Analytic Number Theory

Swayam Chube

December 1, 2024

§1 SOME BACKGROUND ON SEQUENCES AND SERIES

THEOREM 1.1 (SUMMATION BY PARTS). Let (a_n) and (b_n) be two sequences. Put

$$A_{m,n} = \sum_{k=m}^{n} a_k$$
 and $S_{m,n} = \sum_{k=m}^{n} a_k b_k$.

Then, for m < n,

$$S_{m,n} = \sum_{k=m}^{n-1} A_{m,k} (b_k - b_{k+1}) + A_{m,n} b_n.$$

THEOREM 1.2 (PARTIAL SUMMATION FORMULA). Let $(a_n)_{n=1}^{\infty}$ be a sequence of complex numbers and $f:[1,x]\to\mathbb{C}$ a continuously differentiable function. Set

$$A(t) = \sum_{1 \le n \le t} a_n.$$

Then,

$$\sum_{1 \leqslant n \leqslant x} a_n f(n) = A(x) f(x) - \int_1^x A(t) f'(t) dt.$$

Proof. Suppose *x* is a natural number.

$$\sum_{1 \leqslant n \leqslant x} a_n f(n) = \sum_{1 \leqslant n \leqslant x} (A(n) - A(n-1)) f(n)$$

$$= \sum_{1 \leqslant n \leqslant x} A(n) f(n) - \sum_{0 \leqslant n \leqslant x-1} A(n) f(n+1)$$

$$= A(x) f(x) - \sum_{0 \leqslant n \leqslant x-1} A(n) \int_{n}^{n+1} f'(t) dt$$

$$= A(x) f(x) - \sum_{0 \leqslant n \leqslant x-1} \int_{n}^{n+1} A(t) f'(t) dt$$

$$= A(x) f(x) - \int_{0}^{x} A(t) f'(t) dt.$$

If *x* is not a natural number, note the equality

$$A(x)\left(f(x) - f(\lfloor x \rfloor)\right) = \int_{\lfloor x \rfloor}^{x} A(t)f'(t) dt.$$

COROLLARY (PARTIAL SUMS OF DIRICHLET SERIES). Take $f(t) = 1/t^s$ to obtain (for $x \ge 1$)

$$\sum_{1 \le n \le x} \frac{a_n}{n^s} = \frac{A(x)}{x^s} + s \int_1^x \frac{A(t)}{t^{s+1}} \, ds.$$

This is often called *Abel's Summation Formula*.

EXAMPLE 1.3. In Abel's formula, set $a_n = 1$ for all n and s = 1. Then,

$$\sum_{1 \le n \le x} = \frac{\lfloor x \rfloor}{x} + \int_1^x \frac{\lfloor t \rfloor}{t^2} dt.$$

The integral is bounded by

$$\int_1^x \frac{1}{t} \, dt = \log x.$$

It follows that

$$\sum_{1 \le n \le x} \frac{1}{n} = \log x + O(1).$$

EXAMPLE 1.4. As a consequence of the above example,

$$\sum_{\leq n \leq x} d(n) = \sum_{1 \leq n \leq x} \left\lfloor \frac{x}{n} \right\rfloor = x \sum_{1 \leq n \leq x} \frac{1}{n} + O(x) = x \log x + O(x).$$

Next, we elucidate *Dirichlet's Hyperbola Method* using a theorem due to Dirichlet.

THEOREM 1.5 (DIRICHLET).

$$\sum_{1 \leqslant n \leqslant x} d(n) = x \log x + (2\gamma - 1)x + O(\sqrt{x}).$$

Proof.

Add in

§2 ELEMENTARY RESULTS ON PRIME NUMBERS

DEFINITION 2.1. The two *Chebyshev functions* are defined as

$$\psi(x) = \sum_{p \leqslant x} \Lambda(x)$$
 and $\vartheta(x) = \sum_{p \leqslant x} \log p$,

for x > 0.

Proposition 2.2.

$$\Lambda(x) = \sum_{m=1}^{\infty} \vartheta(x^{1/m}) = \sum_{m \le \log_2 x} \vartheta(x^{1/m}).$$

Proof. We have

$$\psi(x) = \sum_{n \leqslant x} \Lambda(n) = \sum_{m=1}^{\infty} \sum_{p^m \leqslant x} \log p = \sum_{m=1}^{\infty} \sum_{p \leqslant x^{1/m}} \log p = \sum_{m=1}^{\infty} \vartheta(x^{1/m}).$$

Proposition 2.3.

$$0 \leqslant \frac{\psi(x) - \vartheta(x)}{x} \leqslant \frac{(\log x)^2}{2\sqrt{x}\log 2}.$$

Proof. We have

$$\frac{\psi(x) - \vartheta(x)}{x} \leqslant \frac{1}{x} \sum_{2 \leqslant m \leqslant \log_2 x} \vartheta(x^{1/m}) \leqslant \frac{1}{x} \sum_{2 \leqslant m \leqslant \log_2 x} x^{1/m} \log x^{1/m} \leqslant \frac{(\log x)^2}{2\sqrt{x} \log 2}.$$

LEMMA 2.4. For $x \ge 2$, we have

$$\vartheta(x) = \pi(x)\log x - \int_2^x \frac{\pi(t)}{t} dt,$$

and

$$\pi(x) = \frac{\vartheta(x)}{\log x} + \int_2^x \frac{\vartheta(t)}{t \log^2 t} dt.$$

Proof. Both follow from Theorem 1.2.

THEOREM 2.5. The following are equivalent:

(a)
$$\lim_{x \to \infty} \frac{\pi(x) \log x}{x} = 1,$$

(b)
$$\lim_{x \to \infty} \frac{\vartheta(x)}{x} = 1$$
,

(c)
$$\lim_{x \to \infty} \frac{\psi(x)}{x} = 1.$$

Proof. Suppose (a) holds. Using the preceding lemma, we have

$$\frac{\vartheta(x)}{x} = \frac{\pi(x)\log x}{x} - \frac{1}{x} \int_{2}^{x} \frac{\pi(t)}{t} dt.$$

But (a) implies $\pi(x) = O\left(\frac{x}{\log x}\right)$, i.e. there is an M > 0 such that $\pi(x) \leqslant \frac{Mx}{\log x}$. Hence,

$$\frac{1}{x} \int_2^x \frac{\pi(t)}{t} dt = M \frac{1}{x} \int_2^x \frac{dt}{\log t} = \frac{M}{x} \left(\int_2^{\sqrt{x}} \frac{dt}{\log t} + \int_{\sqrt{x}}^x \frac{dt}{\log t} \right) \leqslant \frac{M}{x} \left(\frac{\sqrt{x} - 2}{\log \sqrt{x}} + \frac{x - \sqrt{x}}{\log x} \right) \to 0$$

as $x \to \infty$.

Conversely, suppose (*b*) holds. Using the preceding lemma, we have

$$\frac{\pi(x)\log x}{x} = \frac{\vartheta(x)}{x} - \frac{\log x}{x} \int_{2}^{x} \frac{\vartheta(t)}{t \log^{2} t} dt.$$

But (*a*) implies the existence of a constant M > 0 such that $\vartheta(x) \leq Mx$. Hence,

$$\frac{\log x}{x} \int_2^x \frac{\vartheta(t)}{\log^2 t} dt \leqslant \frac{M \log x}{x} \int_2^x \frac{dt}{\log^2 t} = \frac{M \log x}{x} \left(\int_2^{\sqrt{x}} \frac{dt}{\log^2 t} + \int_{\sqrt{x}}^x \frac{dt}{\log^2 t} \right) \leqslant \frac{M \log x}{x} \left(\frac{\sqrt{x} - 2}{\log^2 \sqrt{x}} + \frac{x}{\log^2 x} \right)$$

and the conclusion follows.

Finally, the equivalence of (b) and (c) follows from Proposition 2.3.

§3 DIRICHLET CHARACTERS AND GAUSS SUMS

DEFINITION 3.1. A *Dirichlet character modulo n* is a group homomorphism $\chi : (\mathbb{Z}/n\mathbb{Z})^{\times} \to \mathbb{C}^{\times}$ which is extended by 0 to $\mathbb{Z}/n\mathbb{Z}$ and extended periodically to all of \mathbb{Z} .

DEFINITION 3.2. Let χ be a Dirichlet character modulo n. Define its *Gauss sums* as

$$G(m,\chi) = \sum_{r \bmod n} \chi(r) \exp\left(\frac{2\pi i m}{n}r\right).$$

LEMMA 3.3. If χ is any Dirichlet character modulo n, then

$$G(m,\chi) = \overline{\chi}(m)G(1,\chi),$$

whenever (m, n) = 1.

Proof. We have

$$G(m,\chi) = \sum_{r \bmod n} \overline{\chi}(m)\chi(m)\chi(r) \exp\left(\frac{2\pi i m}{n}r\right)$$
$$= \overline{\chi}(m) \sum_{r \bmod n} \chi(mr) \exp\left(\frac{2\pi i m r}{n}\right)$$
$$= \overline{\chi}(m)G(1,\chi),$$

where the last equality follows from the fact that (m, n) = 1.

DEFINITION 3.4. The Gauss sum $G(m, \chi)$ is said to be *separable* if

$$G(m,\chi) = \overline{\chi}(m)G(1,\chi).$$

We have seen that $G(m, \chi)$ is separable when (m, n) = 1.

PROPOSITION 3.5. Let χ be a Dirichlet character modulo n. Then, the Gauss sum $G(m,\chi)$ is separable for every m if and only if $G(m,\chi)=0$ whenever (m,n)>1.

Proof. Immediate from the definition.

THEOREM 3.6. Let χ be a Dirichlet character modulo n. If $G(m,\chi)$ is separable for every m, then

$$|G(1,\chi)|^2 = n,$$

Proof. We have

$$|G(1,\chi)|^{2} = G(1,\chi)\overline{G(1,\chi)} = \sum_{m=1}^{n} G(1,\chi)\overline{\chi}(m) \exp\left(-\frac{2\pi i}{n}m\right)$$

$$= \sum_{m=1}^{n} G(m,\chi) \exp\left(-\frac{2\pi i m}{n}\right)$$

$$= \sum_{m=1}^{n} \sum_{k=1}^{n} \chi(k) \exp\left(\frac{2\pi i m}{n}k\right) \exp\left(-\frac{2\pi i m}{n}\right)$$

$$= \sum_{k=1}^{n} \chi(k) \sum_{m=1}^{n} \exp\left(\frac{2\pi i (k-1)}{n}m\right)$$

$$= n\chi(1) = n.$$

LEMMA 3.7. Let χ be a Dirichlet character modulo n and suppose $G(m, \chi) \neq 0$ for some m with (m, n) > 1. Then, χ is not primitive.

Proof. Let q = (m, n) and set d = n/q. Choose any a satisfying (a, n) = 1 and $a \equiv 1 \mod d$. We have

$$G(m,\chi) = \sum_{r \bmod n} \chi(r)e_n(mr) = \sum_{r \bmod n} \chi(ar)e_n(amr) = \chi(a) \sum_{r \bmod n} \chi(r)e_n(amr)$$

Note that a = 1 + bd for some integer b. Hence,

$$\frac{amr}{n} = \frac{mr + mrbd}{n} = \frac{mr}{n} \bmod 1.$$

Consequently,

$$G(m,\chi) = \chi(a)G(m,\chi).$$

This shows that $\chi(a) = 1$. We have shown that for any a satisfying $a \equiv 1 \mod d$ and (a, n) = 1, $\chi(a) = 1$ and since d < n, χ cannot be primitive.

THEOREM 3.8. Let χ be a primitive Dirichlet character modulo n. Then, we have

- (a) $G(m, \chi) = 0$ whenever (m, n) > 1.
- (b) $G(m, \chi)$ is separable for every m.
- (c) $|G(m,\chi)|^2 = n$.

§§ Quadratic Reciprocity using Gauss Sums

If p is a prime, there is a unique non-principal quadratic character modulo p, which is given by

 $\chi(r) = \left(\frac{r}{p}\right).$

THEOREM 3.9. If p is an odd prime and χ is the unique non-principal quadratic character modulo p, then

 $G(1,\chi)^2 = \left(\frac{-1}{p}\right)p.$

Proof. We have

$$G(1,\chi)^2 = \sum_{r=1}^{p-1} \sum_{s=1}^{p-1} \chi(r)\chi(s)e_p(r+s).$$

For each pair (r,s), there is a unique t modulo p satisfying $tr \equiv s \mod p$. Therefore, we can write the sum as

$$\sum_{t=1}^{p-1} \sum_{r=1}^{p-1} \chi(t) e_p(r(1+t)) = \sum_{t=1}^{p-1} \chi(t) \sum_{r=1}^{p-1} e_p(r(1+t)) = -\sum_{t=1}^{p-2} \chi(t) + (p-1)\chi(p-1).$$

Since

$$\sum_{t=1}^{p-1} \chi(t) = 0,$$

the proof is complete.

Let p and q be distinct odd primes. From the above theorem, we have

$$G(1,\chi)^{q-1} \equiv \left(\frac{-1}{p}\right)^{\frac{q-1}{2}} \left(\frac{p}{q}\right) \bmod q \equiv (-1)^{\frac{p-1}{2}\frac{q-1}{2}} \left(\frac{p}{q}\right) \bmod q.$$

THEOREM 3.10. Let p and q be distinct odd primes and χ the non-principal quadratic character modulo p, then

$$G(1,\chi)^{q-1} = \left(\frac{q}{p}\right) \sum_{\substack{r_1 \\ r_1 + \dots + r_q \equiv q \bmod p}} \frac{\sum_{r_q} \dots \sum_{r_q} \left(\frac{r_1 \dots r_q}{p}\right)}{p}.$$

Proof. The Gauss sum $G(n,\chi)$ is periodic with period p and hence, has a finite Fourier expansion,

$$G(n,\chi)^q = \sum_{m=1}^p a_q(m)e_p(mn),$$

where the coefficients can be recovered as

$$a_q(m) = \frac{1}{p} \sum_{n=1}^p G(n, \chi)^q e_p(-mn).$$

From the definition, we have

$$G(n,\chi)^q = \left(\sum_{r \bmod p} \chi(r)e_p(nr)\right)^q = \sum_{r_1 \bmod p} \cdots \sum_{r_q \bmod p} \chi(r_1 \cdots r_q)e_p(n(r_1 + \cdots + r_q)).$$

Hence,

$$a_q(m) = \frac{1}{p} \sum_{r_1 \mod p} \cdots \sum_{r_q \mod p} \chi(r_1 \dots r_q) \sum_{n=1}^p e_p(n(r_1 + \dots + r_q - m)).$$

The innermost sum takes a non-zero value if and only if $r_1 + \cdots + r_q \equiv m \mod p$. As a result, we have

$$a_q(m) = \sum_{\substack{r_1 \\ r_1 + \dots + r_q \equiv m \bmod p}} \chi(r_1 \dots r_q).$$

On the other hand, $G(n, \chi)$ is separable and hence, we have

$$a_{q}(M) = \frac{1}{p}G(1,\chi)^{q} \sum_{n=1}^{p} \chi(n)^{q} e_{p}(-mn) = \frac{1}{p}G(1,\chi)^{q} \sum_{n=1}^{p} \chi(n) e_{p}(-mn)$$

$$= \frac{1}{p}G(1,\chi)^{q}G(-m,\chi) = \frac{1}{p}G(1,\chi)^{q}\chi(m)G(-1,\chi)$$

$$= \frac{1}{p}G(1,\chi)^{q}\chi(m)\overline{G(1,\chi)} = \chi(m)G(1,\chi)^{q-1}.$$

Therefore,

$$G(1,\chi)^{q-1} = \chi(m) \sum_{\substack{r_1 \\ r_1 + \dots + r_q \equiv m \bmod p}} \chi(r_1 \dots r_q).$$

Taking m = q, we have the desired conclusion.

PROOF OF QUADRATIC RECIPROCITY. Putting together the last two theorems,

$$(-1)^{\frac{p-1}{2}\frac{q-1}{2}} \left(\frac{p}{q}\right) \equiv \left(\frac{q}{p}\right) \sum_{\substack{r_1 \\ r_1 + \dots + r_q \equiv q \bmod p}} \left(\frac{r_1 \dots r_q}{p}\right) \pmod{q}$$

We can break the sum on the right into equivalence classes corresponding to multisets (r_1, \ldots, r_q) . If all the r_i 's are not equal, then the number of distinct permutations of this multiset is divisible by q and hence, the only term that survives on the right is when all the r_i 's are equal to 1. This gives the desired conclusion.

§4 DIRICHLET SERIES

A Dirichlet series is a "formal sum" of the form

$$\sum_{n=1}^{\infty} \frac{f(n)}{n^s}$$

where $s \in \mathbb{C}$ and $f : \mathbb{N} \to \mathbb{C}$ is an arithmetic function. The first thing to study is its convergence. As is customary, we shall write $s = \sigma + it$.

THEOREM 4.1. Suppose the series $\sum |f(n)n^{-s}|$ does not converge for all s or diverge for all s. Then there is a real number σ_a called the *abscissa of absolute convergence* such that the series $\sum f(n)n^{-s}$ converges absolutely if $\sigma > \sigma_a$ but does not converge absolutely if $\sigma < \sigma_a$.

Proof. Omitted on account of its obviousness.

REMARK 4.2. If the Dirichlet series converges absolutely everywhere, we set $\sigma_a = -\infty$ and if it converges absolutely nowhere, we set $\sigma_a = \infty$.

We set

$$F(s) = \sum_{n=1}^{\infty} \frac{f(n)}{n^s},$$

which is a well defined function on the half plane $\sigma > \sigma_a$.

LEMMA 4.3. If $N \ge 1$ and $\sigma \ge c > \sigma_a$,

$$\left|\sum_{n=N}^{\infty} f(n)n^{-s}\right| \leqslant N^{-(\sigma-c)} \sum_{n=N}^{\infty} |f(n)|n^{-c}.$$

Proof. Indeed,

$$\left| \sum_{n=N}^{\infty} f(n) n^{-s} \right| \leq \sum_{n=N}^{\infty} |f(n)| n^{-\sigma}$$
$$\leq \sum_{n=N}^{\infty} |f(n)| n^{-c} N^{-(\sigma-c)}.$$

Proposition 4.4.

$$\lim_{\sigma \to \infty} F(\sigma + it) = f(1)$$

uniformly for $t \in \mathbb{R}$.

Proof. Immediate from the above lemma.

THEOREM 4.5 (UNIQUENESS THEOREM FOR DIRICHLET SERIES). Given two Dirichlet series

$$F(s) = \sum_{n=1}^{\infty} \frac{f(n)}{n^s}$$
 and $G(s) = \sum_{n=1}^{\infty} \frac{g(n)}{n^s}$,

both absolutely convergent for $\sigma > \sigma_a$. If F(s) = G(s) for an infinite sequence $\{s_k\}$ with $\sigma_k \to \infty$. Then, f(n) = g(n) for every n.

Proof. Set h(n) = f(n) - g(n) and H(s) = F(s) - G(s). Then, $H(s_k) = 0$ for each k and $\sigma_k \to \infty$ as $k \to \infty$. Suppose h is not identically 0 and let N be the smallest positive integer for which $h(n) \neq 0$. Then,

$$H(s) = \frac{h(N)}{N^s} + \sum_{n=N+1}^{\infty} \frac{h(n)}{n^s}.$$

Thus,

$$h(N) = N^{s}H(s) - N^{s}\sum_{n=N+1}^{\infty} \frac{h(n)}{n^{s}}.$$

Put $s = s_k$ to obtain

$$h(N) = -N^{s_k} \sum_{n=N+1}^{\infty} \frac{h(n)}{n^{s_k}}.$$

Choose some $c > \sigma_a$. Then, for sufficiently large k, $\sigma_k > c > \sigma_a$. Then,

$$|h(N)| = N^{\sigma_k}(N+1)^{-(\sigma_k-c)} \sum_{n=N+1}^{\infty} |h(n)| n^{-c}.$$

It follows by taking $k \to \infty$ that h(N) = 0.

COROLLARY. Let $F(s) = \sum_{n=1}^{\infty} f(n) n^{-s}$ and suppose $F(s) \neq 0$ for some s with $\sigma > \sigma_a$. Then, there is a constant $c \geqslant \sigma_a$ such that F(s) does not vanish for $\sigma > c$.

Proof. Converse to the previous theorem.

THEOREM 4.6. Consider two Dirichlet series

$$F(s) = \sum_{n=1}^{\infty} \frac{f(n)}{n^s}$$
 and $G(s) = \sum_{n=1}^{\infty} \frac{g(n)}{n^s}$,

which are absolutely convergent for $\sigma > a$ and $\sigma > b$ respectively. Then, in the half-plane where both series converge absolutely,

$$F(s)G(s) = \sum_{n=1}^{\infty} \frac{(f * g)(n)}{n^s},$$

and converges absolutely. Conversely, if $F(s)G(s) = \sum \alpha(n)n^{-s}$ for a sequence $\{s_k\}$ with $\sigma_k \to \infty$ as $k \to \infty$, then $\alpha = f * g$.

Proof. The first statement follows from the fact that absolutely convergent series can be rearranged. The second statement follows from the uniqueness theorem.

EXAMPLE 4.7. The zeta function is the Dirichlet series corresponding to $f \equiv 1$. Let G(s) denote the function defined by the Dirichlet series

$$G(s) = \sum_{n=1}^{\infty} \frac{\mu(n)}{n^s},$$

which is absolutely convergent in the right half plane $\sigma > 1$. Then,

$$\zeta(s)G(s) = \sum_{n=1}^{\infty} \frac{(1 * \mu)(n)}{n^s} = 1,$$

for $\sigma > 1$. This, in turn, shows that ζ does not vanish in the right half plane $\sigma > 1$.

EXAMPLE 4.8. In the spirit of the previous example, let $f: \mathbb{N} \to \mathbb{C}$ be a completely multiplicative arithmetic function. Then, its Dirichlet inverse is given by $f^{-1}(n) = \mu(n)f(n)$. If σ_a denotes the abscissa of absolute convergence for the Dirichlet series corresponding to f, then the Dirichlet series corresponding to f^{-1} converges absolutely in the half plane $\sigma > \sigma_a$.

Consequently, for $\sigma > \sigma_a$, we have

$$\frac{1}{F(s)} = \sum_{n=1}^{\infty} \frac{\mu(n)f(n)}{n^s},$$

therefore, $F(s) \neq 0$ in the right half plane $\sigma > \sigma_a$.

In particular, for a Dirichlet character χ (modulo N), we have

$$\sum_{n=1}^{\infty} \frac{\mu(n)\chi(n)}{n^s} = \frac{1}{L(s,\chi)} \quad \text{for } \sigma > 1.$$

EXAMPLE 4.9. Taking $f \equiv 1$ and $g = \lambda$, Liouville's function, we get, for $\sigma > 1$,

$$\zeta(s) \sum_{n=1}^{\infty} \frac{\lambda(n)}{n^s} = \sum_{n=1}^{\infty} \frac{1}{(n^2)^s} = \zeta(2s).$$

That is,

$$\sum_{n=1}^{\infty} \frac{\lambda(n)}{n^s} = \frac{\zeta(2s)}{\zeta(s)} \quad \text{for } \sigma > 1.$$

PROPOSITION 4.10. Let $f : \mathbb{N} \to \mathbb{C}$ be a multiplicative arithmetic function such that the series $\sum_{n\geqslant 1} f(n)$ is absolutely convergent. Then,

$$\sum_{n=1}^{\infty} f(n) = \prod_{p \text{ prime}} \left\{ 1 + f(p) + f(p^2) + \cdots \right\},\,$$

where the product is absolutely convergent. If f is completely multiplicative,

$$\sum_{n=1}^{\infty} = \prod_{p \text{ prime}} \frac{1}{1 - f(p)}.$$

Proof. Straightforward. Note that *absolute convergence* is necessary.

THEOREM 4.11 (EULER PRODUCT). Suppose the Dirichlet series $\sum_{n\geqslant 1} f(n)n^{-s}$ converges absolutely for $\sigma > \sigma_a$. If f is multiplicative, we have

$$\sum_{n=1}^{\infty} \frac{f(n)}{n^s} = \prod_{p \text{ prime}} \left\{ 1 + \frac{f(p)}{p^s} + \frac{f(p^2)}{p^{2s}} + \cdots \right\} \quad \text{for } \sigma > \sigma_a,$$

and if *f* is completely multiplicative, we have

$$\sum_{n=1}^{\infty} \frac{f(n)}{n^s} = \prod_{p \text{ prime}} \frac{1}{1 - f(p)p^{-s}}.$$

EXAMPLE 4.12. Let χ be a Dirichlet character (modulo N), then

$$L(s,\chi) = \prod_{p \text{ prime}} \frac{1}{1 - \chi(p)p^{-s}}.$$

LEMMA 4.13. Let $s_0 = \sigma_0 + it_0$ and assume that the Dirichlet series $\sum_{n \ge 1} f(n) n^{-s_0}$ has bounded partial sums, say

$$\left|\sum_{n\leqslant x}f(n)n^{-s_0}\right|\leqslant M,$$

for all $x \ge 1$. Then, for each s with $\sigma > \sigma_0 <$ we have

$$\left| \sum_{a < n \leqslant b} f(n) n^{-s} \right| \leqslant 2M a^{\sigma_0 - \sigma} \left(1 + \frac{|s - s_0|}{\sigma - \sigma_0} \right)$$

Proof.

COROLLARY. If the Dirichlet series $\sum_{n\geqslant 1} f(n)n^{-s}$ converges for $s_0=\sigma_0+it_0$, then it also converges for all s with $\sigma>\sigma_0$. If, on the other hand, it diverges for $s_0=\sigma_0+it_0$, then it diverges for all s with $\sigma<\sigma_0$.

Abel summation

Proof. The second statement follows from the first. To see the first statement, choose any s with $\sigma > \sigma_0$. The preceding lemma shows that there is a constant C > 0 such that

$$\left|\sum_{a< n\leqslant b} f(n)n^{-s}\right| \leqslant Ca^{\sigma_0-\sigma},$$

where *C* does not depend on *a*. Now, since $a^{\sigma_0-\sigma} \to 0$ as $a \to \infty$, the partial sums form a Cauchy sequence and we are done.

THEOREM 4.14. If the Dirichlet series $\sum_{n\geqslant 1} f(n)n^{-s}$ does not converge everywhere or diverge everywhere, then there exists a real number σ_c called the *abscissa of convergence*, such that the series converges for all s in the half plane $\sigma > \sigma_c$ and diverges for all s in the half plane $\sigma < \sigma_c$.

Proof. Omitted on account of its obviousness.

THEOREM 4.15. For any Dirichlet series with σ_c finite, we have

$$0 \leqslant \sigma_a - \sigma_c \leqslant 1$$
.

Proof. Obviously, $\sigma_c \le \sigma_a$. Now, if $\sigma > \sigma_c + 1$, then there is an $\varepsilon > 0$ such that $\sigma - \sigma_c > 1 + \varepsilon$. We can then write

$$\sum_{n\geqslant 1} \frac{|f(n)|}{n^{\sigma}} = \sum_{n\geqslant 1} \frac{|f(n)|}{n^{\sigma_c+\varepsilon}} \frac{1}{n^{\sigma-\sigma_c-\varepsilon}}.$$

Since the series

$$\sum_{n\geqslant 1}\frac{f(n)}{n^{\sigma_c+\varepsilon}}$$

converges, the individual terms are bounded in absolute value, say by M>0. Then, we have

$$\sum_{n\geqslant 1}\frac{|f(n)|}{n^{\sigma}}\leqslant M\sum_{n\geqslant 1}\frac{1}{n^{\sigma-\sigma_c-\varepsilon}}<\infty.$$

Thus, $\sigma_c \leq \sigma_c \leq \sigma$. Since this inequality holds for all $\sigma > \sigma_c + 1$, we have the desired inequality.

PROPOSITION 4.16. Let $f : \mathbb{N} \to \mathbb{C}$ such that

$$\left|\sum_{n=1}^{N} f(n)\right| = O(N^{\sigma_0}),$$

then $\sigma_c \leqslant \sigma_0$.

Proof. Let $s = \sigma \in \mathbb{R}$ with $\sigma > \sigma_0$. Set

$$A_{m,n} = \sum_{k=m}^{n} f(k)$$

and

$$S_{m,n} = \sum_{k=m}^{n} \frac{f(k)}{k^{s}}.$$

Using Theorem 1.1,

$$S_{m,n} = \sum_{k=m}^{n-1} A_{m,k} \left(\frac{1}{k^s} - \frac{1}{(k+1)^s} \right) + A_{m,n} \frac{1}{n^s},$$

thus,

$$|S_{m,n}| \leq \sum_{k=m}^{n-1} |A_{m,k}| \left| \frac{1}{k^s} - \frac{1}{(k+1)^s} \right| + |A_{m,n}| \frac{1}{n^{\sigma}}.$$

According to our hypothesis, there is a constant M > 0 such that $A_{m,k} \leq Mk^{\sigma_0}$. Using the Mean Value Theorem,

$$\left|\frac{1}{k^{\sigma}} - \frac{1}{(k+1)^{\sigma}}\right| = \frac{|\sigma|}{(k+c)^{\sigma+1}} \leqslant \frac{|\sigma|}{k^{\sigma+1}}.$$

Substituting this back, we have

$$|S_{m,n}| \leq M|\sigma| \sum_{k=m}^{n-1} \frac{1}{k^{\sigma+1-\sigma_0}} + \frac{1}{n^{\sigma-\sigma_0}}.$$

It is easy to see that this sequence is Cauchy and hence, it converges. It follows that $\sigma_c \leq \sigma_0$.

§§ Analytic Properties of Dirichlet series

THEOREM 4.17. A Dirichlet series $\sum_{n\geqslant 1} f(n)n^{-s}$ converges uniformly on every compact subset lying in the interior of the right half plane $\sigma > \sigma_c$ and hence, defines a holomorphic function on the aforementioned right half plane.

Proof. It suffices to show uniform convergence on every compact rectangle of the form $[\alpha, \beta] \times [c, d]$ with $\alpha > \sigma_c$. First, choose a σ_0 with $\sigma_c < \sigma_0 < \alpha$. Then, using Lemma 4.13,

$$\left| \sum_{a < n \leqslant b} f(n) n^{-s} \right| \leqslant 2M a^{\sigma_0 - \sigma} \left(1 + \frac{|s - \sigma_0|}{\sigma - \sigma_0} \right).$$

There is a constant C>0 such that $|s-\sigma_0|< C$ whenever s lies in the rectangle. Consequently,

$$\left| \sum_{a < n \le b} f(n) n^{-s} \right| \le 2M a^{\sigma_0 - \alpha} \left(1 + \frac{C}{\alpha - \sigma_0} \right),$$

for all $a \in \mathbb{N}$. This shows that the partial sums are uniformly Cauchy on the rectangle and hence, converge uniformly. This completes the proof.

COROLLARY. The function $F(s) := \sum_{n \ge 1} f(n) n^{-s}$ is analytic in the half plane $\sigma > \sigma_c$, and its derivative in the aforementioned half plane is given by

$$F'(s) = -\sum_{n=1}^{\infty} \frac{f(n) \log n}{n^s}.$$

EXAMPLE 4.18. For $\sigma > 1$, we have

$$\zeta'(s) = \sum_{n=1}^{\infty} \frac{\log n}{n^s},$$

where the sum is also absolutely convergent. On the other hand, recall that

$$\frac{1}{\zeta(s)} = \sum_{n=1}^{\infty} \frac{\mu(n)}{n^s},$$

Consequently, for $\sigma > 1$,

$$\frac{\zeta'(s)}{\zeta(s)} = \sum_{n=1}^{\infty} \frac{(\mu * \log)(n)}{n^s} = \sum_{n=1}^{\infty} \frac{\Lambda(n)}{n^s}.$$

THEOREM 4.19. Let *F* be a holomorphic function which is represented in the half plane $\sigma > c$ by the Dirichlet series

$$F(s) = \sum_{n=1}^{\infty} \frac{f(n)}{n^s}$$

where c is finite. Further, suppose there is a positive integer n_0 such that $f(n) \ge 0$ for all $n \ge n_0$. If F is holomorphic in a neighborhood of c, then there is an $\varepsilon > 0$ such that the Dirichlet series converges in the half plane $\sigma > c - \varepsilon$, in other words, $\sigma_c \le c - \varepsilon$.

Proof. Let a = 1 + c. Since F is analytic at a, it can be represented by an absolutely convergent power series about a,

$$F(s) = \sum_{k=0}^{\infty} \frac{F^{(k)}(a)}{k!} (s-a)^k,$$

whose radius of convergence is greater than 1 and hence, there is an $\varepsilon > 0$ such that $c - \varepsilon$ lies within the open disk of convergence of the aforementioned power series about a. But,

$$F^{(k)}(a) = (-1)^k \sum_{n=1}^{\infty} \frac{f(n) \log^k n}{n^a}.$$

Therefore,

$$F(s) = \sum_{k=0}^{\infty} \sum_{n=1}^{\infty} \frac{(a-s)^k}{k!} \frac{f(n) \log^k n}{n^a}.$$

In particular, this equality holds for $s = c - \varepsilon$. Hence,

$$F(c-\varepsilon) = \sum_{k=0}^{\infty} \sum_{n=1}^{\infty} \frac{(1+\varepsilon)^k}{k!} \frac{f(n) \log^k n}{n^a}.$$

The double series has *nonnegative* terms for $n \ge n_0$ and hence, we can interchange the order of summation.

$$F(c-\varepsilon) = \sum_{n=1}^{\infty} \frac{f(n)}{n^a} \sum_{k=0}^{\infty} \frac{(1+\varepsilon)^k \log^k n}{k!} = \sum_{n=1}^{\infty} \frac{f(n)}{n^a} n^{1+\varepsilon} = \sum_{n=1}^{\infty} \frac{f(n)}{n^{c-\varepsilon}}.$$

Thus, the Dirichlet series converges for $s = c - \varepsilon$.

THEOREM 4.20. Let the Dirichlet series $F(s) = \sum_{n \ge 1} f(n) n^{-s}$ be absolutely convergent for $\sigma > \sigma_a$ and assume that $f(1) \ne 0$. If $F(s) \ne 0$ for $\sigma > \sigma_0 \ge \sigma_a$, then for $\sigma > \sigma_0$, we have $F(s) = \exp(G(s))$ where

$$G(s) = \log f(1) + \sum_{n=2}^{\infty} \frac{(f' * f^{-1})(n)}{\log n} \frac{1}{n^{s'}}$$

where f^{-1} is the Dirichlet inverse of f and $f'(n) = f(n) \log n$. Further, this Dirichlet series is absolutely convergent in the half plane $\sigma > \sigma_0$.

Proof. Since F does not vanish in the right half plane $\sigma > \sigma_0$, there is a holomorphic function G such that $F(s) = \exp(G(s))$. We have G'(s) = F'(s)/F(s) for all $\sigma > \sigma_0$. But we already know

$$F'(s) = -\sum_{n=1}^{\infty} \frac{f(n) \log n}{n^s}$$
 and $\frac{1}{F(s)} = \sum_{n=1}^{\infty} \frac{f^{-1}(n)}{n^s}$,

for $\sigma > \sigma_0$ and the convergence is absolute there. Thus,

$$G'(s) = -\sum_{n=2}^{\infty} \frac{(f' * f^{-1})(n)}{n^s}.$$

Therefore,

$$G(s) = C + \sum_{n=2}^{\infty} \frac{(f' * f^{-1})(n)}{\log n} \frac{1}{n^s},$$

since the Dirichlet series for G converges absolutely in $\sigma > \sigma_0$ and upon differentiating, we obtain the Dirichlet series for G'. To determine the constant, use

$$f(1) = \lim_{\sigma \to \infty} F(\sigma + it) = e^{C}.$$

This completes the proof.

EXAMPLE 4.21. We have shown earlier that $\zeta(s)$ does not vanish on the half plane $\sigma > 1$. Therefore, it has a "logarithm" here, given by

$$G(s) = \sum_{n=2}^{\infty} \frac{(1' * 1^{-1})(n)}{\log n} \frac{1}{n^{s}}.$$

Where $\mathbb{1}^{-1} = \mu$ and $\mathbb{1}' = \log$. Thus,

$$\log \zeta(s) = G(s) = \sum_{n=2}^{\infty} \frac{\Lambda(n)}{\log n} \frac{1}{n^s},$$

on the half plane $\sigma > 1$. Unraveling the definition of the von Mangoldt function,

$$G(s) = \sum_{p \text{ prime } m=1}^{\infty} \frac{1}{mp^{ms}} \text{ for } \sigma > 1.$$

EXAMPLE 4.22. Similarly, given a completely multiplicative arithmetic function $f: \mathbb{N} \to \mathbb{C}$, if $F(s) = \sum_{n\geqslant 1} f(n)n^{-s}$ denotes the Dirichlet series, that is non vanishing in $\sigma > \sigma_0 \geqslant \sigma_a$, then $F(s) = \exp(G(s))$ in $\sigma > \sigma_0$ and

$$G(s) = \sum_{n=2}^{\infty} \frac{f(n)\Lambda(n)}{\log n} \frac{1}{n^s} = \sum_{p \text{ prime } m=1}^{\infty} \frac{f(p)^m}{mp^{ms}}.$$

§§ Dirichlet's Theorem on Primes in Arithmetic Progressions

Our goal, in this subsection, is to show that whenever (a, N) = 1, there are infinitely many primes $p \equiv a \mod N$. Henceforth, all Dirichlet characters will be modulo N. The principal character (modulo N) will be denoted by $\mathbb{1}$.

For each character χ , define

$$l_1(s,\chi) = \sum_{p \text{ prime}} \frac{\chi(p)}{p^s}.$$

This is a Dirichlet series, which is absolutely convergent and holomorphic in the half plane $\sigma > 1$. Also, define

$$l(s,\chi) = \sum_{p \text{ prime } n=1}^{\infty} \frac{\chi(p)^n}{np^{ns}},$$

and we have seen in the previous section that $l(s,\chi)$ is absolutely convergent for $\sigma > 1$, is holomorphic there and $\exp(l(s,\chi)) = L(s,\chi)$ for $\sigma > 1$.

PROPOSITION 4.23. Let $R(s,\chi) = l(s,\chi) - l_1(s,\chi)$. Then, R is a Dirichlet series that is absolutely convergent and holomorphic for $\sigma > 1/2$.

Proof. The difference of two Dirichlet series is a Dirichlet series. Let $\sigma > 1/2$. Then,

$$|R(s,\chi)| \leqslant \sum_{p \text{ prime } n=2}^{\infty} \frac{1}{np^{n\sigma}}$$

Complete this section

§5 Analytic Continuation for $\zeta(s)$ and $L(s,\chi)$

DEFINITION 5.1. For $\sigma > 1$ and $0 < a \le 1$, define the *Hurwitz Zeta Function* $\zeta(s, a)$ as

$$\zeta(s,a) = \sum_{n=0}^{\infty} \frac{1}{(n+a)^s}.$$

The sum is absolutely convergent in the half plane $\sigma > 1$ and defines a holomorphic function there.

THEOREM 5.2. For $\sigma > 1$, we have the integral representation

$$\Gamma(s)\zeta(s,a) = \int_0^\infty \frac{x^{s-1}e^{-ax}}{1 - e^{-x}} dx.$$

Proof. First, let s > 1 be real. Then, the Monotone Convergence Theorem gives

$$\int_0^\infty \frac{x^{s-1}e^{-ax}}{1-e^{-x}}\,dx = \sum_{n=0}^\infty \int_0^\infty x^{s-1}e^{-(n+a)x} = \sum_{n=0}^\infty \frac{\Gamma(s)}{(n+a)^s} = \Gamma(s)\zeta(s,a).$$

Thus, it suffices to show that the integral on the right defines a holomorphic function of s on $\sigma > 1$. To do this, we shall show analyticity in every strip $1 + \delta < \sigma < c$ where $\delta > 0$. Obviously the functions

$$F_N(s) = \int_0^N \frac{x^{s-1}e^{-ax}}{1 - e^{-x}}$$

are holomorphic on $\sigma > 1$. We shall show that they converge uniformly to the integral on the right hand side. Indeed, their difference is given by the integral

$$\left| \int_N^\infty \frac{x^{s-1}e^{-ax}}{1-e^{-x}} \right| \leqslant \int_N^\infty \frac{x^{\sigma-1}e^{-ax}}{1-e^{-x}} \, dx \leqslant \int_N^\infty x^{\sigma-1}e^{-ax} \, dx \leqslant \int_N^\infty x^{c-1}e^{-ax} \, dx.$$

The uniform convergence thus follows from the fact that $\Gamma(c)$ is well defined and converges.

COROLLARY. In particular, for a = 1, we have

$$\Gamma(s)\zeta(s) = \int_0^\infty \frac{x^{s-1}e^{-ax}}{1 - e^{-x}}$$

§§ Analytic Continuation of $\zeta(s,a)$

Let $0 < c < 2\pi$ and let C denote the piecewise smooth "contour" which first traverses the negative real axis from $-\infty$ to -c and then traverses, in counter-clockwise sense, the circle centered at 0 of radius c and finally, traverses the negative real axis from -c to $-\infty$.

Let C_1 , C_2 , C_3 denote the aforementioned smooth pieces of C. Then, C_1 is parametrized as $re^{-\pi i}$ for r running from ∞ to c. C_2 is parametrized in the obvious way and C_3 is parametrized as $re^{\pi i}$ for r running from c to ∞ .

THEOREM 5.3. For $0 < a \le 1$, the function defined by contour integral

$$I(s,a) = \frac{1}{2\pi i} \int_C \frac{z^{s-1}e^{az}}{1 - e^z} dz$$

is entire. Further, we have

$$\zeta(s,a) = \Gamma(1-s)I(s,a)$$
 for $\sigma > 1$, $\sigma \notin \mathbb{Z}$.

Here, z^s means $r^s e^{-\pi i s}$ on C_1 and $r^s e^{\pi i s}$ on C_3 .

Proof. Let M > 0 and consider the compact disk $|s| \le M$. The integral can be broken up as $\int_{C_1} + \int_{C_2} + \int_{C_3}$. Since C_2 is a compact contour, the integral \int_{C_2} defines an entire function anyway. Therefore, we need only show that the integrals corresponding to C_1 and C_3 are uniformly convergent on the chosen compact disk.

Along C_1 , for $r \geqslant 1$, we have

$$|z^{s-1}| = r^{\sigma-1} \left| e^{-\pi i(\sigma-1+it)} \right| = r^{\sigma-1} e^{\pi t} \leqslant r^{M-1} e^{\pi M}$$

The same bound works on C_3 . Therefore, on either C_1 or C_3 , for $r \ge 1$, we have

$$\left|\frac{z^{s-1}e^{az}}{1-e^z}\right| \leqslant \frac{r^{M-1}e^{\pi M}e^{-ar}}{1-e^{-r}} = \frac{r^{M-1}e^{\pi M}e^{(1-a)r}}{e^r - 1}.$$

For $r > \log 2$, we have $e^r - 1 > e^r/2$ and hence,

$$\left|\frac{z^{s-1}e^{az}}{1-e^z}\right| \leqslant 2r^{M-1}e^{\pi M}e^{-ar}.$$

Since the $\Gamma(M)$ exists, we conclude that the convergence of the integral along C_1 and C_3 is uniform. The argument is similar to the one in the previous proof.

Finally, we must show the identity. Let $g(z) = e^{az}/(1-e^{\overline{z}})$. We have

$$2\pi i I(s,a) = \left(\int_{C_1} + \int_{C_2} + \int_{C_3} \right) z^{s-1} g(z) dz.$$

That is,

$$\begin{split} 2\pi i I(s,a) &= \int_{\infty}^{c} r^{s-1} e^{-\pi i s} g(-r) \ dr + i \int_{-\pi}^{\pi} c^{s-1} e^{(s-1)i\theta} c e^{i\theta} g(c e^{i\theta}) \ d\theta + \int_{c}^{\infty} r^{s-1} e^{\pi i s} g(-r) \ dr \\ &= 2i \sin(\pi s) \int_{c}^{\infty} r^{s-1} g(-r) \ dr + i c^{s} \int_{-\pi}^{\pi} e^{is\theta} g(c e^{i\theta}) \ d\theta. \end{split}$$

Set

$$I_1(s,c) = \int_c^\infty r^{s-1}g(-r) dr$$
 and $I_2(s,c) = \frac{c^s}{2} \int_{-\pi}^\pi e^{is\theta}g(ce^{i\theta}) d\theta$.

Then,

$$\pi I(s,a) = \sin(\pi s) I_1(s,c) + I_2(s,c).$$

We claim that $\lim_{c\to 0} I_2(s,c)=0$. Note that g(z) is analytic in $|z|<2\pi$ except for a simple pole at z=0 and hence, zg(z) is is analytic everywhere inside $|z|<2\pi$. Consider the closed disk $|z|\leqslant \pi$. The function zg(z) is analytic, hence, bounded on $|z|\leqslant \pi$, consequently, there is a constant A>0 such that $|g(z)|\leqslant A/|z|$ for $|z|\leqslant \pi$. Then, for $c<\pi$, we have

$$|I_2(s,c)| \leqslant \frac{c^{\sigma}}{2} \int_{-\pi}^{\pi} e^{-t\theta} \frac{A}{c} d\theta \leqslant A e^{\pi|t|} c^{\sigma-1},$$

and the conclusion follows.

Note that the integral remains unchanged upon changing the value of *c*, which follows from one of Cauchy's theorems. Now, note that

$$\lim_{c \to 0} I_1(s,c) = \int_0^\infty \frac{r^{s-1}e^{-ar}}{1 - e^{-r}} dr = \Gamma(s)\zeta(s,a) \quad \text{ for } \sigma > 1.$$

Hence, we have

$$\pi I(s, a) = \sin(\pi s)\Gamma(s)\zeta(s, a)$$
 for $\sigma > 1$.

Recall Euler's reflection formula,

$$\Gamma(s)\Gamma(1-s) = \frac{\pi}{\sin(\pi s)}$$
 for $s \in \mathbb{C} \setminus \mathbb{Z}$.

Consequently, we have

$$\sin(\pi s)\Gamma(s) = \frac{\pi}{\Gamma(1-s)}$$
 for all $s \in \mathbb{C}$,

since $1/\Gamma(1-s)$ is an entire function. Substituting this, above, we have,

$$I(s,a) = \frac{1}{\Gamma(1-s)}\zeta(s,a).$$

When $\sigma \notin \mathbb{Z}$, we can rearrange the above in the required form.

DEFINITION **5.4.** For $\sigma \leq 1$, define

$$\zeta(s,a) = \Gamma(1-s)I(s,a).$$

THEOREM 5.5. The function $\zeta(s,a)$ so defined is analytic for all s except for a simple pole at s=1 with residue 1.

Proof. That it is analytic is obvious. We have

$$I(1,a) = \frac{1}{2\pi i} \int_C \frac{e^{az}}{1 - e^z} dz.$$

In this case, the integrals on C_1 and C_3 cancel and we are left with

$$I(1,a) = \frac{1}{2\pi i} \int_{C_2} \frac{e^{az}}{1 - e^z} = \text{Res}_{s=0} \frac{e^{as}}{1 - e^s} = -1.$$

Consequently,

$$\operatorname{Res}_{s=1} \zeta(s, a) = \lim_{s \to 1} (s - 1) \Gamma(1 - s) I(s, a) = -\operatorname{Res}_{s=0} \Gamma(s) \times I(1, a) = 1.$$
 (1)

This completes the proof.

§§ Hurwitz's Formula

Consider the Dirichlet series

$$F(x,s) = \sum_{n=1}^{\infty} \frac{e^{2\pi i n x}}{n^s}.$$

This converges absolutely in $\sigma > 1$ and hence, defines a holomorphic functions there. If $x \notin \mathbb{Z}$, then the series converges conditionally in $\sigma > 0$ and hence, is holomorphic there. In any case, F(x,s) is periodic in x with period 1. We call this the *periodic Zeta function*.

LEMMA 5.6. For $0 < r < \pi$, let S(r) denote the region that remains after removing all open circular disks of radius r centered at $2n\pi i$ for $n \in \mathbb{Z}$. If $0 < a \le 1$, then the function

$$g(z) = \frac{e^{az}}{1 - e^z}$$

is bounded in S(r). The bound obviously depends on r.

Proof.

add

THEOREM 5.7 (HURWITZ'S FORMULA). If $0 < a \le 1$ and $\sigma > 1$, then

$$\zeta(1-s,a) = \frac{\Gamma(s)}{(2\pi)^s} \left(e^{-\pi i s/2} F(a,s) + e^{\pi i s/2} F(-a,s) \right).$$

If $a \neq 1$, this representation is valid in $\sigma > 0$.

Proof. For every positive integer N, let C(N) denote the contour shown in the following figure.

Set

$$I_N(s,a) = \frac{1}{2\pi i} \int_{C(N)} \frac{z^{s-1}e^{az}}{1 - e^z} dz$$

with the same conventions on z^{s-1} as mentioned while defining I(s, a).

We first show that $\lim_{N\to\infty} I_N(s,a) = I(s,a)$ for $\sigma < 0$. To do this, it suffices to show that the integral along the outer circle vanishes as $N\to\infty$. Since the orientation of the outer

cycle is irrelevant while showing this, we parametrize the outer circle as $z=Re^{i\theta}$ where $-\pi \leqslant \theta \leqslant \pi$. Consequently,

$$|z^{s-1}| = |R^{s-1}e^{i\theta(s-1)}| \leqslant R^{\sigma-1}e^{\pi|t|}.$$

Due to Lemma 5.6, there is an A > 0 (independent of N) such that the integrand is bounded by $AR^{\sigma-1}e^{\pi|t|}$. Thus, the integral can be bounded above in absolute vaule by

$$2\pi R^{\sigma}e^{\pi|t|}$$
.

But since $\sigma < 0$, we have the desired conclusion as $N \to \infty$. We rewrite this as

$$\lim_{N\to\infty} I(1-s,a) = I(1-s,a) \quad \text{for } \sigma > 1.$$

We now use Cauchy's Residue Theorem to compute the value of $I_N(1-s,a)$. The poles corresponding to which the winding number is non-zero (in fact, precisely -1) are $2n\pi$ for $n \in \{-N, ..., N\} \setminus \{0\}$.

Let

$$R(n) = \operatorname{Res}_{z=2n\pi i} \frac{z^{-s} e^{az}}{1 - e^z}.$$

Then,

$$R(n) = \lim_{z \to 2n\pi i} (z - 2n\pi i) \frac{z^{-s} e^{az}}{1 - e^z} = -\frac{e^{2n\pi i a}}{(2n\pi i)^s}.$$

Consequently, for $\sigma > 1$,

$$I_N(1-s,a) = \sum_{n=1}^N \frac{e^{2n\pi ia}}{(2n\pi i)^s} + \sum_{n=1}^N \frac{e^{-2n\pi ia}}{(-2n\pi i)^s} = \frac{e^{-\pi is/2}}{(2\pi)^s} \sum_{n=1}^N \frac{e^{2n\pi ia}}{n^s} + \frac{e^{\pi is/2}}{(2\pi)^s} \sum_{n=1}^N \frac{e^{-2n\pi ia}}{n^s}.$$

Taking $N \to \infty$, we get

$$I(1-s,a) = \frac{e^{-\pi i s/2}}{(2\pi)^s} F(a,s) + \frac{e^{\pi i s/2}}{(2\pi)^s} F(-a,s) \quad \text{ for } \sigma > 1.$$

Recall that by definition, we have $\zeta(1-s,a) = \Gamma(s)I(1-s,a)$ for $\sigma > 0$, thus, for $\sigma > 1$. This gives,

$$\zeta(1-s,a) = \frac{\Gamma(s)}{(2\pi)^s} \left(e^{-\pi i s/2} F(a,s) + e^{\pi i s/2} F(-a,s) \right) \quad \text{for } \sigma > 1.$$

If $a \neq 1$, then the right hand side is analytic for $\sigma > 0$, as is the left hand side, whence the equality holds for $\sigma > 0$. This completes the proof.

§§ Riemann's Functional Equation

THEOREM 5.8. For all $s \neq 0$, we have

$$\zeta(1-s) = 2(2\pi)^{-s}\Gamma(s)\cos\left(\frac{\pi s}{2}\right)\zeta(s).$$

Proof. Put a = 1 in Hurwitz's formula to get the identity, (for $\sigma > 1$)

$$\zeta(1-s) = \frac{\Gamma(s)}{(2\pi)^s} \left(e^{-\pi i s/2} F(1,s) + e^{\pi i s/2} F(1,s) \right) = \frac{\Gamma(s)}{(2\pi)^s} 2\cos\left(\frac{\pi s}{2}\right) \zeta(s).$$

Let n be a positive integer and let $s \to 2n+1$. In this limit, the right hand side vanishes and hence, we have $\zeta(-2n)=0$ for all positive integers n. Thus, the right hand side is a well defined function that is holomorphic (modulo removable singularities) on $\mathbb{C}\setminus\{0\}$. Further, since $\zeta(1-s)$ is holomorphic on $\mathbb{C}\setminus\{0\}$, equality holds for all $s \neq 0$.

From Gauß's multipliation formula, we get

$$\Gamma(s)\Gamma\left(s + \frac{1}{2}\right) = 2\pi^{1/2}2^{-2s}\Gamma(2s)$$

whenever either of the two sides is defined. Put $s \mapsto (1-s)/2$ to get

$$2^{s}\pi^{1/2}\Gamma(1-s) = \Gamma\left(\frac{1-s}{2}\right)\Gamma\left(1-\frac{s}{2}\right)$$
,

whenever either of the two sides is defined.

The reflection formula gives

$$\Gamma(1-s)\sin\left(\frac{\pi s}{2}\right) = \frac{2^{-s}\pi^{1/2}\Gamma\left(\frac{1-s}{2}\right)}{\Gamma\left(\frac{s}{2}\right)}$$

whenever either of the two sides is defined.

We have

$$\zeta(s) = 2(2\pi)^{s-1}\Gamma(1-s)\sin\left(\frac{\pi s}{2}\right)\zeta(1-s)$$

whenever either of the two sides is defined. Thus, we have

$$\pi^{-s/2}\Gamma\left(\frac{s}{2}\right)\zeta(s) = \pi^{-(1-s)/2}\Gamma\left(\frac{1-s}{2}\right)\zeta(1-s).$$

Define the *xi function* as

$$\xi(s) = \frac{1}{2}s(s-1)\pi^{-s/2}\Gamma\left(\frac{s}{2}\right)\zeta(s).$$

This is an entire function and satisfies the equation

$$\xi(s) = \xi(1-s).$$

This is known as *Riemann's functional equation*.

§§ Functional equation for L-functions

THEOREM 5.9. If *h* and *N* are positive integers with $1 \le h \le N$, then for all $s \ne 0$, we have

$$\zeta\left(1-s,\frac{h}{N}\right) = \frac{2\Gamma(s)}{(2\pi N)^s} \sum_{r=1}^{N} \cos\left(\frac{\pi s}{2} - \frac{2\pi rh}{N}\right) \zeta\left(s,\frac{r}{N}\right).$$

Proof. For $\sigma > 1$, note that

$$\begin{split} F\left(\frac{h}{N},s\right) &= \sum_{n=1}^{\infty} \frac{e^{2\pi i n h/N}}{n^s} \\ &= \sum_{r=1}^{N} \sum_{q=0}^{\infty} \frac{e^{2\pi i r h/N}}{(qN+r)^s} \\ &= \frac{1}{N^s} \sum_{r=1}^{N} e^{2\pi i r h/N} \sum_{q=0}^{\infty} \frac{1}{\left(q+\frac{r}{N}\right)^s} \\ &= N^{-s} \sum_{r=1}^{N} e^{2\pi i r h/N} \zeta\left(s,\frac{r}{N}\right). \end{split}$$

Substituting this in Hurwitz's formula, we obtain the equality for $\sigma > 1$. The result holds for all $s \neq 0$ as a result of analytic continuation.

Let χ be a Dirichlet character modulo N. Then, $L(s,\chi)$ is absolutely convergent for $\sigma > 1$. In this half plane, we can write

$$L(s,\chi) = \sum_{n=1}^{\infty} \frac{\chi(n)}{n^s}$$

$$= \sum_{r=1}^{N} \sum_{q=0}^{\infty} \frac{\chi(r)}{(qN+r)^s}$$

$$= \frac{1}{N^s} \sum_{r=1}^{N} \chi(r) \zeta\left(s, \frac{r}{N}\right).$$

From the theory we developed earlier, we know that the Hurwitz zeta function has an analytic continuation to all of \mathbb{C} with a simple pole at s=1 of residue 1.

- If χ is not the principal character modulo N, then $\sum_{r=1}^{N} \chi(r) = 0$ and hence, the right hand side of the above equation is entire. Consequently, $L(s,\chi)$ can be analytically continued to an *entire function*.
- On the other hand, if $\chi = \mathbb{I}$ is the principal character, then the right hand side has a simple pole at s = 1 of residue $\varphi(N)/N$.

PROPOSITION 5.10. Let χ be a primitive character modulo N. Then,

$$G(1,\overline{\chi})L(s,\chi) = \sum_{h=1}^{N} \overline{\chi}(h)F\left(\frac{h}{N},s\right)$$
 for $\sigma > 1$.

Proof. Omitted owing to its obviousness. The primitive-ness of the character is required only to use the fact that the Gauss sum is separable.

THEOREM 5.11 (FUNCTIONAL EQUATION FOR *L***-SERIES).** Let χ be a primitive character modulo *N*. Then, for all *s*, we have

$$L(1-s,\chi) = \frac{N^{s-1}\Gamma(s)}{(2\pi)^s} \left(e^{-\pi i s/2} + \chi(-1)e^{\pi i s/2} \right) G(1,\chi) L(s,\overline{\chi}).$$

Proof. Hurwitz's formula says

$$\zeta(1-s,h/N) = \frac{\Gamma(s)}{(2\pi)^s} \left(e^{-\pi i s/2} F(h/N,s) + e^{\pi i s/2} F(-h/N,s) \right) \qquad \text{for } \sigma > 1.$$

Thus, for $\sigma > 1$,

$$\sum_{h=1}^{N} \chi(h) \zeta\left(1-s, \frac{h}{N}\right) = \frac{\Gamma(s)}{(2\pi)^{s}} \left\{ e^{-\pi i s/2} \sum_{h=1}^{N} \chi(h) F(h/N, s) + e^{\pi i s/2} \sum_{h=1}^{N} \chi(h) F(-h/N, s) \right\}.$$

We simplify the second term,

$$\sum_{h=1}^{N} \chi(h)F(-h/N,s) = \sum_{h \bmod N} \chi(h)F\left(\frac{N-h}{N},s\right) = \chi(-1)\sum_{h \bmod N} \chi(h)F(h/N,s).$$

Substituting this back, for $\sigma > 1$, the right hand side becomes

$$\frac{\Gamma(s)}{(2\pi)^s} \left(e^{-\pi i s/2} + \chi(-1)e^{\pi i s/2} \right) \sum_{h \bmod N} \chi(h) F(h/N, s).$$

Using Proposition 5.10, the above simplifies as

$$\sum_{h=1}^{N} \chi(h) \zeta\left(1-s, \frac{h}{N}\right) = \frac{\Gamma(s)}{(2\pi)^s} \left(e^{-\pi i s/2} + \chi(-1)e^{\pi i s/2}\right) G(1, \chi) L(s, \overline{\chi})$$

for $\sigma > 1$. The left hand side is holomorphic on $s \neq 0$, as is the right hand side (since $\overline{\chi}$ is non principal). Thus, the equality holds for all s (since the right hand side is entire). In particular, we can suppose $\Re(s) < 0$, whence, we can multiply by N^{s-1} to obtain the equality

$$L(1-s,\chi) = \frac{N^{s-1}\Gamma(s)}{(2\pi)^s} \left(e^{-\pi i s/2} + \chi(-1)e^{\pi i s/2} \right) G(1,\chi) L(s,\overline{\chi}).$$

This equality holds in $\sigma < 0$ and hence, everywhere, since both sides are entire. This completes the proof.

§6 THE PRIME NUMBER THEOREM

LEMMA 6.1. $\zeta(1+it) \neq 0$ for all $t \in \mathbb{R} \setminus \{0\}$.

LEMMA 6.2. The series

$$\Phi(s) = \sum_{n \geqslant 2} \sum_{p} \frac{1}{n p^{ns}}$$

converges uniformly on compacta to a holomorphic function on $\Re s > \frac{1}{2}$.

Proof. Let s = x + iy with $x > \frac{1}{2}$. We have the inequalities

$$\sum_{n \ge 2} \sum_{p} \frac{1}{n p^{nx}} = \sum_{p} \frac{1}{p^{2x}} \left(\sum_{n \ge 0} \frac{1}{(n+2)p^{nx}} \right) \le \sum_{p} \frac{1}{p^{2x}} \left(\sum_{n \ge 0} \frac{1}{\sqrt{2}^n} \right)$$

and the conclusion follows.

Define the series

$$L(s) = \sum_{p} \frac{1}{p^s},$$

which is easily seen to be holomorphic in $\Re s>1$ as the series converges uniformly on compacta. Let

$$\ell(s) = \sum_{p} \frac{\log p}{p^s} = -L'(s)$$

on Res > 1.

Notice that

$$L(s) = \log \zeta(s) - \Phi(s) \quad \text{for } \Re s > 1.$$

Due to Lemma 6.1, the function $(s-1)\zeta(s)$, which is known to be entire, does not vanish on an open set containing $\{z\colon\Re z\geqslant 1\}$. Therefore, we may consider a logarithm for the same around s=1. It follows that on the right half plane $\Re s>1$,

$$\ell(s) - \frac{1}{s-1} = -(L(s) + \log(s-1))' = -(\log((s-1)\zeta(s)) - \Phi(s))'.$$

Note that the right hand side is defined and analytic in a neighborhood of s=1 and hence, $\ell(s)-\frac{1}{s-1}$ is defined and analytic in an open set containing $\Re s\geqslant 1$. This will be very useful later on.

LEMMA 6.3. Let $f:[0,\infty)\to\mathbb{C}$ be a bounded, locally integrable function. Define $g:\{z\colon\Re z>0\}\to\mathbb{C}$ by

$$g(z) = \int_0^\infty e^{-zt} f(t) dt.$$

Then g is well-defined and analytic on its domain of definition.

Proof. Define $g_T : \mathbb{C} \to \mathbb{C}$ by

$$g_T(z) = \int_0^T e^{-zt} f(t) dt.$$

We shall show that $g_T \to g$ uniformly on compacta contained in the right half plane. Indeed, let K be one such compact set. Then, there is a $\delta_0 > 0$ such that $\Re z \geqslant \delta_0$ for every $z \in K$. It follows that for T < S,

$$|g_S(z) - g_T(z)| \le \int_T^S e^{-\delta_0 t} |f(t)| dt$$

which goes to zero since f is bounded. Thus, g is analytic on its domain of definition.

THEOREM 6.4 (NEWMAN). Let $f:[0,\infty)\to\mathbb{C}$ be a bounded, locally integrable functionand suppose that

$$g(z) = \int_0^\infty e^{-zt} f(t) dt \quad \Re z > 0,$$

extends analytically to an open set containing $\Re z \geqslant 0$. Then, $\int_0^\infty f(t) \, dt$ exists and is equal to g(0).

LEMMA 6.5. Suppose $h:[1,\infty)\to\mathbb{R}$ is a non-decreasing function and

$$\int_{1}^{\infty} \frac{h(x) - x}{x^2} dx$$

converges. Then, $h(x) \sim x$.

Proof. Suppose for some $\lambda > 1$, there are arbitrarily large values of x with $h(x) \ge \lambda x$. Then,

$$\int_{r}^{\lambda x} \frac{h(t) - t}{t^2} dt \geqslant \int_{r}^{\lambda x} \frac{\lambda x - t}{t^2} dt = \int_{1}^{\lambda} \frac{\lambda - s}{s^2} ds > 0$$

for all such x (which are arbitrarily large), a contradiction to the fact that the integral converges.

Similarly, if for some $\lambda < 1$, there are arbitrarily large values of x with $h(x) \leq \lambda x$, then

$$\int_{\lambda x}^{x} \frac{h(t) - t}{t^2} \leqslant \int_{\lambda x}^{x} \frac{\lambda x - t}{t^2} dt = \int_{\lambda}^{1} \frac{\lambda - s}{s^2} dt < 0$$

for all such *x* (which are arbitrarily large). This is again a contradiction.

It is not hard to see the equality

$$\ell(s) = s \int_0^\infty e^{-st} \vartheta(e^t) dt \qquad \Re s > 1,$$

which follows by just integrating the function $t \mapsto \vartheta(e^t)$ step-wise. Thus,

$$\frac{\ell(s+1)}{s+1} - \frac{1}{s} = \int_0^\infty e^{-st} \left(e^{-t} \vartheta(e^t) - 1 \right) dt \qquad \Re s > 0.$$

Set $g(s) = \frac{\ell(s+1)}{s+1} - \frac{1}{s}$ and $f(t) = e^{-t}\vartheta(e^t) - 1$. Then, f is a bounded locally integrable function on $[0,\infty)$ and g is holomorphic in a neighborhood of $\Re s \geqslant 0$. Due to Theorem 6.4, it follows that

$$\int_{1}^{\infty} \frac{\vartheta(x) - x}{x^2} \, dx$$

converges. Finally, using Lemma 6.5, we have $\vartheta(x) \sim x$, which is equivalent to the Prime Number Theorem due to Theorem 2.5.