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Abstract

It is known that every Euclidean Domain (ED) is a Principal Ideal Domain (PID).
We present two exammples of PIDs that are not EDs, namely, R[X, Y]/(X2 + Y2 + 1)
and Z

[
1+

√
−19

2

]
.

§1 R[X, Y]/(X2 + Y2 + 1)

We first begin with two important lemmas.

LEMMA 1.1. Let A be a commutative ring in which every prime ideal is principal. Then, A
is a principal ring.

Proof. Suppose not and let Σ denote the poset of all proper ideals that are not principal.
Let C denote a chain in Σ and let a =

⋃
C . If a = (a) is principal, then there is an ideal

b ∈ C that contains a, consequently, b = (a), a contradiction. Thus, a ∈ Σ and is an upper
bound for C . Due to Zorn’s Lemma, Σ contains a maximal element, say p.

We contend that p is prime. Suppose not. Then, there are a, b /∈ p with ab ∈ p. Note
that (p : b) is an ideal properly containing p (since it also contains a) and hence, must be
principal, say (c). Next, p+ (b) properly contains p and hence, must be principal, say (d).
Clearly, p ⊇ (p : b)(p+ (b)) = (cd). On the other hand, if x ∈ p, then x = αd for some
α ∈ A. Since αd ∈ p, we have α ∈ (p : b) = (c). Thus, p ⊆ (p : b)(p+ (b)) and p = (cd) is
principal, a contradiction. Hence, p is prime, and must be principal, again, a contradiction.
This completes the proof. ■

LEMMA 1.2. Let A be a Euclidean Domain with Euclidean function δ : A\{0} → N0.
Then, there is a non-zero prime p ∈ A such that π : A ↠ A/p restricts to a surjective
group homomorphism π : A× → (A/p)×.

Proof. Let p ∈ A be a non-zero element in A\A× that minimizes δ. Then, p must be
irreducible, for if p = ab with a non-unit, then

δ(p) = δ(ab) ⩾ δ(a) ⩾ δ(p),

consequently, δ(a) = δ(ab) whence b must be a unit. This shows that p is prime.
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Now, let a ∈ A/p be invertible. Then, there is a non-zero a ∈ A with π(a) = a. Thus,
there are q and r with a = pq + r. Since r ̸= 0, we must have δ(r) < δ(p), whereby,
r ∈ A×. Note that π(r) = π(a) = a and hence, the restriction of π to A× → (A/p)× is
surjective. ■

We are now ready to prove the main of this section. Let A = R[X, Y]/(X2 + Y2 + 1)
and let x and y denote the images of X and Y in A.

PROPOSITION 1.3. Every non-zero prime ideal in A is of the form (ax + by + c) where
(a, b) ̸= 0.

Proof. Let p be a non-zero prime ideal of A. Note first that

dim A = dim R[X, Y]− ht((X2 + Y2 + 1)) = 1,

whence p is maximal. Further, A/p is a finitely generated R-algebra and also a field,
and due to Zariski’s Lemma, must be a finite extension of R. Thus, [A/p : R] ⩽ 2. Let
x, y denote the images of x and y in A/p. Since 1, x, y cannot be linearly independent
over R, we must have a non-trivial linear combination ax + by + c = 0 in A/p. Hence,
ax + by + c ∈ p. If (a, b) = 0, then p would contain a unit which is impossible.

Note that (aX + bY + c) was a maximal ideal in R[X, Y]. Hence, (ax + by + c) is a
maximal ideal in A. Further, the quotient A/(ax + by + c) strictly contains R and due to
Zariski’s Lemma, must be a finite extension of it, whence is isomorphic to C. This shows
that p = (ax + by + c) and A/p ∼= C thereby completing the proof. ■

PROPOSITION 1.4. A is a PID but not an ED.

Proof. Due to Proposition 1.3 and Lemma 1.1, A is a PID. Suppose A were an ED. According
to Lemma 1.2, there is a non-zero prime p ∈ A and a group surjection π : A× → (A/p)×.
Note that A× ∼= R× and (A/p)× ∼= C×. But there is no surjective group homomorphism
R× ↠ C×, a contradiction. ■

§2 Z
[

1+
√
−19

2

]
Let K = Q[

√
−19] be a number field and let OK denote the ring of integers in K. It is well

known that OK = Z
[

1+
√
−19

2

]
and that it has class number 1. Hence, every fractional ideal

over OK is principal. In particular, every integral ideal of OK is principal and OK is a PID.
We shall now argue that OK is not an ED. Suppose δ : OK\{0} → N0 is a Euclidean

function and let p ∈ OK be a non-zero, non-invertible element that minimizes δ. Consider
the canonical projection π : OK ↠ OK/(p).

If 0 ̸= a ∈ OK/(p), then there is an a ∈ OK that maps to it under π. We may write
a = pq + r where q ∈ OK, 0 ̸= r and δ(r) < δ(p). Due to the minimality of δ(p), we must
have that r is a unit. Note that the only units in OK are ±1. Indeed, if x ∈ OK is a unit,
then there are integers m and n such that

x = m + n

(
1 +

√
−19

2

)
=

(2m + n) + n
√
−19

2
.
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Since x is a unit, we have NK/Q(x) = ±1, that is,

(2m + n)2 + 19n2 = 4.

It is not hard to see, from the above equation, that the only solutions are x = ±1.
Hence, r ∈ {±1}, in particular, OK/(p) can have atmost 3 elements and at least 2

elements. Thus, the ideal norm of (p) is either 2 or 3. Hence, NK/Q(p) ∈ {2, 3}.

We may suppose p = m + n 1+
√
−19

2 . The equation involving norm gives us

(2m + n)2 + 19n2 ∈ {8, 12}.

Due to size reasons, n = 0. And we are left with m2 ∈ {2, 3}, which is impossible. Thus,
OK cannot be an ED. This completes the proof.
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