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Abstract

It is known that every Euclidean Domain (ED) is a Principal Ideal Domain (PID).
We present two exammples of PIDs that are not EDs, namely, R[X, Y]/(X? + Y2 +1)

and Z [@]

§1 R[X,Y]/(X>+Y2+1)
We first begin with two important lemmas.

LEMMA 1.1. Let A be a commutative ring in which every prime ideal is principal. Then, A
is a principal ring.

Proof. Suppose not and let X denote the poset of all proper ideals that are not principal.
Let ¢ denote a chain in X and let a = |J%. If a = (a) is principal, then there is an ideal
b € ¥ that contains a, consequently, b = (a), a contradiction. Thus, a € X and is an upper
bound for €. Due to Zorn’s Lemma, 3. contains a maximal element, say p.

We contend that p is prime. Suppose not. Then, there are a,b ¢ p with ab € p. Note
that (p : b) is an ideal properly containing p (since it also contains a) and hence, must be
principal, say (c). Next, p + (b) properly contains p and hence, must be principal, say (d).
Clearly, p 2 (p : b)(p + (b)) = (cd). On the other hand, if x € p, then x = ad for some
a € A. Since ad € p, wehavea € (p:b) = (¢). Thus,p C (p:b)(p+ (b)) and p = (cd) is
principal, a contradiction. Hence, p is prime, and must be principal, again, a contradiction.
This completes the proof. u

LEMMA 1.2. Let A be a Euclidean Domain with Euclidean function ¢ : A\{0} — IN.
Then, there is a non-zero prime p € A such that 7 : A — A/p restricts to a surjective
group homomorphism 77 : A* — (A/p)*.

Proof. Let p € A be a non-zero element in A\A* that minimizes 6. Then, p must be
irreducible, for if p = ab with a non-unit, then

5(p) = d(ab) = 6(a) = &(p),

consequently, 6(a) = §(ab) whence b must be a unit. This shows that p is prime.



Now, leta@ € A/p be invertible. Then, there is a non-zero a € A with 7t(a) = a. Thus,
there are g and r with a = pg + r. Since r # 0, we must have 6(r) < J(p), whereby,
r € A*. Note that 77(r) = 7(a) = @ and hence, the restriction of 77 to A* — (A/p)* is
surjective. |

We are now ready to prove the main of this section. Let A = R[X, Y]/ (X2 +Y? +1)
and let x and y denote the images of X and Y in A.

PROPOSITION 1.3. Every non-zero prime ideal in A is of the form (ax + by + ¢) where
(a,b) # 0.

Proof. Let p be a non-zero prime ideal of A. Note first that
dim A = dimR[X, Y] —ht((X*> +Y? 4+ 1)) =1,

whence p is maximal. Further, A/p is a finitely generated R-algebra and also a field,
and due to Zariski’s Lemma, must be a finite extension of R. Thus, [A/p : R] < 2. Let
X,y denote the images of x and y in A/p. Since 1,%,y cannot be linearly independent
over R, we must have a non-trivial linear combination ax + by + c = 0 in A/p. Hence,
ax + by +c € p. If (a,b) = 0, then p would contain a unit which is impossible.

Note that (aX + bY + ¢) was a maximal ideal in R[X,Y]. Hence, (ax + by +¢) is a
maximal ideal in A. Further, the quotient A/ (ax + by + ¢) strictly contains R and due to
Zariski’s Lemma, must be a finite extension of it, whence is isomorphic to C. This shows
that p = (ax + by + c) and A/p = C thereby completing the proof. |

PROPOSITION 1.4. A is a PID but not an ED.

Proof. Due to Proposition 1.3 and Lemma 1.1, A is a PID. Suppose A were an ED. According
to Lemma 1.2, there is a non-zero prime p € A and a group surjection 7t : A* — (A/p)*.
Note that A* = R* and (A/p)* = C*. But there is no surjective group homomorphism
R* — C*, a contradiction. [ |

§2 Z [

Let K = Q[v/ —19] be a number field and let Ok denote the ring of integers in K. It is well
known that Ox = Z [H— V2_19 and that it has class number 1. Hence, every fractional ideal

over O is principal. In particular, every integral ideal of O is principal and Ok is a PID.

We shall now argue that O is not an ED. Suppose ¢ : Ox\{0} — Ny is a Euclidean
function and let p € Ok be a non-zero, non-invertible element that minimizes . Consider
the canonical projection 77 : Ox — O/ (p).

If 0 # a € O/ (p), then there is an a € Ok that maps to it under 7. We may write
a = pq+rwhere q € Ok, 0 # rand §(r) < é(p). Due to the minimality of 4(p), we must
have that r is a unit. Note that the only units in Ok are £1. Indeed, if x € Ok is a unit,
then there are integers m and n such that

B 1+v-19\  (2m+n)+nv/—-19
x—m+n< 2 )— >
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Since x is a unit, we have Ng,qo(x) = %1, that is,
(2m +n)? +19n% = 4.

It is not hard to see, from the above equation, that the only solutions are x = £1.
Hence, r € {£1}, in particular, Og/(p) can have atmost 3 elements and at least 2
elements. Thus, the ideal norm of (p) is either 2 or 3. Hence, Ng,o(p) € {2,3}.

We may suppose p = m + n#. The equation involving norm gives us

(2m 4 n)* +19n® € {8,12}.

Due to size reasons, n = 0. And we are left with m? € {2,3}, which is impossible. Thus,
Ok cannot be an ED. This completes the proof.



	
	

