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§1 SOME BACKGROUND ON SEQUENCES AND SERIES

THEOREM 1.1 (SUMMATION BY PARTS). Let (an) and (bn) be two sequences. Put

Am,n =
n

∑
k=m

ak and Sm,n =
n

∑
k=m

akbk.

Then, for m < n,

Sm,n =
n−1

∑
k=m

Am,k(bk − bk+1) + Am,nbn.

THEOREM 1.2 (PARTIAL SUMMATION FORMULA). Let (an)∞
n=1 be a sequence of complex

numbers and f : [1, x] → C a continuously differentiable function. Set

A(t) = ∑
1⩽n⩽t

an.

Then,

∑
1⩽n⩽x

an f (n) = A(x) f (x)−
∫ x

1
A(t) f ′(t) dt.

Proof. Suppose x is a natural number.

∑
1⩽n⩽x

an f (n) = ∑
1⩽n⩽x

(A(n)− A(n − 1)) f (n)

= ∑
1⩽n⩽x

A(n) f (n)− ∑
0⩽n⩽x−1

A(n) f (n + 1)

= A(x) f (x)− ∑
0⩽n⩽x−1

A(n)
∫ n+1

n
f ′(t) dt

= A(x) f (x)− ∑
0⩽n⩽x−1

∫ n+1

n
A(t) f ′(t) dt

= A(x) f (x)−
∫ x

0
A(t) f ′(t)

= A(x) f (x)−
∫ x

1
A(t) f ′(t) dt.
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If x is not a natural number, note the equality

A(x) ( f (x)− f (⌊x⌋)) =
∫ x

⌊x⌋
A(t) f ′(t) dt. ■

COROLLARY (PARTIAL SUMS OF DIRICHLET SERIES). Take f (t) = 1/ts to obtain (for
x ⩾ 1)

∑
1⩽n⩽x

an

ns =
A(x)

xs + s
∫ x

1

A(t)
ts+1 ds.

This is often called Abel’s Summation Formula.

EXAMPLE 1.3. In Abel’s formula, set an = 1 for all n and s = 1. Then,

∑
1⩽n⩽x

=
⌊x⌋

x
+
∫ x

1

⌊t⌋
t2 dt.

The integral is bounded by ∫ x

1

1
t

dt = log x.

It follows that

∑
1⩽n⩽x

1
n
= log x + O(1).

EXAMPLE 1.4. As a consequence of the above example,

∑
⩽n⩽x

d(n) = ∑
1⩽n⩽x

⌊ x
n

⌋
= x ∑

1⩽n⩽x

1
n
+ O(x) = x log x + O(x).

Next, we elucidate Dirichlet’s Hyperbola Method using a theorem due to Dirichlet.

THEOREM 1.5 (DIRICHLET).

∑
1⩽n⩽x

d(n) = x log x + (2γ − 1)x + O(
√

x).

Proof. ■ Add
in

§2 ELEMENTARY RESULTS ON PRIME NUMBERS

DEFINITION 2.1. The two Chebyshev functions are defined as

ψ(x) = ∑
p⩽x

Λ(x) and ϑ(x) = ∑
p⩽x

log p,

for x > 0.
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PROPOSITION 2.2.

Λ(x) =
∞

∑
m=1

ϑ(x1/m) = ∑
m⩽log2 x

ϑ(x1/m).

Proof. We have

ψ(x) = ∑
n⩽x

Λ(n) =
∞

∑
m=1

∑
pm⩽x

log p =
∞

∑
m=1

∑
p⩽x1/m

log p =
∞

∑
m=1

ϑ(x1/m). ■

PROPOSITION 2.3.

0 ⩽
ψ(x)− ϑ(x)

x
⩽

(log x)2

2
√

x log 2
.

Proof. We have

ψ(x)− ϑ(x)
x

⩽
1
x ∑

2⩽m⩽log2 x
ϑ(x1/m) ⩽

1
x ∑

2⩽m⩽log2 x
x1/m log x1/m ⩽

(log x)2

2
√

x log 2
. ■

LEMMA 2.4. For x ⩾ 2, we have

ϑ(x) = π(x) log x −
∫ x

2

π(t)
t

dt,

and

π(x) =
ϑ(x)
log x

+
∫ x

2

ϑ(t)
t log2 t

dt.

Proof. Both follow from Theorem 1.2. ■

THEOREM 2.5. The following are equivalent:

(a) lim
x→∞

π(x) log x
x

= 1,

(b) lim
x→∞

ϑ(x)
x

= 1,

(c) lim
x→∞

ψ(x)
x

= 1.

Proof. Suppose (a) holds. Using the preceding lemma, we have

ϑ(x)
x

=
π(x) log x

x
− 1

x

∫ x

2

π(t)
t

dt.

But (a) implies π(x) = O
(

x
log x

)
, i.e. there is an M > 0 such that π(x) ⩽ Mx

log x . Hence,

1
x

∫ x

2

π(t)
t

dt = M
1
x

∫ x

2

dt
log t

=
M
x

(∫ √
x

2

dt
log t

+
∫ x

√
x

dt
log t

)
⩽

M
x

(√
x − 2

log
√

x
+

x −
√

x
log x

)
→ 0
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as x → ∞.
Conversely, suppose (b) holds. Using the preceding lemma, we have

π(x) log x
x

=
ϑ(x)

x
− log x

x

∫ x

2

ϑ(t)
t log2 t

dt.

But (a) implies the existence of a constant M > 0 such that ϑ(x) ⩽ Mx. Hence,

log x
x

∫ x

2

ϑ(t)
log2 t

dt ⩽
M log x

x

∫ x

2

dt
log2 t

=
M log x

x

(∫ √
x

2

dt
log2 t

+
∫ x

√
x

dt
log2 t

)
⩽

M log x
x

(√
x − 2

log2 √x
+

x −
√

x
log2 x

)
,

and the conclusion follows.
Finally, the equivalence of (b) and (c) follows from Proposition 2.3. ■

§3 DIRICHLET CHARACTERS AND GAUSS SUMS

DEFINITION 3.1. A Dirichlet character modulo n is a group homomorphism χ : (Z/nZ)× →
C× which is extended by 0 to Z/nZ and extended periodically to all of Z.

DEFINITION 3.2. Let χ be a Dirichlet character modulo n. Define its Gauss sums as

G(m, χ) = ∑
r mod n

χ(r) exp
(

2πim
n

r
)

.

LEMMA 3.3. If χ is any Dirichlet character modulo n, then

G(m, χ) = χ(m)G(1, χ),

whenever (m, n) = 1.

Proof. We have

G(m, χ) = ∑
r mod n

χ(m)χ(m)χ(r) exp
(

2πim
n

r
)

= χ(m) ∑
r mod n

χ(mr) exp
(

2πimr
n

)
= χ(m)G(1, χ),

where the last equality follows from the fact that (m, n) = 1. ■

DEFINITION 3.4. The Gauss sum G(m, χ) is said to be separable if

G(m, χ) = χ(m)G(1, χ).

We have seen that G(m, χ) is separable when (m, n) = 1.
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PROPOSITION 3.5. Let χ be a Dirichlet character modulo n. Then, the Gauss sum G(m, χ)
is separable for every m if and only if G(m, χ) = 0 whenever (m, n) > 1.

Proof. Immediate from the definition. ■

THEOREM 3.6. Let χ be a Dirichlet character modulo n. If G(m, χ) is separable for every
m, then

|G(1, χ)|2 = n,

Proof. We have

|G(1, χ)|2 = G(1, χ)G(1, χ) =
n

∑
m=1

G(1, χ)χ(m) exp
(
−2πi

n
m
)

=
n

∑
m=1

G(m, χ) exp
(
−2πim

n

)
=

n

∑
m=1

n

∑
k=1

χ(k) exp
(

2πim
n

k
)

exp
(
−2πim

n

)
=

n

∑
k=1

χ(k)
n

∑
m=1

exp
(

2πi(k − 1)
n

m
)

= nχ(1) = n.

■

LEMMA 3.7. Let χ be a Dirichlet character modulo n and suppose G(m, χ) ̸= 0 for some m
with (m, n) > 1. Then, χ is not primitive.

Proof. Let q = (m, n) and set d = n/q. Choose any a satisfying (a, n) = 1 and a ≡ 1 mod d.
We have

G(m, χ) = ∑
r mod n

χ(r)en(mr) = ∑
r mod n

χ(ar)en(amr) = χ(a) ∑
r mod n

χ(r)en(amr)

Note that a = 1 + bd for some integer b. Hence,

amr
n

=
mr + mrbd

n
=

mr
n

mod 1.

Consequently,
G(m, χ) = χ(a)G(m, χ).

This shows that χ(a) = 1. We have shown that for any a satisfying a ≡ 1 mod d and
(a, n) = 1, χ(a) = 1 and since d < n, χ cannot be primitive. ■

THEOREM 3.8. Let χ be a primitive Dirichlet character modulo n. Then, we have

(a) G(m, χ) = 0 whenever (m, n) > 1.

(b) G(m, χ) is separable for every m.

(c) |G(m, χ)|2 = n.
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§§ Quadratic Reciprocity using Gauss Sums

If p is a prime, there is a unique non-principal quadratic character modulo p, which is
given by

χ(r) =
(

r
p

)
.

THEOREM 3.9. If p is an odd prime and χ is the unique non-principal quadratic character
modulo p, then

G(1, χ)2 =

(
−1
p

)
p.

Proof. We have

G(1, χ)2 =
p−1

∑
r=1

p−1

∑
s=1

χ(r)χ(s)ep(r + s).

For each pair (r, s), there is a unique t modulo p satisfying tr ≡ s mod p. Therefore, we
can write the sum as

p−1

∑
t=1

p−1

∑
r=1

χ(t)ep(r(1 + t)) =
p−1

∑
t=1

χ(t)
p−1

∑
r=1

ep(r(1 + t)) = −
p−2

∑
t=1

χ(t) + (p − 1)χ(p − 1).

Since
p−1

∑
t=1

χ(t) = 0,

the proof is complete. ■

Let p and q be distinct odd primes. From the above theorem, we have

G(1, χ)q−1 ≡
(
−1
p

) q−1
2
(

p
q

)
mod q ≡ (−1)

p−1
2

q−1
2

(
p
q

)
mod q.

THEOREM 3.10. Let p and q be distinct odd primes and χ the non-principal quadratic
character modulo p, then

G(1, χ)q−1 =

(
q
p

) ∑
r1

· · ·∑
rq

r1+···+rq≡q mod p

(
r1 · · · rq

p

)
.

Proof. The Gauss sum G(n, χ) is periodic with period p and hence, has a finite Fourier
expansion,

G(n, χ)q =
p

∑
m=1

aq(m)ep(mn),

where the coefficients can be recovered as

aq(m) =
1
p

p

∑
n=1

G(n, χ)qep(−mn).
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From the definition, we have

G(n, χ)q =

(
∑

r mod p
χ(r)ep(nr)

)q

= ∑
r1 mod p

· · · ∑
rq mod p

χ(r1 · · · rq)ep(n(r1 + · · ·+ rq)).

Hence,

aq(m) =
1
p ∑

r1 mod p
· · · ∑

rq mod p
χ(r1 . . . rq)

p

∑
n=1

ep(n(r1 + · · ·+ rq − m)).

The innermost sum takes a non-zero value if and only if r1 + · · ·+ rq ≡ m mod p. As a
result, we have

aq(m) = ∑
r1

· · ·∑
rq

r1+···+rq≡m mod p

χ(r1 . . . rq).

On the other hand, G(n, χ) is separable and hence, we have

aq(M) =
1
p

G(1, χ)q
p

∑
n=1

χ(n)qep(−mn) =
1
p

G(1, χ)q
p

∑
n=1

χ(n)ep(−mn)

=
1
p

G(1, χ)qG(−m, χ) =
1
p

G(1, χ)qχ(m)G(−1, χ)

=
1
p

G(1, χ)qχ(m)G(1, χ) = χ(m)G(1, χ)q−1.

Therefore,
G(1, χ)q−1 = χ(m) ∑

r1

· · ·∑
rq

r1+···+rq≡m mod p

χ(r1 . . . rq).

Taking m = q, we have the desired conclusion. ■

PROOF OF QUADRATIC RECIPROCITY. Putting together the last two theorems,

(−1)
p−1

2
q−1

2

(
p
q

)
≡
(

q
p

)
∑
r1

· · ·∑
rq

r1+···+rq≡q mod p

(
r1 . . . rq

p

)
( mod q)

We can break the sum on the right into equivalence classes corresponding to multisets
(r1, . . . , rq). If all the ri’s are not equal, then the number of distinct permutations of this
multiset is divisible by q and hence, the only term that survives on the right is when all the
ri’s are equal to 1. This gives the desired conclusion. ■

7



§4 DIRICHLET SERIES

A Dirichlet series is a “formal sum” of the form

∞

∑
n=1

f (n)
ns

where s ∈ C and f : N → C is an arithmetic function. The first thing to study is its
convergence. As is customary, we shall write s = σ + it.

THEOREM 4.1. Suppose the series ∑ | f (n)n−s| does not converge for all s or diverge for
all s. Then there is a real number σa called the abscissa of absolute convergence such that the
series ∑ f (n)n−s converges absolutely if σ > σa but does not converge absolutely if σ < σa.

Proof. Omitted on account of its obviousness. ■

REMARK 4.2. If the Dirichlet series converges absolutely everywhere, we set σa = −∞
and if it converges absolutely nowhere, we set σa = ∞.

We set

F(s) =
∞

∑
n=1

f (n)
ns ,

which is a well defined function on the half plane σ > σa.

LEMMA 4.3. If N ⩾ 1 and σ ⩾ c > σa,∣∣∣∣∣ ∞

∑
n=N

f (n)n−s

∣∣∣∣∣ ⩽ N−(σ−c)
∞

∑
n=N

| f (n)|n−c.

Proof. Indeed, ∣∣∣∣∣ ∞

∑
n=N

f (n)n−s

∣∣∣∣∣ ⩽ ∞

∑
n=N

| f (n)|n−σ

⩽
∞

∑
n=N

| f (n)|n−cN−(σ−c).

■

PROPOSITION 4.4.
lim

σ→∞
F(σ + it) = f (1)

uniformly for t ∈ R.

Proof. Immediate from the above lemma. ■
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THEOREM 4.5 (UNIQUENESS THEOREM FOR DIRICHLET SERIES). Given two Dirichlet
series

F(s) =
∞

∑
n=1

f (n)
ns and G(s) =

∞

∑
n=1

g(n)
ns ,

both absolutely convergent for σ > σa. If F(s) = G(s) for an infinite sequence {sk} with
σk → ∞. Then, f (n) = g(n) for every n.

Proof. Set h(n) = f (n)− g(n) and H(s) = F(s)− G(s). Then, H(sk) = 0 for each k and
σk → ∞ as k → ∞. Suppose h is not identically 0 and let N be the smallest positive integer
for which h(n) ̸= 0. Then,

H(s) =
h(N)

Ns +
∞

∑
n=N+1

h(n)
ns .

Thus,

h(N) = NsH(s)− Ns
∞

∑
n=N+1

h(n)
ns .

Put s = sk to obtain

h(N) = −Nsk
∞

∑
n=N+1

h(n)
nsk

.

Choose some c > σa. Then, for sufficiently large k, σk > c > σa. Then,

|h(N)| = Nσk(N + 1)−(σk−c)
∞

∑
n=N+1

|h(n)|n−c.

It follows by taking k → ∞ that h(N) = 0. ■

COROLLARY. Let F(s) = ∑∞
n=1 f (n)n−s and suppose F(s) ̸= 0 for some s with σ > σa.

Then, there is a constant c ⩾ σa such that F(s) does not vanish for σ > c.

Proof. Converse to the previous theorem. ■

THEOREM 4.6. Consider two Dirichlet series

F(s) =
∞

∑
n=1

f (n)
ns and G(s) =

∞

∑
n=1

g(n)
ns ,

which are absolutely convergent for σ > a and σ > b respectively. Then, in the half-plane
where both series converge absolutely,

F(s)G(s) =
∞

∑
n=1

( f ∗ g)(n)
ns ,

and converges absolutely. Conversely, if F(s)G(s) = ∑ α(n)n−s for a sequence {sk} with
σk → ∞ as k → ∞, then α = f ∗ g.
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Proof. The first statement follows from the fact that absolutely convergent series can be
rearranged. The second statement follows from the uniqueness theorem. ■

EXAMPLE 4.7. The zeta function is the Dirichlet series corresponding to f ≡ 1. Let G(s)
denote the function defined by the Dirichlet series

G(s) =
∞

∑
n=1

µ(n)
ns ,

which is absolutely convergent in the right half plane σ > 1. Then,

ζ(s)G(s) =
∞

∑
n=1

(1 ∗ µ)(n)
ns = 1,

for σ > 1. This, in turn, shows that ζ does not vanish in the right half plane σ > 1.

EXAMPLE 4.8. In the spirit of the previous example, let f : N → C be a completely multi-
plicative arithmetic function. Then, its Dirichlet inverse is given by f−1(n) = µ(n) f (n).
If σa denotes the abscissa of absolute convergence for the Dirichlet series corresponding
to f , then the Dirichlet series corresponding to f−1 converges absolutely in the half plane
σ > σa.

Consequently, for σ > σa, we have

1
F(s)

=
∞

∑
n=1

µ(n) f (n)
ns ,

therefore, F(s) ̸= 0 in the right half plane σ > σa.
In particular, for a Dirichlet character χ (modulo N), we have

∞

∑
n=1

µ(n)χ(n)
ns =

1
L(s, χ)

for σ > 1.

EXAMPLE 4.9. Taking f ≡ 1 and g = λ, Liouville’s function, we get, for σ > 1,

ζ(s)
∞

∑
n=1

λ(n)
ns =

∞

∑
n=1

1
(n2)s = ζ(2s).

That is,
∞

∑
n=1

λ(n)
ns =

ζ(2s)
ζ(s)

for σ > 1.

PROPOSITION 4.10. Let f : N → C be a multiplicative arithmetic function such that the
series ∑n⩾1 f (n) is absolutely convergent. Then,

∞

∑
n=1

f (n) = ∏
p prime

{
1 + f (p) + f (p2) + · · ·

}
,

where the product is absolutely convergent. If f is completely multiplicative,
∞

∑
n=1

= ∏
p prime

1
1 − f (p)

.
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Proof. Straightforward. Note that absolute convergence is necessary. ■

THEOREM 4.11 (EULER PRODUCT). Suppose the Dirichlet series ∑n⩾1 f (n)n−s converges
absolutely for σ > σa. If f is multiplicative, we have

∞

∑
n=1

f (n)
ns = ∏

p prime

{
1 +

f (p)
ps +

f (p2)

p2s + · · ·
}

for σ > σa,

and if f is completely multiplicative, we have

∞

∑
n=1

f (n)
ns = ∏

p prime

1
1 − f (p)p−s .

EXAMPLE 4.12. Let χ be a Dirichlet character (modulo N), then

L(s, χ) = ∏
p prime

1
1 − χ(p)p−s .

LEMMA 4.13. Let s0 = σ0 + it0 and assume that the Dirichlet series ∑n⩾1 f (n)n−s0 has
bounded partial sums, say ∣∣∣∣∣∑n⩽x

f (n)n−s0

∣∣∣∣∣ ⩽ M,

for all x ⩾ 1. Then, for each s with σ > σ0< we have∣∣∣∣∣ ∑
a<n⩽b

f (n)n−s

∣∣∣∣∣ ⩽ 2Maσ0−σ

(
1 +

|s − s0|
σ − σ0

)
Proof. ■ Abel

sum-
ma-
tion

COROLLARY. If the Dirichlet series ∑n⩾1 f (n)n−s converges for s0 = σ0 + it0, then it also
converges for all s with σ > σ0. If, on the other hand, it diverges for s0 = σ0 + it0, then it
diverges for all s with σ < σ0.

Proof. The second statement follows from the first. To see the first statement, choose any s
with σ > σ0. The preceding lemma shows that there is a constant C > 0 such that∣∣∣∣∣ ∑

a<n⩽b
f (n)n−s

∣∣∣∣∣ ⩽ Caσ0−σ,

where C does not depend on a. Now, since aσ0−σ → 0 as a → ∞, the partial sums form a
Cauchy sequence and we are done. ■

THEOREM 4.14. If the Dirichlet series ∑n⩾1 f (n)n−s does not converge everywhere or
diverge everywhere, then there exists a real number σc called the abscissa of convergence,
such that the series converges for all s in the half plane σ > σc and diverges for all s in the
half plane σ < σc.
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Proof. Omitted on account of its obviousness. ■

THEOREM 4.15. For any Dirichlet series with σc finite, we have

0 ⩽ σa − σc ⩽ 1.

Proof. Obviously, σc ⩽ σa. Now, if σ > σc + 1, then there is an ε > 0 such that σ− σc > 1+ ε.
We can then write

∑
n⩾1

| f (n)|
nσ

= ∑
n⩾1

| f (n)|
nσc+ε

1
nσ−σc−ε

.

Since the series

∑
n⩾1

f (n)
nσc+ε

converges, the individual terms are bounded in absolute value, say by M > 0. Then, we
have

∑
n⩾1

| f (n)|
nσ

⩽ M ∑
n⩾1

1
nσ−σc−ε

< ∞.

Thus, σc ⩽ σc ⩽ σ. Since this inequality holds for all σ > σc + 1, we have the desired
inequality. ■

PROPOSITION 4.16. Let f : N → C such that∣∣∣∣∣ N

∑
n=1

f (n)

∣∣∣∣∣ = O(Nσ0),

then σc ⩽ σ0.

Proof. Let s = σ ∈ R with σ > σ0. Set

Am,n =
n

∑
k=m

f (k)

and

Sm,n =
n

∑
k=m

f (k)
ks .

Using Theorem 1.1,

Sm,n =
n−1

∑
k=m

Am,k

(
1
ks −

1
(k + 1)s

)
+ Am,n

1
ns ,

thus,

|Sm,n| ⩽
n−1

∑
k=m

|Am,k|
∣∣∣∣ 1
ks −

1
(k + 1)s

∣∣∣∣+ |Am,n|
1

nσ
.
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According to our hypothesis, there is a constant M > 0 such that Am,k ⩽ Mkσ0 . Using
the Mean Value Theorem,∣∣∣∣ 1

kσ
− 1

(k + 1)σ

∣∣∣∣ = |σ|
(k + c)σ+1 ⩽

|σ|
kσ+1 .

Substituting this back, we have

|Sm,n| ⩽ M|σ|
n−1

∑
k=m

1
kσ+1−σ0

+
1

nσ−σ0
.

It is easy to see that this sequence is Cauchy and hence, it converges. It follows that
σc ⩽ σ0. ■

§§ Analytic Properties of Dirichlet series

THEOREM 4.17. A Dirichlet series ∑n⩾1 f (n)n−s converges uniformly on every compact
subset lying in the interior of the right half plane σ > σc and hence, defines a holomorphic
function on the aforementioned right half plane.

Proof. It suffices to show uniform convergence on every compact rectangle of the form
[α, β]× [c, d] with α > σc. First, choose a σ0 with σc < σ0 < α. Then, using Lemma 4.13,∣∣∣∣∣ ∑

a<n⩽b
f (n)n−s

∣∣∣∣∣ ⩽ 2Maσ0−σ

(
1 +

|s − σ0|
σ − σ0

)
.

There is a constant C > 0 such that |s − σ0| < C whenever s lies in the rectangle.
Consequently, ∣∣∣∣∣ ∑

a<n⩽b
f (n)n−s

∣∣∣∣∣ ⩽ 2Maσ0−α

(
1 +

C
α − σ0

)
,

for all a ∈ N. This shows that the partial sums are uniformly Cauchy on the rectangle and
hence, converge uniformly. This completes the proof. ■

COROLLARY. The function F(s) := ∑n⩾1 f (n)n−s is analytic in the half plane σ > σc, and
its derivative in the aforementioned half plane is given by

F′(s) = −
∞

∑
n=1

f (n) log n
ns .

EXAMPLE 4.18. For σ > 1, we have

ζ ′(s) =
∞

∑
n=1

log n
ns ,

where the sum is also absolutely convergent. On the other hand, recall that

1
ζ(s)

=
∞

∑
n=1

µ(n)
ns ,
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Consequently, for σ > 1,

ζ ′(s)
ζ(s)

=
∞

∑
n=1

(µ ∗ log)(n)
ns =

∞

∑
n=1

Λ(n)
ns .

THEOREM 4.19. Let F be a holomorphic function which is represented in the half plane
σ > c by the Dirichlet series

F(s) =
∞

∑
n=1

f (n)
ns

where c is finite. Further, suppose there is a positive integer n0 such that f (n) ⩾ 0 for all
n ⩾ n0. If F is holomorphic in a neighborhood of c, then there is an ε > 0 such that the
Dirichlet series converges in the half plane σ > c − ε, in other words, σc ⩽ c − ε.

Proof. Let a = 1 + c. Since F is analytic at a, it can be represented by an absolutely
convergent power series about a,

F(s) =
∞

∑
k=0

F(k)(a)
k!

(s − a)k,

whose radius of convergence is greater than 1 and hence, there is an ε > 0 such that c − ε
lies within the open disk of convergence of the aforementioned power series about a. But,

F(k)(a) = (−1)k
∞

∑
n=1

f (n) logk n
na .

Therefore,

F(s) =
∞

∑
k=0

∞

∑
n=1

(a − s)k

k!
f (n) logk n

na .

In particular, this equality holds for s = c − ε. Hence,

F(c − ε) =
∞

∑
k=0

∞

∑
n=1

(1 + ε)k

k!
f (n) logk n

na .

The double series has nonnegative terms for n ⩾ n0 and hence, we can interchange the
order of summation.

F(c − ε) =
∞

∑
n=1

f (n)
na

∞

∑
k=0

(1 + ε)k logk n
k!

=
∞

∑
n=1

f (n)
na n1+ε =

∞

∑
n=1

f (n)
nc−ε

.

Thus, the Dirichlet series converges for s = c − ε. ■

THEOREM 4.20. Let the Dirichlet series F(s) = ∑n⩾1 f (n)n−s be absolutely convergent for
σ > σa and assume that f (1) ̸= 0. If F(s) ̸= 0 for σ > σ0 ⩾ σa, then for σ > σ0, we have
F(s) = exp(G(s)) where

G(s) = log f (1) +
∞

∑
n=2

( f ′ ∗ f−1)(n)
log n

1
ns ,

where f−1 is the Dirichlet inverse of f and f ′(n) = f (n) log n. Further, this Dirichlet series
is absolutely convergent in the half plane σ > σ0.

14



Proof. Since F does not vanish in the right half plane σ > σ0, there is a holomorphic
function G such that F(s) = exp(G(s)). We have G′(s) = F′(s)/F(s) for all σ > σ0. But
we already know

F′(s) = −
∞

∑
n=1

f (n) log n
ns and

1
F(s)

=
∞

∑
n=1

f−1(n)
ns ,

for σ > σ0 and the convergence is absolute there. Thus,

G′(s) = −
∞

∑
n=2

( f ′ ∗ f−1)(n)
ns .

Therefore,

G(s) = C +
∞

∑
n=2

( f ′ ∗ f−1)(n)
log n

1
ns ,

since the Dirichlet series for G converges absolutely in σ > σ0 and upon differentiating,
we obtain the Dirichlet series for G′. To determine the constant, use

f (1) = lim
σ→∞

F(σ + it) = eC.

This completes the proof. ■

EXAMPLE 4.21. We have shown earlier that ζ(s) does not vanish on the half plane σ > 1.
Therefore, it has a “logarithm” here, given by

G(s) =
∞

∑
n=2

(1′ ∗ 1−1)(n)
log n

1
ns .

Where 1−1 = µ and 1
′ = log. Thus,

log ζ(s) = G(s) =
∞

∑
n=2

Λ(n)
log n

1
ns ,

on the half plane σ > 1. Unraveling the definition of the von Mangoldt function,

G(s) = ∑
p prime

∞

∑
m=1

1
mpms for σ > 1.

EXAMPLE 4.22. Similarly, given a completely multiplicative arithmetic function f : N → C,
if F(s) = ∑n⩾1 f (n)n−s denotes the Dirichlet series, that is non vanishing in σ > σ0 ⩾ σa,
then F(s) = exp(G(s)) in σ > σ0 and

G(s) =
∞

∑
n=2

f (n)Λ(n)
log n

1
ns = ∑

p prime

∞

∑
m=1

f (p)m

mpms .
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§§ Dirichlet’s Theorem on Primes in Arithmetic Progressions

Our goal, in this subsection, is to show that whenever (a, N) = 1, there are infinitely many
primes p ≡ a mod N. Henceforth, all Dirichlet characters will be modulo N. The principal
character (modulo N) will be denoted by 1.

For each character χ, define

l1(s, χ) = ∑
p prime

χ(p)
ps .

This is a Dirichlet series, which is absolutely convergent and holomorphic in the half plane
σ > 1. Also, define

l(s, χ) = ∑
p prime

∞

∑
n=1

χ(p)n

npns ,

and we have seen in the previous section that l(s, χ) is absolutely convergent for σ > 1, is
holomorphic there and exp(l(s, χ)) = L(s, χ) for σ > 1.

PROPOSITION 4.23. Let R(s, χ) = l(s, χ)− l1(s, χ). Then, R is a Dirichlet series that is
absolutely convergent and holomorphic for σ > 1/2.

Proof. The difference of two Dirichlet series is a Dirichlet series. Let σ > 1/2. Then,

|R(s, χ)| ⩽ ∑
p prime

∞

∑
n=2

1
npnσ

■
Complete
this
sec-
tion§5 ANALYTIC CONTINUATION FOR ζ(s) AND L(s, χ)

DEFINITION 5.1. For σ > 1 and 0 < a ⩽ 1, define the Hurwitz Zeta Function ζ(s, a) as

ζ(s, a) =
∞

∑
n=0

1
(n + a)s .

The sum is absolutely convergent in the half plane σ > 1 and defines a holomorphic
function there.

THEOREM 5.2. For σ > 1, we have the integral representation

Γ(s)ζ(s, a) =
∫ ∞

0

xs−1e−ax

1 − e−x dx.

Proof. First, let s > 1 be real. Then, the Monotone Convergence Theorem gives∫ ∞

0

xs−1e−ax

1 − e−x dx =
∞

∑
n=0

∫ ∞

0
xs−1e−(n+a)x =

∞

∑
n=0

Γ(s)
(n + a)s = Γ(s)ζ(s, a).
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Thus, it suffices to show that the integral on the right defines a holomorphic function of
s on σ > 1. To do this, we shall show analyticity in every strip 1 + δ < σ < c where δ > 0.
Obviously the functions

FN(s) =
∫ N

0

xs−1e−ax

1 − e−x

are holomorphic on σ > 1. We shall show that they converge uniformly to the integral on
the right hand side. Indeed, their difference is given by the integral∣∣∣∣∫ ∞

N

xs−1e−ax

1 − e−x

∣∣∣∣ ⩽ ∫ ∞

N

xσ−1e−ax

1 − e−x dx ⩽
∫ ∞

N
xσ−1e−ax dx ⩽

∫ ∞

N
xc−1e−ax dx.

The uniform convergence thus follows from the fact that Γ(c) is well defined and converges.
■

COROLLARY. In particular, for a = 1, we have

Γ(s)ζ(s) =
∫ ∞

0

xs−1e−ax

1 − e−x

§§ Analytic Continuation of ζ(s, a)

Let 0 < c < 2π and let C denote the piecewise smooth “contour” which first traverses the
negative real axis from −∞ to −c and then traverses, in counter-clockwise sense, the circle
centered at 0 of radius c and finally, traverses the negative real axis from −c to −∞.

the contour

Missing
figure

Let C1, C2, C3 denote the aforementioned smooth pieces of C. Then, C1 is parametrized
as re−πi for r running from ∞ to c. C2 is parametrized in the obvious way and C3 is
parametrized as reπi for r running from c to ∞.

THEOREM 5.3. For 0 < a ⩽ 1, the function defined by contour integral

I(s, a) =
1

2πi

∫
C

zs−1eaz

1 − ez dz

is entire. Further, we have

ζ(s, a) = Γ(1 − s)I(s, a) for σ > 1, σ /∈ Z.

Here, zs means rse−πis on C1 and rseπis on C3.
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Proof. Let M > 0 and consider the compact disk |s| ⩽ M. The integral can be broken up as∫
C1

+
∫

C2
+
∫

C3
. Since C2 is a compact contour, the integral

∫
C2

defines an entire function
anyway. Therefore, we need only show that the integrals corresponding to C1 and C3 are
uniformly convergent on the chosen compact disk.

Along C1, for r ⩾ 1, we have

|zs−1| = rσ−1
∣∣∣e−πi(σ−1+it)

∣∣∣ = rσ−1eπt ⩽ rM−1eπM

The same bound works on C3. Therefore, on either C1 or C3, for r ⩾ 1, we have∣∣∣∣zs−1eaz

1 − ez

∣∣∣∣ ⩽ rM−1eπMe−ar

1 − e−r =
rM−1eπMe(1−a)r

er − 1
.

For r > log 2, we have er − 1 > er/2 and hence,∣∣∣∣zs−1eaz

1 − ez

∣∣∣∣ ⩽ 2rM−1eπMe−ar.

Since the Γ(M) exists, we conclude that the convergence of the integral along C1 and C3 is
uniform. The argument is similar to the one in the previous proof.

Finally, we must show the identity. Let g(z) = eaz/(1 − ez). We have

2πiI(s, a) =
(∫

C1

+
∫

C2

+
∫

C3

)
zs−1g(z) dz.

That is,

2πiI(s, a) =
∫ c

∞
rs−1e−πisg(−r) dr + i

∫ π

−π
cs−1e(s−1)iθceiθg(ceiθ) dθ +

∫ ∞

c
rs−1eπisg(−r) dr

= 2i sin(πs)
∫ ∞

c
rs−1g(−r) dr + ics

∫ π

−π
eisθg(ceiθ) dθ.

Set
I1(s, c) =

∫ ∞

c
rs−1g(−r) dr and I2(s, c) =

cs

2

∫ π

−π
eisθg(ceiθ) dθ.

Then,
π I(s, a) = sin(πs)I1(s, c) + I2(s, c).

We claim that lim
c→0

I2(s, c) = 0. Note that g(z) is analytic in |z| < 2π except for a

simple pole at z = 0 and hence, zg(z) is is analytic everywhere inside |z| < 2π. Consider
the closed disk |z| ⩽ π. The function zg(z) is analytic, hence, bounded on |z| ⩽ π,
consequently, there is a constant A > 0 such that |g(z)| ⩽ A/|z| for |z| ⩽ π. Then, for
c < π, we have

|I2(s, c)| ⩽ cσ

2

∫ π

−π
e−tθ A

c
dθ ⩽ Aeπ|t|cσ−1,

and the conclusion follows.
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Note that the integral remains unchanged upon changing the value of c, which follows
from one of Cauchy’s theorems. Now, note that

lim
c→0

I1(s, c) =
∫ ∞

0

rs−1e−ar

1 − e−r dr = Γ(s)ζ(s, a) for σ > 1.

Hence, we have
π I(s, a) = sin(πs)Γ(s)ζ(s, a) for σ > 1.

Recall Euler’s reflection formula,

Γ(s)Γ(1 − s) =
π

sin(πs)
for s ∈ C\Z.

Consequently, we have

sin(πs)Γ(s) =
π

Γ(1 − s)
for all s ∈ C,

since 1/Γ(1 − s) is an entire function. Substituting this, above, we have,

I(s, a) =
1

Γ(1 − s)
ζ(s, a).

When σ /∈ Z, we can rearrange the above in the required form. ■

DEFINITION 5.4. For σ ⩽ 1, define

ζ(s, a) = Γ(1 − s)I(s, a).

THEOREM 5.5. The function ζ(s, a) so defined is analytic for all s except for a simple pole
at s = 1 with residue 1.

Proof. That it is analytic is obvious. We have

I(1, a) =
1

2πi

∫
C

eaz

1 − ez dz.

In this case, the integrals on C1 and C3 cancel and we are left with

I(1, a) =
1

2πi

∫
C2

eaz

1 − ez = Ress=0
eas

1 − es = −1.

Consequently,

Ress=1 ζ(s, a) = lim
s→1

(s − 1)Γ(1 − s)I(s, a) = −Ress=0 Γ(s)× I(1, a) = 1. (1)

This completes the proof. ■
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§§ Hurwitz’s Formula

Consider the Dirichlet series

F(x, s) =
∞

∑
n=1

e2πinx

ns .

This converges absolutely in σ > 1 and hence, defines a holomorphic functions there. If
x /∈ Z, then the series converges conditionally in σ > 0 and hence, is holomorphic there.
In any case, F(x, s) is periodic in x with period 1. We call this the periodic Zeta function.

LEMMA 5.6. For 0 < r < π, let S(r) denote the region that remains after removing all open
circular disks of radius r centered at 2nπi for n ∈ Z. If 0 < a ⩽ 1, then the function

g(z) =
eaz

1 − ez

is bounded in S(r). The bound obviously depends on r.

Proof. ■ add

THEOREM 5.7 (HURWITZ’S FORMULA). If 0 < a ⩽ 1 and σ > 1, then

ζ(1 − s, a) =
Γ(s)
(2π)s

(
e−πis/2F(a, s) + eπis/2F(−a, s)

)
.

If a ̸= 1, this representation is valid in σ > 0.

Proof. For every positive integer N, let C(N) denote the contour shown in the following
figure.

Set

IN(s, a) =
1

2πi

∫
C(N)

zs−1eaz

1 − ez dz

with the same conventions on zs−1 as mentioned while defining I(s, a).
We first show that lim

N→∞
IN(s, a) = I(s, a) for σ < 0. To do this, it suffices to show that

the integral along the outer circle vanishes as N → ∞. Since the orientation of the outer
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cycle is irrelevant while showing this, we parametrize the outer circle as z = Reiθ where
−π ⩽ θ ⩽ π. Consequently,

|zs−1| = |Rs−1eiθ(s−1)| ⩽ Rσ−1eπ|t|.

Due to Lemma 5.6, there is an A > 0 (independent of N) such that the integrand is bounded
by ARσ−1eπ|t|. Thus, the integral can be bounded above in absolute vaule by

2πRσeπ|t|.

But since σ < 0, we have the desired conclusion as N → ∞. We rewrite this as

lim
N→∞

I(1 − s, a) = I(1 − s, a) for σ > 1.

We now use Cauchy’s Residue Theorem to compute the value of IN(1 − s, a). The poles
corresponding to which the winding number is non-zero (in fact, precisely −1) are 2nπ for
n ∈ {−N, . . . , N}\{0}.

Let

R(n) = Resz=2nπi
z−seaz

1 − ez .

Then,

R(n) = lim
z→2nπi

(z − 2nπi)
z−seaz

1 − ez = − e2nπia

(2nπi)s .

Consequently, for σ > 1,

IN(1 − s, a) =
N

∑
n=1

e2nπia

(2nπi)s +
N

∑
n=1

e−2nπia

(−2nπi)s =
e−πis/2

(2π)s

N

∑
n=1

e2nπia

ns +
eπis/2

(2π)s

N

∑
n=1

e−2nπia

ns .

Taking N → ∞, we get

I(1 − s, a) =
e−πis/2

(2π)s F(a, s) +
eπis/2

(2π)s F(−a, s) for σ > 1.

Recall that by definition, we have ζ(1 − s, a) = Γ(s)I(1 − s, a) for σ > 0, thus, for σ > 1.
This gives,

ζ(1 − s, a) =
Γ(s)
(2π)s

(
e−πis/2F(a, s) + eπis/2F(−a, s)

)
for σ > 1.

If a ̸= 1, then the right hand side is analytic for σ > 0, as is the left hand side, whence the
equality holds for σ > 0. This completes the proof. ■
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§§ Riemann’s Functional Equation

THEOREM 5.8. For all s ̸= 0, we have

ζ(1 − s) = 2(2π)−sΓ(s) cos
(πs

2

)
ζ(s).

Proof. Put a = 1 in Hurwitz’s formula to get the identity, (for σ > 1)

ζ(1 − s) =
Γ(s)
(2π)s

(
e−πis/2F(1, s) + eπis/2F(1, s)

)
=

Γ(s)
(2π)s 2 cos

(πs
2

)
ζ(s).

Let n be a positive integer and let s → 2n + 1. In this limit, the right hand side vanishes
and hence, we have ζ(−2n) = 0 for all positive integers n. Thus, the right hand side is
a well defined function that is holomorphic (modulo removable singularities) on C\{0}.
Further, since ζ(1 − s) is holomorphic on C\{0}, equality holds for all s ̸= 0. ■

From Gauß’s multipliation formula, we get

Γ(s)Γ
(

s +
1
2

)
= 2π1/22−2sΓ(2s)

whenever either of the two sides is defined. Put s 7→ (1 − s)/2 to get

2sπ1/2Γ(1 − s) = Γ
(

1 − s
2

)
Γ
(

1 − s
2

)
,

whenever either of the two sides is defined.
The reflection formula gives

Γ(1 − s) sin
(πs

2

)
=

2−sπ1/2Γ
(

1−s
2

)
Γ
( s

2

)
whenever either of the two sides is defined.

We have
ζ(s) = 2(2π)s−1Γ(1 − s) sin

(πs
2

)
ζ(1 − s)

whenever either of the two sides is defined. Thus, we have

π−s/2Γ
( s

2

)
ζ(s) = π−(1−s)/2Γ

(
1 − s

2

)
ζ(1 − s).

Define the xi function as

ξ(s) =
1
2

s(s − 1)π−s/2Γ
( s

2

)
ζ(s).

This is an entire function and satisfies the equation

ξ(s) = ξ(1 − s).

This is known as Riemann’s functional equation.
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§§ Functional equation for L-functions

THEOREM 5.9. If h and N are positive integers with 1 ⩽ h ⩽ N, then for all s ̸= 0, we have

ζ

(
1 − s,

h
N

)
=

2Γ(s)
(2πN)s

N

∑
r=1

cos
(

πs
2

− 2πrh
N

)
ζ
(

s,
r
N

)
.

Proof. For σ > 1, note that

F
(

h
N

, s
)
=

∞

∑
n=1

e2πinh/N

ns

=
N

∑
r=1

∞

∑
q=0

e2πirh/N

(qN + r)s

=
1

Ns

N

∑
r=1

e2πirh/N
∞

∑
q=0

1(
q + r

N
)s

= N−s
N

∑
r=1

e2πirh/Nζ
(

s,
r
N

)
.

Substituting this in Hurwitz’s formula, we obtain the equality for σ > 1. The result holds
for all s ̸= 0 as a result of analytic continuation. ■

Let χ be a Dirichlet character modulo N. Then, L(s, χ) is absolutely convergent for
σ > 1. In this half plane, we can write

L(s, χ) =
∞

∑
n=1

χ(n)
ns

=
N

∑
r=1

∞

∑
q=0

χ(r)
(qN + r)s

=
1

Ns

N

∑
r=1

χ(r)ζ
(

s,
r
N

)
.

From the theory we developed earlier, we know that the Hurwitz zeta function has an
analytic continuation to all of C with a simple pole at s = 1 of residue 1.

• If χ is not the principal character modulo N, then ∑N
r=1 χ(r) = 0 and hence, the right

hand side of the above equation is entire. Consequently, L(s, χ) can be analytically
continued to an entire function.

• On the other hand, if χ = 1 is the principal character, then the right hand side has a
simple pole at s = 1 of residue φ(N)/N.

PROPOSITION 5.10. Let χ be a primitive character modulo N. Then,

G(1, χ)L(s, χ) =
N

∑
h=1

χ(h)F
(

h
N

, s
)

for σ > 1.

23



Proof. Omitted owing to its obviousness. The primitive-ness of the character is required
only to use the fact that the Gauss sum is separable. ■

THEOREM 5.11 (FUNCTIONAL EQUATION FOR L-SERIES). Let χ be a primitive character
modulo N. Then, for all s, we have

L(1 − s, χ) =
Ns−1Γ(s)
(2π)s

(
e−πis/2 + χ(−1)eπis/2

)
G(1, χ)L(s, χ).

Proof. Hurwitz’s formula says

ζ(1 − s, h/N) =
Γ(s)
(2π)s

(
e−πis/2F(h/N, s) + eπis/2F(−h/N, s)

)
for σ > 1.

Thus, for σ > 1,

N

∑
h=1

χ(h)ζ
(

1 − s,
h
N

)
=

Γ(s)
(2π)s

{
e−πis/2

N

∑
h=1

χ(h)F(h/N, s) + eπis/2
N

∑
h=1

χ(h)F(−h/N, s)

}
.

We simplify the second term,

N

∑
h=1

χ(h)F(−h/N, s) = ∑
h mod N

χ(h)F
(

N − h
N

, s
)
= χ(−1) ∑

h mod N
χ(h)F(h/N, s).

Substituting this back, for σ > 1, the right hand side becomes

Γ(s)
(2π)s

(
e−πis/2 + χ(−1)eπis/2

)
∑

h mod N
χ(h)F(h/N, s).

Using Proposition 5.10, the above simplifies as

N

∑
h=1

χ(h)ζ
(

1 − s,
h
N

)
=

Γ(s)
(2π)s

(
e−πis/2 + χ(−1)eπis/2

)
G(1, χ)L(s, χ)

for σ > 1. The left hand side is holomorphic on s ̸= 0, as is the right hand side (since χ
is non principal). Thus, the equality holds for all s (since the right hand side is entire).
In particular, we can suppose ℜ(s) < 0, whence, we can multiply by Ns−1 to obtain the
equality

L(1 − s, χ) =
Ns−1Γ(s)
(2π)s

(
e−πis/2 + χ(−1)eπis/2

)
G(1, χ)L(s, χ).

This equality holds in σ < 0 and hence, everywhere, since both sides are entire. This
completes the proof. ■
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§6 THE PRIME NUMBER THEOREM

LEMMA 6.1. ζ(1 + it) ̸= 0 for all t ∈ R \ {0}.

LEMMA 6.2. The series
Φ(s) = ∑

n⩾2
∑
p

1
npns

converges uniformly on compacta to a holomorphic function on ℜs > 1
2 .

Proof. Let s = x + iy with x > 1
2 . We have the inequalities

∑
n⩾2

∑
p

1
npnx = ∑

p

1
p2x

(
∑
n⩾0

1
(n + 2)pnx

)
⩽ ∑

p

1
p2x

(
∑
n⩾0

1
√

2
n

)

and the conclusion follows. ■

Define the series
L(s) = ∑

p

1
ps ,

which is easily seen to be holomorphic in ℜs > 1 as the series converges uniformly on
compacta. Let

ℓ(s) = ∑
p

log p
ps = −L′(s)

on Res > 1.
Notice that

L(s) = log ζ(s)− Φ(s) for ℜs > 1.

Due to Lemma 6.1, the function (s − 1)ζ(s), which is known to be entire, does not vanish
on an open set containing {z : ℜz ⩾ 1}. Therefore, we may consider a logarithm for the
same around s = 1. It follows that on the right half plane ℜs > 1,

ℓ(s)− 1
s − 1

= − (L(s) + log(s − 1))′ = − (log ((s − 1)ζ(s))− Φ(s))′ .

Note that the right hand side is defined and analytic in a neighborhood of s = 1 and hence,
ℓ(s)− 1

s−1 is defined and analytic in an open set containing ℜs ⩾ 1. This will be very
useful later on.

LEMMA 6.3. Let f : [0, ∞) → C be a bounded, locally integrable function. Define g :
{z : ℜz > 0} → C by

g(z) =
∫ ∞

0
e−zt f (t) dt.

Then g is well-defined and analytic on its domain of definition.
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Proof. Define gT : C → C by

gT(z) =
∫ T

0
e−zt f (t) dt.

We shall show that gT → g uniformly on compacta contained in the right half plane.
Indeed, let K be one such compact set. Then, there is a δ0 > 0 such that ℜz ⩾ δ0 for every
z ∈ K. It follows that for T < S,

|gS(z)− gT(z)| ⩽
∫ S

T
e−δ0t| f (t)| dt,

which goes to zero since f is bounded. Thus, g is analytic on its domain of definition. ■

THEOREM 6.4 (NEWMAN). Let f : [0, ∞) → C be a bounded, locally integrable functio-
nand suppose that

g(z) =
∫ ∞

0
e−zt f (t) dt ℜz > 0,

extends analytically to an open set containing ℜz ⩾ 0. Then,
∫ ∞

0
f (t) dt exists and is equal

to g(0).

LEMMA 6.5. Suppose h : [1, ∞) → R is a non-decreasing function and∫ ∞

1

h(x)− x
x2 dx

converges. Then, h(x) ∼ x.

Proof. Suppose for some λ > 1, there are arbitrarily large values of x with h(x) ⩾ λx.
Then, ∫ λx

x

h(t)− t
t2 dt ⩾

∫ λx

x

λx − t
t2 dt =

∫ λ

1

λ − s
s2 ds > 0

for all such x (which are arbitrarily large), a contradiction to the fact that the integral
converges.

Similarly, if for some λ < 1, there are arbitrarily large values of x with h(x) ⩽ λx, then∫ x

λx

h(t)− t
t2 ⩽

∫ x

λx

λx − t
t2 dt =

∫ 1

λ

λ − s
s2 dt < 0

for all such x (which are arbitrarily large). This is again a contradiction. ■

It is not hard to see the equality

ℓ(s) = s
∫ ∞

0
e−stϑ(et) dt ℜs > 1,

which follows by just integrating the function t 7→ ϑ(et) step-wise. Thus,

ℓ(s + 1)
s + 1

− 1
s
=
∫ ∞

0
e−st (e−tϑ(et)− 1

)
dt ℜs > 0.
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Set g(s) = ℓ(s+1)
s+1 − 1

s and f (t) = e−tϑ(et)− 1. Then, f is a bounded locally integrable
function on [0, ∞) and g is holomorphic in a neighborhood of ℜs ⩾ 0. Due to Theorem 6.4,
it follows that ∫ ∞

1

ϑ(x)− x
x2 dx

converges. Finally, using Lemma 6.5, we have ϑ(x) ∼ x, which is equivalent to the Prime
Number Theorem due to Theorem 2.5.
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