That is, $$\sum_{i=1}^{n} a_i \xi_i = 0 \in IM.$$ We can further write $\xi_i = (\xi_i^{\lambda})_{\lambda \in \Lambda}$. Hence, for each $\lambda \in \Lambda$, $$\sum_{i=1}^{n} a_i \xi_i^{\lambda} = 0 \quad \text{in } M_{\lambda}.$$ Hence, $$\left(\xi_1^{\lambda},\ldots,\xi_n^{\lambda}\right)\in\ker\left(M_{\lambda}^n\to M_{\lambda}\right)=\operatorname{im}\left(K\otimes_A M_{\lambda}\to M_{\lambda}^n\right).$$ Since A is Noetherian, K is a finite A-module generated by some $\beta_1, \dots, \beta_r \in K$ and write $$\beta_i = \left(b_1^i, \dots, b_n^i\right) \in K \subseteq A^n$$ for $1 \le i \le r$. Now, $(\xi_1^{\lambda}, \dots, \xi_n^{\lambda})$ is the image of some $$\sum_{i=1}^r \beta_i \otimes \eta_i^{\lambda} \in K \otimes_A M_{\lambda}$$ for some $\eta_i^{\lambda} \in M_{\lambda}$ for $1 \le i \le r$ and $\lambda \in \Lambda$. Therefore, $$\sum_{i=1}^r \left(b_1^i, \dots, b_n^i\right) \otimes \eta^{\lambda} \longmapsto \left(\sum_{i=1}^r b_1^i \eta_i^{\lambda}, \dots, \sum_{i=1}^r b_n^i \eta_i^{\lambda}\right) = \left(\xi_1^{\lambda}, \dots, \xi_n^{\lambda}\right),$$ so that $$\xi_i^{\lambda} = \sum_{j=1}^r b_i^j \eta_j^{\lambda}$$ for $1 \le i \le n$ and $\lambda \in \Lambda$. Further, since $\beta_j \in K$, we have $$\sum_{i=1}^{n} a_i b_i^j = 0 \quad \text{for } 1 \le j \le r.$$ Setting $\eta_i = \left(\eta_i^{\lambda}\right)_{\lambda \in \Lambda} \in M$ for $1 \le i \le r$, we have $$\sum_{i=1}^{n} a_i \otimes \xi_i = \sum_{i=1}^{n} a_i \otimes \left(\sum_{j=1}^{r} b_i^j \eta_j\right)$$ $$= \sum_{i=1}^{n} \sum_{j=1}^{r} a_i \otimes b_i^j \eta_j$$ $$= \sum_{j=1}^{r} \left(\sum_{i=1}^{n} a_i \otimes b_i^j\right) \otimes \eta_j$$ $$= 0,$$ thereby completing the proof. **REMARK 2.10.** A ring is said to be *coherent* if every finitely generated ideal is finitely presented. We note that Theorem 2.9 holds even for coherent rings with the same proof, since the Noetherian-ness of A was used only to conclude the finiteness of K, which also follows from the fact that the kernel of a surjective homomorphism from a finitely generated module to a finitely presented module is again finitely generated. # §3 INJECTIVE MODULES **DEFINITION 3.1.** An A-module M is said to be *injective* if the (contravariant) functor $\operatorname{Hom}_A(-,M)$: $\operatorname{\mathfrak{Mod}}_A^{op} \to \operatorname{\mathfrak{Mod}}_A$ is exact. **THEOREM 3.2 (BAER'S CRITERION).** An *A*-module *E* is injective if and only if for every ideal $\mathfrak{a} \leq A$, every *A*-linear map $\mathfrak{a} \to E$ can be extended to an *A*-linear map $A \to E$. *Proof.* The forward direction is tautological. We prove the converse. Suppose $N \leq M$ are A-modules and $\alpha: N \to E$ is an A-linear map. We shall extend α to a map $M \to E$. Let Σ be the collection of all pairs (N', α') where $N \leq N' \leq M$ and $\alpha' : N' \to E$ is A-linear such that $\alpha'|_N = \alpha$. Using a standard Zorn argument, Σ admits a maximal element $\alpha' : N' \to E$ extending α . We contend that N' = M. Suppose not. Then choose some $x \in M \setminus N'$ and let $\mathfrak{a} = (N': Ax) \leq A$. Consider the composite map $\mathfrak{a} \xrightarrow{x} N' \xrightarrow{\alpha'} E$, which extends to a map $f: A \to E$ and set $N'' = N' + Ax \leq M$. Define $\alpha'': N'' \to E$ by $$\alpha''(n'+ax) = \alpha'(n') + f(a).$$ This is well defined, for if $n'_1 + a_1x = n'_2 + a_2x$, then $(a_1 - a_2)x = n'_2 - n'_1$, i.e. $(a_1 - a_2) \in \mathfrak{a}$ and hence, $$f(a_1-a_2) = \alpha'((a_1-a_2)x) = \alpha'(n_2'-n_1').$$ But note that $(N', \alpha') < (N'', \alpha'')$ in Σ , a contradiction. Thus N' = M and we are done. **COROLLARY.** Let A be a noetherian ring. If $\{E_i : i \in I\}$ is a collection of injective A-modules, then $E = \bigoplus_{i \in I} E_i$ is an injective A-module. *Proof.* Let $\mathfrak{a} \leq A$ and $f : \mathfrak{a} \to E$ be A-linear. Note that $\mathfrak{a} = (a_1, \dots, a_n)$ is finitely generated, and each $f(a_i)$ has support contained in a finite subset of I. Thus, $f(\mathfrak{a})$ is contained in a direct sum of a finite subset of $\{E_i : i \in I\}$. But note that a finite direct sum of injectives in injective over any ring, and hence, f can be extended to all of A, thereby completing the proof. **COROLLARY.** Let A be a PID. An A-module E is injective if and only if it is divisible. *Proof.* Immediate from Theorem 3.2. # §§ Injective Hulls **DEFINITION 3.3.** Let $M \le E$ be A-modules. Then E is said to be an *essential extension* of M if every non-zero submodule of E intersects M non-trivially. We denote this by $M \le_e E$. **REMARK 3.4.** The above is equivalent to requiring that for every $x \in E \setminus \{0\}$, there is an $a \in A \setminus \{0\}$ such that $ax \in M \setminus \{0\}$. We note some trivial properties of essential extensions before proceeding. **PROPOSITION 3.5.** Let $L \leq M \leq N$ be *A*-modules. Then $$L \leq_e M$$ and $M \leq_e N \iff L \leq_e N$. *Proof.* Straightforward. **PROPOSITION 3.6.** Let $M \le E$ be A-modules. Consider the set $$\mathscr{E} = \{ N \leq E : M \leq_{\varrho} N \}.$$ Then \mathcal{E} has a maximal element. *Proof.* Standard application of Zorn's lemma. **PROPOSITION 3.7.** If $N_1 \leq_e M_1$ and $N_2 \leq_e M_2$, then $N_1 \oplus N_2 \leq_e M_1 \oplus M_2$. **REMARK 3.8.** Before we proceed, we make an important observation. Suppose $M \leq_e N$ and suppose there is a commutative diagram: $$\uparrow \qquad f \\ M \hookrightarrow E.$$ We claim that f is injective. Indeed, due to the commutativity of the diagram, $\ker f \cap M = 0$, but since $M \leq_e N$, we have that $\ker f = 0$. **DEFINITION 3.9.** Let $M \le E$ be A-modules. Then E is said to be an *injective hull* of M if E is an injective A-module and $M \le_e E$. It is customary to denote E by $E_A(M)$. **PROPOSITION 3.10.** Suppose $M \le E$ and $N \le F$ are A-modules such that E and F are injective hulls of M and N respectively. Then $E \oplus F$ is an injective hullof $M \oplus N$. *Proof.* Obviously $E \oplus F$ is injective and due to the preceding result, an essential extension of $M \oplus N$. The conclusion follows. **PROPOSITION 3.11.** An A-module E is injective if and only if E has no proper essential extensions. *Proof.* Suppose E were injective and $E \leq_e M$. Then, there is a submodule N of M such that $M = E \oplus N$. If N were non-trivial, then it would intersect E trivially, thus N must be trivial and E = M. Conversely, suppose E has no proper essential extensions. There is an injective module I such that $E \hookrightarrow I$. We shall show that E is a direct summand of I. Indeed, consider the collection $$\Sigma = \{ N \leqslant I : E \cap N = 0 \}.$$ A standard application of Zorn's lemma furnishes a maximal element N of Σ . Note that if M is a submodule of I properly containing N, then $E \cap M \neq 0$. The canonical projection $I \to I/N$ restricts to an injective map on E and any submodule of I/N is of the form M/N for some M containing N. Thus, it follows that $E \hookrightarrow I/N$ is an essential extension. But since E does not admit any proper essential extensions, we must have that the aforementioned map is surjective, that is, E + N = I, whence $E \oplus N = I$ and hence, E is injective. **THEOREM 3.12.** Let $M \le E$ be A-modules. The following are equivalent: - (a) E is an injective hull of M. - (b) E is a minimal injective A-module containing M. - (c) E is a maximal essential extension of M. *Proof.* (a) \Longrightarrow (b) Suppose I is an injective module such that $M \le I \le E$. Since $M \le_e E$, we have that $I \le_e E$. But due to Proposition 3.11, we see that I = E. $(b) \Longrightarrow (c)$ Let $N \leq E$ be a maximal element of $\{N \leq E : M \leq_e N\}$. We contend that N has no proper essential extensions. Suppose $f: N \hookrightarrow L$ is an essential extension. Then, there is a map $L \to E$ making commute. We claim that the map $L \to E$ is injective. Indeed, if $0 \neq x \in L$ maps to 0, then there is an $0 \neq a \in A$ such that $0 \neq ax \in f(N)$. But since $N \hookrightarrow E$, we have that ax = 0, a contradiction. Thus, in E, L = N, since N has no proper essential extensions in E. Consequently, N has no proper essential extensions, that is, N is injective, whence N = E. $(c) \implies (a)$ Injectivity follows from the fact that E has no proper essential extensions due to maximality. **THEOREM 3.13.** Let M be an A-module. Then there exists an injective hull $M \hookrightarrow E$, which is unique up to isomorphism. *Proof.* Let I be an injective module such that $M \hookrightarrow I$. Using $(b) \Longrightarrow (c)$ of the proof of Theorem 3.12, we see that a maximal essential extension E of M contained in I is an injective hull. It remains to establish uniqueness. Suppose $M \hookrightarrow E'$ is another injective hull. Then, there is a commutative diagram with the induced map $E \to E'$ injective as argued in the preceding proof. The maximality of essentialness and transitivity of essentialness both imply that $E \to E'$ must be an isomorphism. **THEOREM 3.14 (CANTOR-SCHRÖDER-BERNSTEIN).** If M and N are injective A-modules with injective A-linear maps $M \hookrightarrow N$ and $N \hookrightarrow M$, then $M \cong N$. *Proof.* We may suppose that $N \le M$, whence there is a submodule P of M such that $M = N \oplus P$ where P is injective too. Let $f: M \to N$ be an injective A-linear map. Note first that if $x_0 + f(x_1) + \cdots + f^{(n)}(x_n) = 0$ where $x_i \in P$, then all $x_i = 0$. Indeed, $f(x_1) + \cdots + f^{(n)}(x_n) \in \text{im}(f) \subseteq N$ and $x_0 \in P$, whence $x_0 = 0$. Since f is injective, we have $x_1 + \cdots + f^{(n-1)}(x_n) = 0$. Working downwards, we have our conclusion. Now, set $X = P \oplus f(P) \oplus f^{(2)}(P) \oplus \cdots \subseteq M$ and let $E = E_A(f(X)) \subseteq N$ an injective hull. Write $N = E \oplus Q$. Since $X = P \oplus f(X)$, we have $$E(X) \cong E(P \oplus f(X)) \cong E(P) \oplus E(f(X)) \cong P \oplus E$$. On the other hand, since f is injective, $$E(X) \cong E(f(X)) = E \implies P \oplus E \cong E$$. Consequently, $$M = N \oplus P = Q \oplus E \oplus P \cong Q \oplus E \cong N$$, thereby completing the proof. **PROPOSITION 3.15.** Let A be a noetherian ring and M an A-module. Then $\mathrm{Ass}_A(E(M)) = \mathrm{Ass}_A(M)$. In particular, $E(A/\mathfrak{p}) = \{\mathfrak{p}\}$ for every $\mathfrak{p} \in \mathrm{Spec}(A)$. *Proof.* Since $M \hookrightarrow E(M)$, we have that $\mathrm{Ass}_A(M) \subseteq \mathrm{Ass}_A(E(M))$. Conversely, suppose $\mathfrak{p} \in \mathrm{Ass}_A(E(M))$, that is, $R/\mathfrak{p} \hookrightarrow E(M)$ and identify R/\mathfrak{p} with a submodule of E(M). Since $M \leq_e E(M)$, $(R/\mathfrak{p}) \cap M \neq 0$. Choosing a non-zero x in the intersection, we have that $\mathrm{Ann}_A(x) = \mathfrak{p}$, that is, $\mathfrak{p} \in \mathrm{Ass}_A(M)$. This completes the proof. **DEFINITION 3.16.** A nonzero *A*-module *M* is said to be *decomposable* if there are nonzero submodules $N_1, N_2 \le M$ such that $M = N_1 \oplus N_2$. An *A*-module that is not decomposable is said to be *indecomposable*. **THEOREM 3.17 (MATLIS).** Let A be a noetherian ring and M an A-module. Then, - (a) E is an indecomposable injective A-module if and only if $E \cong E(A/\mathfrak{p})$ for some $\mathfrak{p} \in \operatorname{Spec}(A)$. - (b) $E_A(A/\mathfrak{p}) \not\cong E(A/\mathfrak{q})$ if $\mathfrak{p} \neq \mathfrak{q} \in \operatorname{Spec}(A)$. - (c) every injective A-module can be written as a direct sum of indecomposable A-modules. - *Proof.* (a) Suppose E is an indecomposable injective A-module and choose some $\mathfrak{p} \in \mathrm{Ass}_A(E)$. There is an injection $A/\mathfrak{p} \hookrightarrow E$, which extends to an injection (due to Remark 3.8) $E(A/\mathfrak{p}) \hookrightarrow E$. Since E is indecomposable, $E \cong E(A/\mathfrak{p})$. Conversely, we must show that $E = E(A/\mathfrak{p})$ is indecomposable. Suppose $E = E_1 \oplus E_2$. The map $A/\mathfrak{p} \hookrightarrow E_1 \oplus E_2$ sends $\overline{1} \in A/\mathfrak{p}$ to some $(x_1, x_2) \in E_1 \oplus E_2$. Then, $$\mathfrak{p} = \mathrm{Ann}_A((x_1, x_2)) = \mathrm{Ann}_A(x_1) \cap \mathrm{Ann}_A(x_2),$$ whence, we may suppose without loss of generality that $\mathfrak{p} = \mathrm{Ann}_A(x_1)$. Consequently, the composition $A/\mathfrak{p} \hookrightarrow E \twoheadrightarrow E_1$ is injective. This means that $E \twoheadrightarrow E_1$ is a lift of an injection $A/\mathfrak{p} \hookrightarrow E_1$, whence $E \twoheadrightarrow E_1$ must be injective (due to Remark 3.8), that means $E_2 = 0$, as desired. - (b) Follows from the fact that $Ass_A(E(A/p)) = \{p\}.$ - (c) This is another standard Zorn argument. Begin with the collection $\Sigma = \{\{E_i\}_{i \in I} : \text{ each } E_i \text{ is indecomposable injective, and their sum is direct}\}.$ Choose a maximal element $\{E_i\}_{i\in J}$ in Σ and let $I=\bigoplus_{i\in J}E_i$. Suppose $I\neq E$. Since I is injective (owing to A being noetherian), we can write $E=I\oplus E'$. Since $E'\neq 0$, it has an associated prime, \mathfrak{p} . We can then write $E'=E(A/\mathfrak{p})\oplus E''$, contradicting the maximality of $\{E_i\}_{i\in J}$. This completes the proof. ## §4 UNCATEGORIZED #### §§ Eakin-Nagata Theorem **THEOREM 4.1** (**FORMANEK**). Let A be a ring, and B a finitely generated faithful A-module. Suppose the set of A-submodules $\Sigma = \{aB : a \leq A\}$ has the ascending chain condition, then A is noetherian. *Proof.* It suffices to show that B is a noetherian A-module since it is finitely generated and faithful. Suppose not. Then consider the collection $$\Gamma = \{aB : a \leq A, B/aB \text{ is a non-noetherian } A\text{-module}\},\$$ which contains (0) and hence is non-empty. Since Σ has the ascending chain condition, so does Γ , whence, it contains a maximal element $\mathfrak{a}B$. Replacing B by $B/\alpha B$, we see that B is a non-noetherian A-module. This may not be faithful and hence, replace A by $A/\operatorname{Ann}_A(B)$. Then, B is a finite, non-noetherian, faithful A-module such that for every ideal $0 \neq \alpha \triangleleft A$, $B/\alpha B$ is a noetherian A-module. Next, set $$\mathfrak{M} = \{ N \leq B : B/N \text{ is a faithful } A\text{-module} \},$$ which is non-empty, since $\{0\} \in \mathfrak{M}$. Suppose B is generated as an A-module by b_1, \ldots, b_n . It is not hard to argue that $$N \in \mathfrak{M} \iff \forall \ a \in A \setminus \{0\}, \ \{ab_1, \dots, ab_n\} \not\subseteq N.$$ It follows that every chain in \mathfrak{M} has a maximal element and hence Zorn's Lemma applies to furnish a maximal element $N_0 \in \Gamma$. If B/N_0 is a noetherian A-module, then A is noetherian since B/N_0 is faithful and finite. If not, replace B with B/N_0 , which is still a finite faithful A-module and satisfies: - (1) *B* is a non-noetherian *A*-module. - (2) for any ideal $0 \neq \mathfrak{a} \leq A$, $B/\mathfrak{a}B$ is a noetherian A-module. - (3) for any submodule $0 \neq N$ of B, B/N is not faithful as an A-module. Now, let N be a non-zero submodule of B. Due to (3), there is a $0 \neq a \in A$ such that $aB \subseteq N$. Due to (2), B/aB is a noetherian A-module with N/aB as a submodule. Thus, N/aB is a noetherian, in particular, a finite A-module. Since aB is also finite as an A-module, we have that N is a finite A-module. Hence, B is a noetherian A-module, which is absurd. This completes the proof. **THEOREM 4.2 (EAKIN-NAGATA).** Let $A \subseteq B$ be an extension of rings such that B is a finite A-module. If B is a noetherian ring, then so is A. *Proof.* Note that B is a finite, faithful A-module, since $1 \in B$. The conclusion follows from Theorem 4.1.